

Computer Networking
Problems and Solutions

This page intentionally left blank

Computer Networking
Problems and Solutions

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan
Munich • Paris • Montreal • Toronto • Delhi • Mexico City • São Paulo
Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

An innovative approach to building
resilient, modern networks

Russ White and Ethan Banks

Editor-in-Chief
Mark Taub

Product Line Manager
Brett Bartow

Development Editor
Christopher Cleveland

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Chuck Hutchinson

Indexer
Ken Johnson

Proofreader
Abigail Manheim

Technical Reviewers
Peter Welcher, Jordan Martin

Publishing Coordinator
Vanessa Evans

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017958319

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-1-58714-504-9
ISBN-10: 1-58714-504-9

1 17

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To Lori, my beautiful wife of 20 years.

To Bruce Little and Doug Bookman; for challenging
me to think.

To Brett Bartow, Eyvonne Sharp, Phil Gervasi, and
Jordan Martin; for inspiring me.

May God bless each of you for the blessings you have
brought into my life.

—Russ White

To Summerset; for enabling me to pursue the things
I must chase.

To Drew Conry-Murray; for commiseration, advice,
and encouragement.

To Robin Young and Greg Ferro; for freedom to write
and moral support.

To Jordan Martin; for not saying no.

To the Packet Pushers community; for their
multiplied voices, both frustrated and victorious.

—Ethan Banks

vi

Contents

Introduction . xxii

Part I: The Data Plane . 1

Chapter 1: Fundamental Concepts . 5

Art or Engineering? . 6
Circuit Switching . 9
Packet Switching . 13

Packet Switched Operation . 13
Flow Control in Packet Switched Networks 15

Fixed Versus Variable Length Frames . 17
Calculating Loop-Free Paths . 20
Quality of Service . 22
The Revenge of Centralized Control Planes . 25
Complexity . 25

Why So Complex? . 26
Defining Complexity . 28
Managing Complexity through the Wasp Waist 32

Final Thoughts . 34
Further Reading . 34
Review Questions . 35

Chapter 2: Data Transport Problems and Solutions 37

Digital Grammars and Marshaling . 39
Digital Grammars and Dictionaries . 40
Fixed Length Fields . 43
Type Length Value . 44
Shared Object Dictionaries . 46

Contents vii

Errors . 47
Error Detection . 48
Error Correction . 53

Multiplexing . 55
Addressing Devices and Applications . 56
Multicast . 58
Anycast . 61

Flow Control . 63
Windowing . 65
Negotiated Bit Rates . 69

Final Thoughts on Transport . 70
Further Reading . 71
Review Questions . 72

Chapter 3: Modeling Network Transport .75

United States Department of Defense (DoD) Model 76
Open Systems Interconnect (OSI) Model . 80
Recursive Internet Architecture (RINA) Model . 84
Connection Oriented and Connectionless . 86
Final Thoughts . 87
Further Reading . 87
Review Questions . 88

Chapter 4: Lower Layer Transports . 91

Ethernet . 92
Multiplexing . 92
Error Control. 99
Data Marshaling . 100
Flow Control . 101

Wireless 802.11 . 102
Multiplexing . 102
Data Marshaling, Error Control, and Flow Control 109

Final Thoughts on Lower Layer Transmission Protocols 110
Further Reading . 111
Review Questions . 112

Contentsviii

Chapter 5: Higher Layer Data Transports .115

The Internet Protocol . 117
Transport and Marshaling . 119
Multiplexing . 123

Transmission Control Protocol . 128
Flow Control . 129
Error Control. 134
TCP Port Numbers . 135
TCP Session Setup . 135

QUIC . 136
ICMP . 142
Final Thoughts . 143
Further Reading . 144
Review Questions . 146

Chapter 6: Interlayer Discovery .149

Interlayer Discovery Solutions . 150
Well-Known and/or Manually Configured Identifiers 151
Mapping Database and Protocol . 152
Advertising Identifier Mappings in a Protocol 153
Calculating One Identifier from the Other 154

Interlayer Discovery Examples . 154
The Domain Name System . 154
DHCP . 156
IPv4 Address Resolution Protocol . 159
IPv6 Neighbor Discovery . 161

The Default Gateway Problem . 164
Final Thoughts . 167
Further Reading . 168
Review Questions . 169

Chapter 7: Packet Switching .171

Physical Media to Memory . 173
Processing the Packet. 174

Switching . 175
Routing . 175
Why Route? . 176

Contents ix

Equal Cost Multipath . 178
Packet Processing Engines . 183

Across the Bus . 186
Crossbars and Contention . 188

Memory to Physical Media . 190
Final Thoughts on Packet Switching . 192
Further Reading . 192
Review Questions . 193

Chapter 8: Quality of Service .195

Defining the Problem Space . 196
Why Not Just Size Links Large Enough? 197

Classification. 199
Preserving Classification . 203
The Unmarked Internet . 206

Congestion Management . 207
Timeliness: Low-Latency Queueing . 208
Fairness: Class-Based Weighted Fair Queueing 212
Overcongestion . 214
Other QoS Congestion Management Tools 214

Queue Management . 215
Managing a Full Buffer: Weighted Random

Early Detection . 215
Managing Buffer Delay, Bufferbloat, and CoDel 216

Final Thoughts on Quality of Service . 218
Further Reading . 219
Review Questions . 220

Chapter 9: Network Virtualization .221

Understanding Virtual Networks . 222
Providing Ethernet Services over an IP Network 226
Virtual Private Access to a Corporate Network 227
A Summary of Virtualization Problems and Solutions 229

Segment Routing . 230
Segment Routing with Multiprotocol Label Switching 232
Segment Routing with IPv6 . 236
Signaling Segment Routing Labels . 237

Software-Defined Wide Area Networks . 239

Contentsx

Complexity and Virtualization . 241
Interaction Surfaces and Shared Risk Link Groups 242
Interaction Surfaces and Overlaid Control Planes. 243

Final Thoughts on Network Virtualization . 245
Further Reading . 246
Review Questions . 248

Chapter 10: Transport Security . 249

The Problem Space . 250
Validating Data . 250
Protecting Data from Being Examined . 250
Protecting User Privacy . 251

The Solution Space . 252
Encryption . 253
Key Exchange . 261
Cryptographic Hashes . 263
Obscuring User Information . 264

Transport Layer Security . 269
Final Thoughts on Transport Security . 272
Further Reading . 273
Review Questions . 274

Part II: The Control Plane . 277

Chapter 11: Topology Discovery . 281

Nodes, Edges, and Reachable Destinations . 284
Node . 284
Edge . 285
Reachable Destination . 285
Topology . 287

Learning about the Topology . 287
Detecting Other Network Devices . 287
Detecting Two-Way Connectivity . 290
Detecting the Maximum Transmission Unit 291

Learning about Reachable Destinations . 293
Learning Reactively . 293
Learning Proactively . 294

Contents xi

Advertising Reachability and Topology . 295
Deciding When to Advertise Reachability and Topology 295
Reactive Distribution of Reachability . 298
Proactive Distribution of Reachability . 300

Redistribution between Control Planes . 303
Redistribution and Metrics . 303
Redistribution and Routing Loops . 306

Final Thoughts on Topology Discovery . 307
Further Reading . 308
Review Questions . 309

Chapter 12: Unicast Loop-Free Paths (1) . 311

Which Path Is Loop Free? . 312
Trees . 315
Alternate Loop-Free Paths . 317

Waterfall (or Continental Divide) Model 320
P/Q Space . 321
Remote Loop-Free Alternates . 322

Bellman-Ford Loop-Free Path Calculation . 324
Garcia’s Diffusing Update Algorithm . 330
Final Thoughts . 337
Further Reading . 337
Review Questions . 338

Chapter 13: Unicast Loop-Free Paths (2) . 341

Dijkstra’s Shortest Path First . 341
Partial and Incremental SPF . 349
Calculating LFAs and rLFAs . 350

Path Vector . 353
Disjoint Path Algorithms . 356

Two-Connected Networks . 357
Suurballe’s Disjoint Path Algorithm . 358
Maximally Redundant Trees . 363

Two-Way Connectivity . 366
Final Thoughts . 367
Further Reading . 368
Review Questions . 370

Contentsxii

Chapter 14: Reacting to Topology Changes . 373

Detecting Topology Changes . 375
Polling to Detect Failures . 376
Event-Driven Failure Detection . 377
Comparing Event-Driven and Polling-Based Detection 378
An Example: Bidirectional Forwarding Detection 380

Change Distribution . 383
Flooding . 383
Hop by Hop . 387
A Centralized Store . 389

Consistency, Accessibility, and Partitionability . 392
Final Thoughts . 394
Further Reading . 395
Review Questions . 396

Chapter 15: Distance Vector Control Planes . 397

Control Plane Classification . 398
Spanning Tree Protocol . 402

Building a Loop-Free Tree . 402
Learning about Reachable Destinations 407
Concluding Thoughts on the Spanning

Tree Protocol . 408
The Routing Information Protocol . 410

Tying Bellman-Ford to RIP . 412
Reacting to Topology Changes . 414
Concluding Thoughts on RIP . 415

The Enhanced Interior Gateway Routing Protocol 416
Reacting to a Topology Change . 419
Neighbor Discovery and Reliable Transport 422
Concluding Thoughts on EIGRP . 424

Further Reading . 425
Review Questions . 426

Chapter 16: Link State and Path Vector Control Planes 429

A Short History of OSPF and IS-IS . 430
The Intermediate System to Intermediate System Protocol 431

OSI Addressing . 431
Marshalling Data in IS-IS . 433

Contents xiii

Neighbor and Topology Discovery . 434
Reliable Flooding . 436
Concluding Thoughts on IS-IS . 439

The Open Shortest Path First Protocol . 440
Marshalling Data in OSPF . 440
Neighbor and Topology Discovery . 441
Reliable Flooding . 443
Concluding Thoughts on OSPF. 445

Common Elements of OSPF and IS-IS . 446
Multiaccess Links . 446
Conceptualizing Links, Nodes, and Reachability in

Link State Protocols . 449
Validating Two-Way Connectivity in SPF 450

Border Gateway Protocol . 451
BGP Peering . 452
The BGP Best Path Decision Process . 454
BGP Advertisement Rules . 456
Concluding Thoughts on BGP . 458

Final Thoughts . 458
Further Reading . 459
Review Questions . 462

Chapter 17: Policy in the Control Plane . 463

Control Plane Policy Use Cases . 464
Routing and Potatoes. 464
Resource Segmentation . 466
Flow Pinning for Application Optimization 468

Defining Control Plane Policy . 473
Control Plane Policy and Complexity . 474

Routing and Potatoes. 474
Resource Segmentation . 476
Flow Pinning for Applications . 478

Final Thoughts on Control Plane Policy . 478
Further Reading . 479
Review Questions . 480

Contentsxiv

Chapter 18: Centralized Control Planes . 481

Considering the Definition of Software Defined 482
A Taxonomy of Interfaces . 483
Considering the Division of Labor . 484

BGP as an SDN . 485
Fibbing . 487
I2RS . 490
PCEP . 495
OpenFlow . 497
CAP Theorem and Subsidiarity . 499
Final Thoughts on Centralized Control Planes . 503
Further Reading . 504
Review Questions . 505

Chapter 19: Failure Domains and Information Hiding 507

The Problem Space . 508
Defining Control Plane State Scope . 508
Positive Feedback Loops . 510

The Solution Space . 513
Summarizing Topology Information . 514
Aggregating Reachability Information . 515
Filtering Reachability Information . 518
Layering Control Planes . 519
Caching . 520
Slowing Down . 525

Final Thoughts on Hiding Information . 526
Further Reading . 527
Review Questions . 527

Chapter 20: Examples of Information Hiding . 529

Summarizing Topology Information . 530
Intermediate System to Intermediate System 530
Open Shortest Path First . 535

Aggregation. 542
Layering . 543

The Border Gateway Protocol as a Reachability Overlay 544
Segment Routing with a Controller Overlay 546

Contents xv

Slowing Down State Velocity. 548
Exponential Backoff . 549
Link State Flooding Reduction . 552

Final Thoughts on Failure Domains . 554
Further Reading . 554
Review Questions . 556

Part III: Network Design . 557

Chapter 21: Security: A Broader Sweep . 561

The Scope of the Problem . 562
The Biometric Identity Conundrum . 562
Definitions . 564
The Problem Space . 565

The Solution Space . 565
Defense in Depth . 566
Access Control. 567
Data Protection . 568
Service Availability Assurance . 572

The OODA Loop as a Security Model . 582
Observe . 583
Orient . 583
Decide . 584
Act . 585

Final Thoughts on Security . 586
Further Reading . 586
Review Questions . 589

Chapter 22: Network Design Patterns . 591

The Problem Space . 592
Solving Business Problems . 592
Translating Business Requirements into Technical 597
What Is a Good Network Design? . 599

Hierarchical Design . 600
Common Topologies . 603

Ring Topologies. 603
Mesh Topologies . 607

Contentsxvi

Hub-and-Spoke Topologies . 609
Planar, Nonplanar, and Regular . 610

Final Thoughts on Network Design Patterns . 612
Further Reading . 613
Review Questions . 613

Chapter 23: Redundant and Resilient . 615

The Problem Space: What Failures Look Like to Applications 616
Resilience Defined . 617

Other “Measures” . 619
Redundancy as a Tool to Create Resilience . 619

Shared Risk Link Groups . 621
In-Service Software Upgrade and Graceful Restart 622
Dual and Multiplanar Cores . 623

Modularity and Resilience . 624
Final Thoughts on Resilience . 626
Further Reading . 626
Review Questions . 627

Chapter 24: Troubleshooting . 629

What Is the Purpose? . 630
What Are the Components? . 631
Models and Troubleshooting . 633

Build How Models . 633
Build What Models . 635
Build Accurate Models . 637
Shifting between Models . 639

Half Split and Move . 641
Using Manipulability . 643
Simplify before Testing . 645

Fixing the Problem . 646
Final Thoughts on Troubleshooting . 647
Further Reading . 648
Review Questions . 649

Contents xvii

Part IV: Current Topics . 651

Chapter 25: Disaggregation, Hyperconvergence, and the
Changing Network . 653

Changes in Compute Resources and Applications 654
Converged, Disaggregated, Hyperconverged,

and Composable . 654
Applications Virtualized and Disaggregated 658

The Impact on Network Design . 659
The Rise of East/West Traffic . 659
The Rise of Jitter and Delay . 662

Packet Switched Fabrics . 662
The Special Properties of a Fabric . 662
Spine and Leaf . 667
Traffic Engineering on a Spine and Leaf 670
A Larger-Scale Spine and Leaf . 671

Disaggregation in Networks . 672
Final Thoughts on Disaggregation . 677
Further Reading . 677
Review Questions . 678

Chapter 26: The Case for Network Automation . 679

Automation Concepts . 681
Modern Automation Methods . 685

NETCONF . 685
RESTCONF . 689

Automation with Programmatic Interfaces . 689
On-box Automation . 694
Network Automation with Infrastructure Automation Tools 694
Network Controllers and Automation . 695
Network Automation for Deployment . 696
Final Thoughts on the Future of Network Automation:

Automation to Automatic . 697
Further Reading . 697
Review Questions . 699

Contentsxviii

Chapter 27: Virtualized Network Functions . 701

Network Design Flexibility . 703
Service Chaining . 705

Scaling Out . 711
Decreased Time to Service through Automation 712

Centralized Policy Management . 713
Intent-Based Networking . 714
Benefit . 715

Compute Advantages and Architecture . 715
Improving VNF Throughput . 716

Considering Tradeoffs . 717
State . 717
Optimization . 718
Surface . 718
Other Tradeoffs to Consider . 718

Final Thoughts . 719
Further Reading . 719
Review Questions . 721

Chapter 28: Cloud Computing Concepts and Challenges 723

Public Cloud Business Drivers . 726
Shifting from Capital to Operational Expenditure 726
Time-to-Market and Business Agility . 727

Nontechnical Public Cloud Tradeoffs . 728
Operational Tradeoffs . 728
Business Tradeoffs . 731

Technical Challenges of Cloud Networking . 732
Latency . 732
Populating Remote Storage . 734
Data Gravity . 735
Selecting Among Multiple Paths to the Public Cloud 735

Security in the Cloud . 737
Protecting Data over Public Transport . 737
Managing Secure Connections . 738
The Multitenant Cloud . 739
Role-Based Access Controls . 739

Contents xix

Monitoring Cloud Networks . 740
Final Thoughts . 740
Further Reading . 741
Review Questions . 741

Chapter 29: Internet of Things . 743

Introducing IoT . 744
IoT Security . 746

Securing Insecurable Devices Through Isolation 746
IoT Connectivity . 751

Bluetooth Low Energy (BLE) . 751
LoRaWAN. 753
IPv6 for IoT . 754

IoT Data . 756
Final Thoughts on the Internet of Things . 757
Further Reading . 758
Review Questions . 759

Chapter 30: Looking Forward . 761

Pervasive Open Automation . 763
Modeling Languages and Models . 763
A Brief Introduction to YANG . 764
Looking Forward Toward Pervasive Automation 765

Hyperconverged Networks . 765
Intent-Based Networking . 767
Machine Learning and Artificial Narrow Intelligence 769
Named Data Networking and Blockchains. 772

Named Data Networking Operation . 772
Blockchains . 775

The Reshaping of the Internet . 778
Final Thoughts on the Future of Network Engineering 780
Further Reading . 780
Review Questions . 781

Index . 783

xx

Acknowledgments

To begin, this book would not have been written if the need had not been recognized
by Radia Perlman, hence planting the seed of the idea this book grew in to. Beyond
the seed, however, a book does not represent the work of two authors; many people
are actually involved in the process of creating and publishing the kind of high-
quality content you now have access to. Below is a (hopefully complete) list of those
who have participated in the creation of this content.

Ignas Bagdonas is an architect at Equinix, where he focuses on large-scale design
of interconnection fabrics and network automation. Ignas has implemented BGP as
part of his work at Routing System, Ltd.

Chris Kane is currently a systems engineer for Arista Networks, where he works
on designing and deploying large-scale networks and is a founding member of the
Ohio Networking User Group. Chris has been in the networking industry for over
25 years now, having worked in various verticals including Service Provider, Financial,
Retail, and Consulting.

Kim Pedersen, CCIE 29189, CCDE 2017:0021, is a network engineer at Lytzen IT
A/S, where he focuses on network design and the maintenance and development of
international MPLS networks. He has a passion for learning new technical topics
and is an avid reader of all things networking. He lives in Denmark with his wife and
enjoys traveling!

Nick Russo, CCIE 42518, CCDE 2016:0041, is a network engineer at Cisco Sys-
tems in the Aderdeen, Maryland area, where he focuses on service provider, large-
scale MPLS, and mobility design, as well as network automation. Nick is the author
of the CCIE Service Provider Version 4 Written and Lab Exam Comprehensive
Guide, available on LeanPub.

Maria Urlea, CCDP, CCDA, CCNP, CCNA, is a systems engineer at Cisco Sys-
tems in Ontario, Canada. Maria has received several master’s scholarships and stu-
dent research awards, and focuses on network design and architecture for several
large network operators.

Chris Cleveland is one of the finest development editors in the network engineer-
ing space; he has worked with Russ on 13 projects in conjunction with Pearson
since 1997.

xxi

About the Authors

Russ White, CCIE No. 2635, CCDE 2007::1, CCAr, has more than 30 years of expe-
rience in designing, deploying, breaking, and troubleshooting large-scale networks.
In that time, he has co-authored more than 40 software patents, spoken at venues
throughout the world, participated in the development of several Internet standards,
helped develop the CCDE and the CCAr, and worked in Internet governance with
the Internet Society. Russ is currently a member of the architecture team at LinkedIn,
where he works on next-generation data center designs, complexity, security, and pri-
vacy. He is also currently on the routing area directorate at the IETF and co-chairs
the IETF I2RS and BABEL working groups. His most recent books are The Art of
Network Architecture and Navigating Network Complexity.

Russ holds an MSIT from Capella University, a MACM from Shepherds Theo-
logical Seminary, and a PhD in progress from Southeastern Theological Seminary.

Ethan Banks, CCIE No. 20655, Routing & Switching, has been in IT since 1995,
working early in his career as a systems engineer for Novell, Windows, and Linux
environments. He later became an Internet services engineer working with DNS,
SMTP, HTTP, and related applications at a regional ISP. He predominantly has been
a network engineer and architect for enterprises in verticals including higher educa-
tion, state government, consulting, finance, and technology. He has held titles such
as senior network engineer, network operations manager, technical services man-
ager, network architecture manager, and senior network architect.

In 2010, Ethan co-founded Packet Pushers Interactive, a media company whose
premier product is a weekly podcast listened to by more than 10,000 network engi-
neers all over the world.

Ethan is a writer whose content can be found in Network World, Network Com-
puting, InformationWeek, Modern Infrastructure, and TechTarget, among other
outlets. Ethan also maintains his own blog where he writes about technology at
ethancbanks.com. Ethan has written and/or edited whitepapers for SolarWinds,
Nuage Networks, CloudGenix, and NetBrain Technologies. He is currently the
Future of Networking co-chair for Interop.

Ethan holds a Bachelor of Science degree in Computer Science & Business
Administration from Pensacola Christian College in Pensacola, Florida where he
graduated Summa Cum Laude in 1993. In the past, Ethan was certified as a Certified
Netware Engineer, Microsoft Certified Systems Engineer, Cisco Certified Network
Professional, Certified Ethical Hacker, and Cisco Certified Security Professional,
among other titles.

http://ethancbanks.com

xxii

Introduction

There are many ways to approach teaching (or understanding) the fundamentals of
computer network operation. For instance, one rather traditional way is to begin by
examining the operation of a control plane in total, from building neighbor adjacen-
cies to carrying information to building routes. Another common method is to start
with a model, such as the Open Systems Interconnect (OSI) model, and describe the
operation of the protocols from within the model. These methods have obviously
been useful in teaching engineers and engineering students about how computer net-
works work, as they have been used to teach thousands, perhaps hundreds of thou-
sands, of network engineers over the last 30 years.

But—in the view of the authors writing here—they have not been as effective as
they could be. There are still many engineers who do not understand the basics of
how a computer network actually works, in spite of many hours spent in labs, read-
ing technical material, and even configuring and deploying network equipment.
There is still a large gap in the fundamental mental skills of a large number of net-
work engineers and engineering students that needs to be filled.

This book aims to fill that gap—not only for existing engineers, but also for all
students who are trying to learn how computer networks work, even if network engi-
neering is not their ultimate career goal. If you are a computer science student, a
network engineer with 20 years of experience, someone just trying to learn network
engineering, or even a business manager in charge of “the network,” this book has
something to offer you.

How This Book Is Organized

This book was born of more than 50 years of combined experience in the field of
network engineering, split between two authors who have, over those years, taken in
everything from forwarding devices to control planes to storage to compute. The
authors (and reviewers!) have spent thousands of hours teaching the many different
crafts involved in network engineering in formal and informal training, across a wide
range of formats and venues. The organization of this book is the result of numerous
hours spent considering how best to approach the many aspects of computer

Introduction xxiii

network technologies. What works and (more importantly) what does not work were
considered in detail, until a plan finally emerged that the authors believe will be help-
ful to the largest possible set of people in and around the computer networking field.

The organization of this book begins with a seed laid out in the Internet Engineering
Task Force (IETF) Request for Comments (RFC) 1925, The Twelve Networking Truths.
Rule 11 states:

Every old idea will be proposed again with a different name and a different pres-
entation, regardless of whether it works.

While this is clearly humorous, humor would not be funny without at least a grain of
truth. In the case of rule 11, there is more than a grain of truth: buried in rule 11, there is
an entire way of looking at technology, and the pace of technological change, that can
revolutionize the way engineers learn technology. If it is true that every idea will be pro-
posed again, then it is also true that every idea has been proposed before. If it were pos-
sible to learn the basic concepts behind an idea the first time it is proposed, it should be
possible to understand every new proposal grounded in the same ideas in the future.

This observation—the grounding ideas behind the technologies that make computer
networks work do not really change—is what drives the teaching method used in this
book. Instead of focusing on models or protocols, this book follows a distinct pattern.

The thesis of this book is, then: To truly understand computer networks, you
need to ask and answer three questions: What is the problem? What are the possible
solutions? What do these solutions look like when they are implemented?

What Is the Problem?

This book is divided into three major parts covering data transport, the control
plane, and specific design (or rather technology) situations. Within each of these
parts, there are sets of chapters that begin by asking a basic question: what is the
problem? Describing the problem set in a meaningful way will often involve a good
bit more theory work, so these chapters may not, at first, seem to be very practical.

These chapters, however, are extremely practical; without a solid understanding
of the problem, it is almost impossible to really understand any proposed or imple-
mented solution in the correct context. Understanding the fundamental problems
allows you to do two things:

 • Relate problems you are facing right now, problems that might appear to be new, or
unique, to a common body of problems solved in network engineering in the past.

 • See and understand the component problems within a larger system clearly,
and hence have a solid chance at applying a full range of solutions to each
problem in a way that builds a complete and coherent system.

Introductionxxiv

Asking this question is, in reality, the most important step you can take in truly
understanding the technologies used to solve network engineering problems.

What Is the Solution?

Once the problem is laid bare, this book will then consider a range of possible solu-
tions. The set of solutions will not (necessarily) be restricted to the most common
solutions, or to implemented solutions. Rather, the solutions chosen for inclusion
will (hopefully) provide you with a good overview of the types of solutions available.
Again, this part will tend to be theoretical, specifically in describing point solutions
designed to solve point problems. Again, the appearance of impracticality will be
wrong—each solution is a “tool” you can add to the set of mental tools you can use
to solve a wide array of problems. Combining problems and solutions in this way
thus builds a solid set of mental skills useful for engineers of any type.

How Has This Been Implemented?

Finally, once a set of problems and a range of solutions for each problem have been
considered, the problems and solutions will be drawn together into a set of imple-
mentation examples. This part is where you will see the connection between the-
ory and practice: how each protocol sets out to solve a common set of problems
and then selects among a range of solutions to solve those problems. The authors
have striven to choose a wide range of protocols and systems for these parts, so
you are not only carried through the solution space, but also (as much as possible
within the confines of a work of this type) the history of computer network
engineering.

What This Book Does Not Cover

Any book written in this field could be endless in scope—but such an endless book
would not be constrained enough to be useful. To manage the scope and scale of this
book, then, several choices have been made about what to cover and what not
to cover.

Packet switched networks are covered; circuit switched networks are not. In
packet switched networks, information is carried in packets, each of which contains
enough information to route the packet through the network, from end to end. There
is no “fixed” line of communications between the sender and receiver; just an under-
lying set of packet forwarding devices that, acting as a complete system, deliver these
packets on a best-effort basis. Circuit switched networks can break up information
in a way that does not require each packet to carry all the information needed to

Introduction xxv

forward the information, and there are agreed-on paths and resources tied to each
particular information flow.

The data and control planes are covered, but not the management plane. It is
often difficult to determine where the data plane ends and the control plane begins.
Likewise, it is often difficult to determine where the control plane ends and the man-
agement system begins. The authors have, based on their extensive experience,
attempted to include just those topics related to building and managing paths avail-
able for forwarding packets through a network, while leaving out topics that appear
to be more network management focused.

These omissions are not a statement about the importance of the topics in ques-
tion; rather, a book such as this must be scoped in some way if it is to be writable by
any set of humans in anything like a reasonable amount of time.

On Reading Flow

In many ways, understanding how the authors intend a book to be read is just as
important of a guide to understanding how to use the material as understanding
how the information is structured, or what question the book is trying to answer.
This book is designed to reach a broad audience, from the “average” network engi-
neer, to people trying to learn network engineering without any formal training, to
college classrooms.

To reach across this scope, the authors have taken several specific steps:

 • The material presented in the main text, while of varying depth (as required by
the specific topic), will strive to maintain an introductory feel. The main flow
of text will strive to use as few “big words” and “heavy symbols” as possible.

 • More technical material, historical asides, and other material that the authors
believe will be useful to those trying to learn network engineering will be
placed into sidebars.

 • Footnotes will only be provided to give credit to specific works that originated
ideas or the works of specific individuals known for originating specific ideas.
Explanations that would normally be placed in a footnote in other contexts
will be placed in a sidebar.

 • More deeply technical papers and resources will be listed at the end of each
chapter for those who would like to investigate a specific topic more deeply.
These items will have some information about which specific topic they are
related to where possible.

Introductionxxvi

A Beginning

A great deal of time and effort have gone into researching, writing, editing, and pro-
ducing this book. The authors and editors who have worked on this represent some
of the broadest, and often deepest, experience in every aspect of network
 engineering—protocol design and specification, protocol implementation, network
design, network implementation, troubleshooting, and many others. Hopefully, this
book will provide you with a deep and broad foundation from which to truly under-
stand how computer networks work, and hence lay the groundwork you need to
design, implement, and manage protocols and networks that will solve real-world
problems for many years to come.

Reader Services

Register your copy of Computer Networking Problems and Solutions on the
InformIT site for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and log in or
create an account*. Enter the product ISBN (9781587145049) and click Submit.
When the process is complete, you will find any available bonus content under Regis-
tered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive
discounts on future editions of this product.

http://informit.com/register

1

PART I

The Data Plane

To begin, the primary job of a network is to carry data from one attached host to
another. This might appear to be simple at first glance, but it is actually fraught with
problems. An illustration might be helpful here; Figure PI-1 is used to illustrate the
complexity.

Figure PI-1 The Data Plane Problem Space

application

network
software

network
hardware

switching
process

network
hardware

application

network
software

network
hardware

1

2

3

4

5

6

7

Beginning at the upper-left corner of the illustration:

 1. The application generates some data. This data must be formatted in a way that
allows the receiving application to understand what has been transmitted—
the data must be marshalled. The mechanism used to marshal the data must
be efficient in many ways, including fast and easy to encode, fast and easy to
decode, flexible enough to allow for changes in encoding without breaking too
many things, and adding the smallest amount of overhead possible during data
transmission.

2 Part I The Data Plane

 2. The network software needs to encapsulate the data, and get it ready to actu-
ally be transmitted. Somehow the network software needs to know the address
of the destination host. The network that connects the source and destination
is a shared resource, and hence some form of multiplexing must be available so
the source can direct the information at the correct destination. Generally this
will involve some form of addressing.

 3. The data must be moved out of memory at the source and onto the network
proper—the actual wire (or optical cable, or wireless link) that will carry the
information between network-connected devices.

 4. Network devices must have some way to discover the ultimate destination of
the information—a second form of the multiplexing problem—and determine
if there is any other processing that needs to be done on the information while
it is in transit between the source and destination.

 5. The information, after passing through the network device, must once again
be encoded and moved out of memory onto the wire. At every point where
information is moved from memory to some form of physical media, the infor-
mation will need to be queued; there will often be more data to transmit than
can be placed onto any particular physical media at any given time. This is
where quality of service comes into play.

 6. The information, as carried through the network, must now be copied off the
physical media and back into memory. It must be checked for errors—this is
error control—and there must be some way for the receiver to tell the transmit-
ter it is running out of memory in which to store the incoming information—
this is flow control.

The network device in the middle of the diagram is of particular interest. A net-
work device—such as a router, switch, or middle box—connects two physical media
together to build an actual network. Perhaps the simplest question to begin with is
this: why are these devices required in the first place? Routers and switches are obvi-
ously complex devices, with their own internal architecture (which will be covered
in this chapter at a high level); why add this complexity to a network? There are two
fundamental reasons.

The original reason for building these devices was to connect different kinds of
physical media together. For instance, within a building it might be practical to run
ARCnet or thicknet Ethernet (to use examples from the time when network devices
were first invented). The distance these media can traverse, however, is very short—
on the order of hundreds of meters. Somehow these networks must be extended
between buildings, between campuses, between cities, and eventually between

3 The Data Plane

continents, using some sort of multiplexed (or inverse multiplexed) telephone circuit
like a T1 or DS3. These two different media types use different kinds of signaling;
there must be some sort of device that translates one kind of signaling into another.

The second reason is this: scale quickly became an issue. The nature of the physi-
cal world is such that you have two choices when it comes to putting data on a wire:

 • The wire can connect precisely two computers; in this case, every pair of com-
puters needs to be physically connected to every other computer it needs to
communicate with.

 • The wire can be shared among many computers (the wire can be a shared
media).

To solve the problem the first way, you need a lot of wire. Solving the problem
the second way seems like the obvious solution, but it presents another set of prob-
lems—specifically, how is the bandwidth available on the wire shared among all the
devices? At some point, if there are enough devices on a single shared media, any
sort of scheme used to enable resource sharing will, itself, consume as much or more
bandwidth as any individual device connected to the wire. At some point, even a
100G link, shared among enough hosts, will leave each individual host with very lit-
tle available resources.

The solution to this situation is the network device—the router or switch—that
separates two shared media, only passing traffic between the two as needed. With
some logical planning, devices that need to talk to each other more often can be
placed closer together (in terms of network topology), conserving bandwidth in
other places. Routing and switching has moved far beyond these humble beginnings,
of course, but these are the root problems engineers solved by injecting network
devices into networks.

There are other difficult problems to solve in this space beyond the bare carrying
of information from a source to a destination; many times it is useful to be able to
virtualize the network, which generally means creating a tunnel between two devices
in the network.

The series of chapters in Part I consider the sometimes incredibly difficult prob-
lems in simply carrying data from one end of a network to the other, along with a
range of possible solutions for each of these problems. Along the way, various chap-
ters also explore the concept of layering in data transport protocols, and its impor-
tance to breaking this complex domain into more solvable chunks. Layering, however,
brings its own set of problems into the transport world, so Part I also needs to con-
sider how to resolve the problems caused by the introduction of layering—specifically,
interlayer discovery.

Part I The Data Plane4

The chapters in this part include:

 • Chapter 1: Fundamental Concepts, which discusses business drivers, circuit
switching, packet switching, and network complexity

 • Chapter 2: Data Transport Problems and Solutions, which discusses marshal-
ing data, dictionaries, grammars, metadata, error detection, error correction,
addressing, multiplexing, multicast, anycast, and flow control

 • Chapter 3: Modeling Network Transport, which discusses the value of
modeling, the Department of Defense (DoD) model, the Open Systems Inter-
connect (OSI) model, the Recursive Internet Architecture (RINA) model,
connection-oriented and connectionless transport mechanisms

 • Chapter 4: Lower Layer Transports, which discusses Ethernet and 802.11
Wireless

 • Chapter 5: Higher Layer Data Transports, which discusses the Internet
Protocol (IP), the Transmission Control Protocol (TCP), QUIC, and the Inter-
net Control Message Protocol (ICMP)

 • Chapter 6: Interlayer Discovery, which discusses mapping identifiers and ser-
vices between layers, the Domain Name System (DNS), the Address Resolution
Protocol (ARP), Neighbor Discovery (ND), Stateless Address Autoconfigura-
tion (SLAAC), and the concept of the default gateway

 • Chapter 7: Packet Switching, which discusses the process of copying a packet
off of the physical media, processing the packet, moving a packet through the
network device, and finally copying a packet onto the physical medium

 • Chapter 8: Quality of Service, which discusses why Quality of Service (QoS)
is needed, traffic classification, Class of Service, Type of Service, QoS trust
boundaries, jitter, and fairness in queueing

 • Chapter 9: Network Virtualization, which discusses use cases for network
virtualization, tunneling, switching tunneled packets, the problems network
virtualization must solve, Segment Routing (SR), Software-Defined Wide Area
Networks (SD-WAN), virtualization tradeoffs, and shared fate

 • Chapter 10: Transport Security, which discusses data exhaust, asymmetric
and symmetric encryption, key exchange, hiding user information, man-in-
the-middle (MitM) attacks, and Transport Level Security (TLS)

5

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the relationship between business drivers and network
engineering

 0 Understand the difference between circuit and packet switching

 0 Understand the advantages and disadvantages of circuit and packet
switching

 0 Understand the basic concept of network complexity and complexity
tradeoffs

Networks were always designed to do one thing: carry information from one
attached system to another. The discussion (or perhaps argument) over the best way
to do this seemingly simple task has been long-lived, sometimes accompanied by
more heat than light, and often intertwined with people and opinions of a rather
absolute kind. This history can be roughly broken into multiple, and often overlap-
ping, stages, each of which asked a different question:

 • Should networks be circuit switched or packet switched?

 • Should packet switched networks use fixed- or variable-sized frames?

 • What is the best way to calculate a set of shortest paths through a network?

 • How should packet switched networks interact with Quality of Service (QoS)?

 • Should the control plane be centralized or decentralized?

Chapter 1

Fundamental Concepts

Chapter 1 Fundamental Concepts6

Some of these questions have been long since answered, most often by blending
the more extreme elements of each position into a sometimes messy, but generally
always useful, solution. Some of these questions are, on the other hand, still active,
particularly the last one. Perhaps, in twenty years’ time, readers will be able to look
on this last question as being answered, as well.

This chapter will describe the basic terms and concepts used in this book from
within the framework of these historical movements or stages within the world
of network engineering. By the end of this chapter, you will be ready to tackle the
first two parts of this book—the forwarding plane and the control plane. The third
part, an overview of network design, builds on the first two parts. The final part
of this book looks at a few specific technologies and movements likely to shape the
future—not only of network engineering, but even of the production and processing
of information overall.

Art or Engineering?

One question that must be asked, up front, is whether network engineering is an art,
or truly engineering. Many engineering fields begin as more of an art. For instance,
in the early 1970s, working on and around electronics—tubes, “coils,” and trans-
formers—was largely considered an art. By the mid-1980s, electronics had become
ubiquitous, and this began a commoditization process harsher than any standardi-
zation. Electronics then was considered more engineering than art. By the 2010s,
electronics became “just the stuff that makes up computers.” There is still some art
in the designing and troubleshooting of electronics, but, by and large, their creation
became more focused on engineering principles. The problems have moved from
“how do you do that,” to “what is the cheapest way to do that,” or “what is the
smallest way to do that,” or some other problem that would have been considered
second order in the earlier days. Perhaps one way to phrase the movement in elec-
tronics is in ratios. Perhaps (and these are very rough estimates), electronics started
at around 80% art and 20% engineering, and has now moved to 80% engineering
and 20% art.

What about network engineering? Will it pass through the same phases, eventu-
ally moving into the 80% engineering, 20% art range? This seems doubtful for sev-
eral reasons. Network engineering works in a largely virtual space; although there
are wires and devices, the protocols, data, and functionality are all laid on top of the
physical infrastructure, rather than being the physical infrastructure. Unlike electron-
ics, where you can point to a physical object and say, “this is the product,” a network
is not a physical thing. To put this another way, the network is a conceptual “thing”
built using a wide array of individual components connected together through

Art or Engineering? 7

protocols and data models. This means design choices are almost infinitely variable
and malleable. Each problem can be approached, assessed, and designed much more
specifically than in electronics. So long as there are new problems to solve, there will
be new solutions developed, deployed, and—eventually (finally) removed from net-
works. Perhaps a useful comparison is between applications and the various kinds of
computing devices; no matter how standardized computing devices become, there is
still an almost infinite selection of software applications to run on top.

Figure 1-1 will be useful in illustrating this “fit” between the network and the
business from one perspective.

In Figure 1-1, the solid gray curved line is business growth. The dashed black line
running vertical and horizontal is network capacity. There are many times when the
network is overprovisioned, costing the business money to maintain unused capac-
ity; these are shown in the gray line-shaded regions. There are other times when
the network is under strain. In these darker gray solid-shaded regions, the busi-
ness could grow faster, but the network is holding it back. One of the many objec-
tives of network architecture and design (this is more of an architecture issue than
strictly a design issue; see The Art of Network Architecture) is to bring these lines
closer together. Accomplishing this part of the work requires creativity and future
thinking problem-solving skills. The engineer must ask questions like “How can the

Lost business opportunity

Overpaying for infrastructure

Figure 1-1 Business to Technology Fit, First Perspective

Chapter 1 Fundamental Concepts8

network be built so it scales larger and smaller to move with the business’s require-
ments?” This is more than just scale and size; however, it is possible the nature of
the business may even change over time, driving changes in applications, opera-
tional procedures, and operational pace. The network must have an architecture
capable of changing as needed without introducing ossification, or the harden-
ing of systems and processes that will eventually cause the network to fail in a
catastrophic way. This part of the working on networks is often considered more
art than engineering, and it is not likely to change until the entire business world
changes in some way.

Figure 1-2 illustrates another way in which businesses drive network engineering
as an art.

In Figure 1-2, time runs from the left to the right, and feature count from
the bottom to the top. What the chart expresses is the additional features added
to a product over time. Network operator A will start out needing a somewhat
small feature set, but the feature set required will increase over time; the same
will hold true of the other three networks. The feature sets required to run any
of these networks will always overlap to some degree, and they will also always
be different to some degree. If a vendor wants to be able to sell a single product
(or product line) and cater to all four networks, it will need to implement every
unique feature required by each network. The entire set of features is depicted by
the peak of the chart on the right side. For each of the networks, some percentage
of the features available in any product will be unnecessary—also known as code
bloat.

Features for network A

Features for network B

Features for network C

Features for network D

Time

Fe
at

ur
e

Co
un

t

Figure 1-2 Features versus Usage in Networking Products

Circuit Switching 9

Even though these features are not being used, each one will still represent secu-
rity vulnerabilities, code that must be tested, code that interacts with features that
are being used, etc. In other words, each one of these unused features is actually a
liability for the network operator. The ideal solution might be to custom build equip-
ment for each network, containing just the features required—but this is often not a
choice available to either the vendor or the network operator. Instead, network engi-
neers must somehow balance between required features and available features—and
this process is definitely more a form of art than engineering.

So long as there are mismatches between the way networks can be built and the
way businesses use networks, there will always be some interplay between art and
engineering in networking. The percentage of each one will vary based on the net-
work, tools, and the time within the network engineering field, of course, but the
art component will probably always be more strongly represented in the networking
field than it is in fields like electronics engineering.

Note

Some people might object to the use of the word art in this section. It is easy
enough to replace art with craft, however, if this makes the concepts in this sec-
tion easier to understand.

Circuit Switching

The first large discussion in the computer networking world was whether networks
should be circuit switched or packet switched. The basic difference between these
two is the concept of a circuit—do the transmitter and receiver “see” the network as
a single wire, or connection, preconfigured (or set up) with a specific set of proper-
ties before they begin communicating? Or do they “see” the network as a shared
resource, where information is simply generated and transmitted “at will”? The for-
mer is considered circuit switched, while the latter is considered packet switched.
Circuit switching tends to provide more traffic flow and delivery guarantees, while
packet switching tends to deliver data at a much lower cost—the first of many trade-
offs you will encounter in network engineering. Figure 1-3 will be used to illustrate
circuit switching, using Time Division Multiplexing (TDM) as an example.

In Figure 1-3, the total bandwidth of the links between any two devices is split
up into eight equal parts; A is sending data to E using time slot A1 and F using time
slot A2; B is sending data to E using time slot B1 and F using time slot B2. Each piece
of information is a fixed length, so each one can be put into a single time slot in the

Chapter 1 Fundamental Concepts10

ongoing data stream (hence, each block of data represents a fixed amount of time, or
slot, on the wire). Assume there is a controller someplace assigning a slot on each of
the segments the traffic will traverse:

 • For [A,E] traffic:

 • At C: slot 1 from A is switched to slot 1 toward D

 • At D: slot 1 from C is switched to slot 1 toward E

 • For [A,F] traffic:

 • At C: slot 4 from A is switched to slot 4 toward D

 • At D: slot 4 from C is switched to slot 3 toward F

 • For [B,E] traffic:

 • At C: slot 4 from B is switched to slot 7 toward D

 • At D: slot 7 from C is switched to slot 4 toward E

 • For [B,F] traffic:

 • At C: slot 2 from B is switched to slot 2 toward D

 • At D: slot 2 from C is switched to slot 1 toward F

None of the packet processing devices in the network need to know which bit
of data is going where; so long as C takes whatever is in slot 1 in A’s data stream in
each time frame and copies it to slot 1 in its outgoing stream toward D, and D cop-
ies it from slot 1 inbound from C to slot 1 outbound to E, traffic transmitted by A

A

B
C D

E

F

A1 A1

B1

A1

B1

B1

B2

B2

A2 B2

A2

A2

Figure 1-3 Time Division Multiplexing Based Circuit Switching

Circuit Switching 11

will be delivered at E. There is an interesting point to note about this kind of traffic
processing—to forward the traffic, none of the devices in the network actually need
to know what the source or destination is. The blocks of data being transmitted
through the network do not need to contain source or destination addresses; where
they are headed, and where they are coming from, decisions are all based on the
controllers’ knowledge of open slots in each link. The set of slots assigned to any
particular device-to-device communications is called a circuit, because it is band-
width and network resources committed to the communications between the one
pair of devices.

The primary advantages of circuit switched networks include:

 • The devices do not need to read a header, or do any complex processing, to
switch packets. This was extremely important in the early days of networking,
when hardware had much lower transistor and gate counts, line speeds were
lower, and the time to process a packet in the device was a large part of the
overall packet delay through the network.

 • The controller knows the available bandwidth and traffic being pushed toward
the edge devices everywhere in the network. This makes it somewhat simple,
given there is actually enough bandwidth available, to engineer traffic to create
the most optimal paths through the network possible.

There are also disadvantages, including:

 • The complexity of the controller ramps up significantly as the network and
services it offers grow in scale. The load on the controller can become over-
whelming, in fact, causing network outages.

 • The bandwidth on each link is not used optimally. In Figure 1-3, the blocks of
time (or cells) containing an * are essentially wasted bandwidth. The slots are
assigned to a particular circuit ahead of time: slots used for the [A,E] traffic
cannot be “borrowed” for the [A,F] traffic even when A has nothing to trans-
mit toward E.

 • The time required to react to changes in topology can be quite long in network
terms; the local device must discover the change, report it to the controller, and
the controller must reconfigure every network device along the path of each
affected traffic flow.

TDM systems contributed a number of ideas to the development of the net-
works used today. In particular, TDM systems molded much of the early discussion

Chapter 1 Fundamental Concepts12

on breaking data into packets for transmission through the network, and laid the
groundwork for much later work in QoS and flow control. One rather significant
idea these early TDM systems bequeathed to the larger networking world is network
planes.

Note

Quality of Service is briefly considered in a later section in this chapter, and then
in more depth in Chapter 8, “Quality of Service,” later in this book.

 Specifically, TDM systems are divided into three planes:

 • The control plane is the set of protocols and processes that build the informa-
tion necessary for the network devices to forward traffic through the network. In
circuit switched networks, the control plane is completely a separate plane; there
is normally a separate network between the controller and the individual devices
(though not always, particularly in newer circuit switched systems).

 • The data plane (also known as the forwarding plane) is the path of informa-
tion through the network. This includes decoding the signal received in a wire
into frames, processing them, and pushing them back onto the wire, encoded
according to the physical transport system.

 • The management plane is focused on managing the network devices, includ-
ing monitoring the available memory, monitoring queue depth, and moni-
toring when the device drops the information being transmitted through the
network, etc. It is often difficult to distinguish between the management and
the control planes in a network. For instance, if the device is manually config-
ured to forward traffic in a particular way, is this a management plane function
(because the device is being configured) or a control plane function (because
this is information about how to forward information)?

Note

This question does not have a definitive answer. Throughout this book, however,
anything that impacts the way traffic is forwarded through the network is consid-
ered part of the control plane, while anything that impacts the physical or logical
state of the device, such as interface state, is considered part of the management
plane. Do not expect these definitions to hold true in the real world.

Packet Switching 13

Note

Frame Relay, SONET, ISDN, and X.25 are examples of circuit switched tech-
nology, some of which are still deployed at the time of writing. See the “ Further
Reading” section for suggested sources for learning about these technologies.

Packet Switching

In the early- to mid-1960s, packet switching was “in the air.” A lot of people were
rethinking the way networks had been built until then, and were considering alterna-
tives to the circuit switched paradigm. Paul Baran, working for the RAND Corpora-
tion, proposed a packet switching network as a solution for survivability; around the
same time, Donald Davies, in the UK, proposed the same type of system. These
ideas made their way to the Lawrence Livermore Laboratory, leading to the first
packet switched network (called Octopus) being put into operation in 1968. The
ARPANET, an experimental packet switched network, began operation not long
after, in 1970.

Packet Switched Operation

Note

The actual process of switching a packet is discussed in greater detail in Chapter 7,
“Packet Switching.”

The essential difference between circuit switching and packet switching is the
role individual network devices play in the forwarding of traffic, as Figure 1-4
illustrates.

In Figure 1-4, A produces two blocks of data. Each of these includes a header
describing, at a minimum, the destination (represented by the H in each block of
data). This complete bundle of information—the original block of data and the
header—is called a packet. The header can also describe what is inside the packet,
and include any special handling instructions forwarding devices should take when
processing the packet—these are sometimes called metadata, or “data about the
data in the packet.”

There are two packets produced by A: A1, destined to E; and A2, destined to F. B
sends two packets as well: B1, destined to F, and B2, destined to E. When C receives

Chapter 1 Fundamental Concepts14

these packets, it reads a small part of the packet header, often called a field, to deter-
mine the destination. C then consults a local table to determine which outbound
interface the packet should be transmitted on. D does likewise, forwarding the
packet out the correct interface toward the destination.

This way of forwarding traffic is called hop-by-hop forwarding, because each
device in the network makes a completely independent decision about where to for-
ward each individual packet. The local table each device consults is called a forward-
ing table; this normally is not one table, but many tables, potentially including a
Routing Information Base (RIB) and a Forwarding Information Base (FIB).

Note

These tables, how they are built, and how they are used, are explained more fully
in Chapter 7, “Packet Switching.”

In the original circuit switched systems, the control plane is completely separate
from packet forwarding through the network. With the move from circuit to packet
switched, there was a corresponding move from centralized controller decisions to a
distributed protocol running over the network itself. For the latter, each node is capa-
ble of making its own forwarding decisions locally. Each device in the network runs
the distributed protocol to gain the information needed to build these local tables.
This model is called a distributed control plane; thus the idea of a control plane was
simply transferred from one model to the other, although they do not actually mean
the same thing.

A

B
C D

E

F

A1

B1

A1

A1

B1

B1

A2

A2

B2

A2

B2

B2

H

H

H

H

H

H

H

H

H

H

H

H

Figure 1-4 Packet Switched Network

Packet Switching 15

Note

Packet switching networks can use a centralized control plane, and circuit switch-
ing networks can use distributed control planes. At the time packet switched
 networks were first designed and deployed, however, they typically used distrib-
uted control planes. Software-Defined Networks (SDNs) brought the concept of
centralized control planes back into the world of packet switched networks.

The first advantage the packet switched network has over a circuit switched net-
work is the hop-by-hop forwarding paradigm. As each device can make a completely
independent forwarding decision, packets can be dynamically forwarded around
changes in the network topology, eliminating the need to communicate to the con-
troller and await a decision. So long as there are at least two paths between the source
and the destination (the network is two connected), packets handed to the network
by the source will eventually be handed to the destination by the network.

The second advantage the packet switched network has over a circuit switched net-
work is the way the packet switched network uses bandwidth. In the circuit switched
network, if a particular circuit (really a time slot in the TDM example given) is not
used, then the slot is simply wasted. In hop-by-hop forwarding, each device can best
use the bandwidth available on each outbound link to carry the necessary traffic
load. While this is locally more complex, it is globally simpler, and it makes better
use of network resources.

The primary disadvantage of packet switched networks is the additional com-
plexity required, particularly in the forwarding process. Each device must be able
to read the packet header, look up the destination in a table, and then forward the
information based on the table lookup results. In early hardware, these were difficult,
time-consuming tasks; circuit switching was generally faster than packet switching.
As hardware has improved over time, the speed of switching a variable length packet
is generally close enough to the speed of switching a fixed length packet that there is
little difference between packet and circuit switching.

Flow Control in Packet Switched Networks

In a circuit switched network, the controller allocates a specific amount of band-
width to each circuit by assigning time slots from the source to the destination. What
happens if the transmitter wants to send more traffic than the allocated time slots
will support? The answer is simple—it cannot. In a sense, then, the ability to control
the flow of packets through the network is built in to a circuit switched network;

Chapter 1 Fundamental Concepts16

there is no way to send more traffic than the network can forward, because “space”
the transmitter has at its disposal for information sending is pre-allocated.

What about packet switched networks? If all the links in the network shown in
Figure 1-4 have the same link speed, what happens if both A and B want to use the
entire link capacity toward C? How will C decide how to send it all to D on a link
that is half as large as the traffic it needs to handle? Here is where traffic flow control
techniques can be used. Typically, they are implemented as a separate protocol/rule
set “riding on top of” the underlying network, helping to “organize” packet trans-
mission by building a virtual circuit between the two communicating devices.

Note

Flow and error control are discussed in detail in Chapter 2, “Data Transport
Problems and Solutions.”

The Transmission Control Protocol (TCP) provides flow control for Internet
 Protocol (IP) based packet switched networks. This protocol was first specified in
1973 by Vint Cerf and Bob Kahn.

The Protocol Wars

 In the development of packet switched networks, a number of different pro-
tocols (or protocol stacks) were developed. Over time, all of them have been
abandoned in favor of the IP suite of protocols. For instance, Banyan Vines
had its own protocol suite based on IP called Vines Internet Protocol (VIP),
and Novell Netware had its own protocol suite based on a protocol called
IPX. Other standards bodies created standard protocol suites as well, such as
the International Telecommunications Union’s (ITU) suite of protocols built
around Connectionless Mode Network Service (CLNS).

Why did all of these protocol suites fall by the wayside? Some of
them were proprietary, and many governments and large organiza-
tions rejected proprietary solutions to packet switched networking for
a wide range of reasons. The proprietary solutions were often not as well
thought out, either, as they were generally developed and maintained by
a small group of people. Standards-based protocols can be more com-
plex, but they also tend to be developed and maintained by a larger group
of experienced engineers. The protocol suite based on CLNS was a seri-
ous contender for some time, but it just never really caught on in the global
Internet, which was becoming an important economic force at the time.

Fixed Versus Variable Length Frames 17

There were some specific technical reasons for this—for instance, CLNS
does not number wires, but hosts. The aggregation of reachability informa-
tion (concepts covered in more detail later in this book) is therefore limited in
many ways.

An interesting reference for the discussion between the CLNS and IP pro-
tocol suites is The Elements of Networking Style.1

1. Padlipsky, The Elements of Networking Style and Other Essays and Animadversions on the
Art of Intercomputer Networking (New York: Prentice-Hall, 1985).

Fixed Versus Variable Length Frames

In the late 1980s, a new topic of discussion washed over the network engineering
world—Asynchronous Transfer Mode (ATM). The need for ever higher speed cir-
cuits, combined with slow progress in switching packets individually based on their
destination addresses, led to a push for a new form of transport that would, eventu-
ally, reconfigure the entire set (or stack, because each protocol forms a layer on top of
the protocol below, like a “stacked cake”) of protocols used in modern networks.
ATM combined the fixed length cell (or packet) size of circuit switching with a
header from packet switching (although greatly simplified) to produce an “in
between” technology solution. There were two key points to ATM: label switching
and fixed call sizes; Figure 1-5 illustrates the first.

In Figure 1-5, G sends a packet destined to H. On receiving this packet, A exam-
ines a local table, and finds the next hop toward H is C. A’s local table also specifies a

A

B
C D

E
G

H

HF

A1 A1

A1 A1

A1 A1

H H

H H

H H

L

L L

L

Figure 1-5 Label Switching

Chapter 1 Fundamental Concepts18

label, shown as L, rather than “just” information about where to forward the packet.
A inserts this label into a dedicated field at the head of the packet and forwards it to C.
When C receives the packet, it does not need to read the destination address in the
header; rather, it just reads the label, which is a short, fixed length field. The label
is looked up in a local table, which tells C to forward traffic to D for destination H.
The label is very small, and is therefore easy to process for the forwarding devices,
 making switching much faster.

The label can also “contain” handling information for the packet, in a sense.
For instance, if there are actually two streams of traffic between G and H, each one
can be assigned a different label (or set of labels) through the network. Packets car-
rying one label can be given priority over packets carrying another label, so the net-
work devices do not need to look at any fields in the header to determine how to
process a particular packet.

This can be seen as a compromise between packet and circuit switching. While
each packet is still forwarded hop by hop, a virtual circuit can also be defined by the
label path through the network. The second point was that ATM was also based on
a fixed sized cell: each packet was limited to 53 octets of information. Fixed size cells
may seem to be a minor issue, but fixed size packets can make a huge performance
difference. Figure 1-6 illustrates some factors involved in fixed cell sizes.

In Figure 1-6, packet 1 (A1) is copied from the network into memory on a line
card or interface, LC1; then it travels across the internal fabric inside B (between
memory locations) to LC2, being finally placed back onto the network at B’s out-
bound interface. It might seem trivial from such a diagram, but perhaps the most

B

CA D

LC1 LC2Fabric

A1 A1 A1 A1 A1

Memory Copy

A1 A1 A2A1 A2A1 A2A1 A2A1

Memory CopyFragment

Pa
ck

et
 1

Pa
ck

et
 2

Figure 1-6 Fixed Cell Sizes

Fixed Versus Variable Length Frames 19

important factor in the speed at which a device can switch/process packets is the time
it takes to copy the packet across any internal paths between memory locations. The
process of copying information from one place in memory to another is one of the
slowest operations a device can undertake, particularly on older processors. Making
every packet the same (a fixed cell size) allowed code optimizations around the copy
process, dramatically increasing switching speed.

Note

The process of switching a packet across an internal fabric is considered in
Chapter 7, “Packet Switching.”

Packet 2’s path through B is even worse from a performance perspective; it is cop-
ied off the network into local memory first. When the destination port is determined
by looking in the local forwarding table, the code processing the packet realizes the
packet must be fragmented to fit into the largest packet size allowed on the outbound
[B,C] link. The inbound line card, LC1, fragments the packet into A1 and A2, creat-
ing a second header and adjusting any values in the header as needed. The packet is
divided into two packets, A1 and A2. These two packets are copied in two opera-
tions across the fabric to the outbound line card, LC2. By using fixed size cells, ATM
avoids the performance cost of fragmenting packets (at the time ATM was being
proposed) incurred by almost every other packet switching system.

ATM did not, in fact, start at the network core and work its way to the network
edge. Why not? The first answer lies in the rather strange choice of cell size. Why
53 octets? The answer is simple—and perhaps a little astounding. ATM was supposed
to replace not only packet switched networks, but also the then-current generation
of voice networks based on circuit switched technologies. In unifying these two tech-
nologies, providers could offer both sorts of services on a single set of circuits and
devices.

What amount of information, or packet size, is ideal for carrying voice traffic?
Around 48 octets. What amount of information, or packet size, is the minimum
that makes any sort of sense for data transmission? Around 64 octets. Fifty-three
octets was chosen as a compromise between these two sizes; it would not be per-
fect for voice transmission, as 5 octets of every cell carrying voice would be wasted.
It would not be perfect for data traffic, because the most common packet size,
64 octets, would need to be split into two cells to be carried across an ATM net-
work. A common line of thinking, at the time these deliberations were being held,
was the data transport protocols would be able to adjust to the slightly smaller cell
size, hence making 53 octets an optimal size to support a wide variety of traffic. The
data transport protocols, however, did not adjust. To transport a 64-octet block of

Chapter 1 Fundamental Concepts20

data, one cell would contain 53 octets, and the second would contain 9 octets, with
42 octets of empty space. Providers discovered 50% or more of the bandwidth avail-
able on ATM links was consumed by empty cells—effectively wasted bandwidth.
Hence, data providers stopped deploying ATM, voice providers never really started
deploying it, and ATM died.

What is interesting is how the legacy of projects like ATM live on in other pro-
tocols and ideas. The label switching concept was picked up by Yakov Rekhter and
other engineers, and developed into label switching. This keeps many of the funda-
mental advantages of ATM’s quick lookup in the forwarding path, and bundling
the metadata about packet handling into the label itself. Label switching eventu-
ally became Multiprotocol Label Switching (MPLS), which not only provides faster
lookup, but also stacks of labels and virtualization. The basic idea was thus taken
and expanded, impacting modern network protocols and designs in significant ways.

Note

MPLS is discussed in Chapter 9, “Network Virtualization.”

The second legacy of ATM is the fixed cell size. For many years, the dominant
network transport suite, based on TCP and IP, has allowed network devices to frag-
ment packets while forwarding them. This is a well-known way to degrade the per-
formance of a network, however. A do not fragment bit was added to the IP header,
telling network devices to drop packets rather than fragmenting them, and serious
efforts were put into discovering the largest packet that can be transmitted through
the network between any pair of devices. A newer generation of IP, called IPv6,
removed fragmentation by network devices from the protocol specification.

Calculating Loop-Free Paths

Overlapping many of these previous discussions within the network engineering
world was another issue that often made it more difficult to decide whether packet or
circuit switching was the better solution. How should loop-free paths be computed
in a packet switched network?

As packet switched networks have, throughout the history of network engineer-
ing, been associated with distributed control planes, and circuit switched networks
have been associated with centralized control planes, the issue of computing loop-
free paths efficiently had a major impact on deciding whether packet switched net-
works were viable or not.

Calculating Loop-Free Paths 21

Note

Loop-free paths are discussed in Part II, “The Control Plane.”

In the early days of network engineering, the available processing power, mem-
ory, and bandwidth were often in short supply. Table 1-1 provides a little historical
context.

Table 1-1 History of Computing Power, Memory, and Bandwidth

Year MIPS
Memory
(Cost/MB)

Bandwidth
(LAN)

1984 3.2 (Motorola 68010) 1331 2Mb/s

1987 6.6 (Motorola 68020) 154 10Mb/s

1990 44 (Motorola 68040) 98 16Mb/s

1996 541 (Intel Pentium Pro) 8 100Mb/s

1999 2,054 (Intel Pentium III) 1 100Mbp/s

2006 49,161 (Intel Core 2, 4 cores) 0.1 4Gb/s

2014 238,310 (Intel i7, 4 cores) 0.001 100Gb/s

In 1984, when many of these discussions were occurring, any difference in the
amount of processor and memory between two ways of calculating loop-free
paths through a network would have a material impact on the cost of building a
network. When bandwidth is at a premium, reducing the number of bits a control
plane required to transfer the information required to calculate a set of loop-free
paths through a network makes a real difference in the amount of user traffic
the network can handle. Reducing the number of bits required for the control
to operate also makes a large difference in the stability of the network at lower
bandwidths.

For instance, using a Type Length Vector (TLV) format to describe control plane
information carried across the network adds a few octets of information to the
overall packet length—but in the context of a 2Mbps link, aggravated by a chatty
control plane, the costs could far outweigh the longer-term advantage of protocol
extensibility.

Note

TLVs are discussed in Chapter 2, “Data Transport Problems and Solutions.”

Chapter 1 Fundamental Concepts22

The protocol wars were rather heated at some points; entire research projects
were undertaken, and papers written, about why and how one protocol was bet-
ter than another. As an example of the kind of back and forth these arguments
generated, a shirt seen at the Internet Engineering Task Force (IETF) during which
the Open Shortest Path First (OSPF) Protocol was being developed said: IS-IS = 0.
The “IS-IS” here refers to Intermediate System-to-Intermediate System, a control
plane (routing protocol) originally developed by the International Organization
for Standardization (ISO).

There was a wide variety of mechanisms proposed to solve the problems of cal-
culating loop-free paths through a network; ultimately three general classes of solu-
tions have been widely deployed and used:

 • Distance Vector protocols, which calculate loop-free paths hop by hop based
on the path cost

 • Link State protocols, which calculate loop-free paths across a database syn-
chronized across the network devices

 • Path Vector protocols, which calculate loop-free paths hop by hop based on a
record of previous hops

The discussion over which protocol is best for each specific network, and for what
particular reasons, still persists; it is probably a never-ending conversation, as there
is (probably) no final answer to the question. Instead, as with fitting a network to a
business, there will probably always be some degree of art (or craft) involved in mak-
ing a particular control plane work on a particular network. Much of the urgency in
the question, however, has been drawn out by the increasing speed of networks—in
processing power, memory, and bandwidth.

Quality of Service

As real-time traffic started to be carried over packet switched networks, QoS
became a major problem. Voice and video both rely on the network being able to
carry traffic between hosts quickly (having low delay), and with small amounts of
variability in interpacket spacing (jitter). Discussions around QoS actually began
in the early days of packet switched networking, but reached a high point around
the time ATM was being considered. In fact, one of the main advantages of ATM
was the ability to closely control the way in which packets were handled as they
were carried over a packet switched network. With the failure of ATM in the

Quality of Service 23

market, two distinct lines of thought emerged about applications that require
strong controls on jitter and delay:

 • These applications would never work on packet switched networks; these
kinds of applications would always need to be run on a separate network.

 • It is just a matter of finding the right set of QoS controls to allow such applica-
tions to run on packet switched networks.

Note

Quality of Service is discussed in detail in Chapter 8, “Quality of Service.”

The primary application most providers and engineers were concerned about
was voice, and the fundamental question came down to this: is it possible to pro-
vide decent voice over a network also carrying large file transfers and other “non-
real-time” traffic? Complex schemes were invented to allow packets to be classified
and marked (called QoS marking) so network devices would know how to han-
dle them properly. Mapping systems were developed to carry these QoS markings
from one type of network to another, and a lot of time and effort were put into
researching queueing mechanisms—the order in which packets are sent out on an
interface. Figure 1-7 shows a sample chart of one QoS system and the mapping
between applications and QoS markings will suffice to illustrate the complexity of
these systems.

The increasing link speeds, shown previously in Table 1-1, had two effects on the
discussion around QoS:

 • Faster links will (obviously) carry more data. As any individual voice and video
stream becomes a shrinking part of the overall bandwidth usage, the need to
strongly balance the use of bandwidth between different applications became
less important.

 • The amount of time required to move a packet from memory onto the wire
through a physical chip is reduced with each increase in bandwidth.

As available bandwidth increased, the need for complex queueing strategies to
counter jitter became less important. This increase in speed has been augmented by
newer queueing systems that are much more effective at managing different kinds
of traffic, reducing the necessity of marking and handling traffic in a fine-grained
fashion.

Chapter 1 Fundamental Concepts24

These increases in bandwidth were often enabled by changing from copper to
glass fiber. Fiber not only offers larger bandwidths but also more reliable transmis-
sion of data. The way physical links are built also evolved, making them more resist-
ant to breakage and other material problems. A second factor increasing bandwidth
availability was the growth of the Internet. As networks became more common and
more connected, a single link failure had a lesser impact on the amount of available
bandwidth and on the traffic flows across the network.

As processors became faster, it became possible to develop systems where
dropped and delayed packets would have less effect on the quality of a real-time
stream. Increasing processor speeds also made it possible to use very effective
compression algorithms, reducing the size of each stream. On the network side,
faster processors meant the control plane could compute a set of loop-free paths
through the network faster, reducing both direct and indirect impacts of link and
device failures.

Ultimately, although QoS is still important, it can be much simplified. Four to six
queues are often enough to support even the most difficult applications. If more are
needed, some systems can now either engineer traffic flows through a network or

Voice 18%

Scavenger 1%

Best Effort 25%

Bulk 4%

Streaming
Video 10%

Mission Critical Data 7%

Internetwork
Control 5%

Interactive
Video 15%

Call Signaling 5%Network Management 5%

Transactional Data 5%

Real Time
33%

Critical Data
37%

Bulk 5%

Best Effort
25%

Figure 1-7 QoS Planning and Mapping

Complexity 25

actively manage queues, to balance between the complexity of queue management
and application support.

The Revenge of Centralized Control Planes

In the 1990s, in order to resolve many of the perceived problems with packet switched
networks, such as complex control planes and QoS management, researchers began
working on a concept called Active Networking. The general idea was that the con-
trol plane for a packet switched network could, and should, be separated from the
forwarding devices in order to allow the network to interact with the applications
running on top of it.

The basic concept of separating the control and data planes more distinctly in
packet switching networks was again considered in the formation of the Forwarding
and Control Element Separation (ForCES) working group in the IETF. This working
group was primarily concerned with creating an interface applications can use to
install forwarding information onto network devices. The working group was even-
tually shut down in 2015 and its standards were never widely implemented.

In 2006, researchers began looking for a way to experiment with control planes
in packet switched networks without the need to code modifications on the devices
themselves—a particular problem, as most of these devices were sold by vendors
as unmodifiable appliances (or black boxes). The eventual result was OpenFlow, a
standard interface that allows applications to install entries directly in the forward-
ing table (rather than the routing table; this is explained more fully in several places
in Part I of this book, “The Data Plane”). The research project was picked up as
a feature by several vendors, and a wide array of controllers have been created by
vendors and open source projects. Many engineers believed OpenFlow would revolu-
tionize network engineering by centralizing the control plane.

The reality is likely to be far different—what is likely to happen is what has always
happened in the world of data networking: the better parts of a centralized control
plane will be consumed into existing systems, and the fully centralized model will
fall to the wayside, leaving in its path changed ideas about how the control plane
interacts with applications and the network at large.

Complexity

The technologies described thus far—circuit and packet switching, control planes,
and QoS—are very complex. In fact, there appears to be no end to the increasing

Chapter 1 Fundamental Concepts26

complexity in networks, particularly as applications and businesses become more
demanding. This section will consider two specific questions in relation to complex-
ity and networks:

 • What is network complexity?

 • Can network complexity be “solved”?

The final parts of this section will consider a way of looking at complexity as a
set of tradeoffs.

Why So Complex?

While the most obvious place to begin might be with a definition of complexity, it is
actually more useful to consider why complexity is required in a more general
sense. To put it more succinctly, is it possible to “solve” complexity? Why not just
design simpler networks and protocols? Why does every attempt to make anything
simpler in the networking world end up apparently making things more complex in
the long run?

For instance, by tunneling on top of (or through) IP, the control plane’s complex-
ity is reduced, and the network is made simpler overall. Why then do tunneled over-
lays end up containing so much complexity?

There are two answers to this question. First, human nature being what it is, engi-
neers will always invent ten different ways to solve the same problem. This is espe-
cially true in the virtual world, where new solutions are (relatively) easy to deploy, it
is (relatively) easy to find a problem with the last set of proposed solutions, and it
is (relatively) easy to move some bits around to create a new solution that is “better
than the old one.” This is particularly true from a vendor perspective, when build-
ing something new often means being able to sell an entirely new line of products
and technologies—even if those technologies look very much like the old ones. The
virtual space, in other words, is partially so messy because it is so easy to build some-
thing new there.

The second answer, however, lies in a more fundamental problem: complex-
ity is necessary to deal with the uncertainty involved in difficult to solve problems.
 Figure 1-8 illustrates.

Adding complexity seems to allow a network to handle future requirements and
unexpected events more easily, as well as provide more services over a smaller set of
base functions. If this is the case, why not simply build a single protocol running on
a single network able to handle all the requirements potentially thrown at it and can
handle any sequence of events you can imagine? A single network running a single

Complexity 27

protocol would certainly reduce the number of moving parts network engineers need
to deal with, making all our lives simpler, right? In fact, there are a number of differ-
ent ways to manage complexity, for instance:

 1. Abstract the complexity away, to build a black box around each part of the
system, so each piece and the interactions between these pieces are more imme-
diately understandable.

 2. Toss the complexity over the cubicle wall—to move the problem out of the
networking realm into the realm of applications, or coding, or a protocol.
As RFC1925 says, “It is easier to move a problem around (e.g., by moving
the problem to a different part of the overall network architecture) than it is
to solve it.”

 3. Add another layer on top, to treat all the complexity as a black box by put-
ting another protocol or tunnel on top of what’s already there. Returning to
RFC1925, “It is always possible to add another level of indirection.”

 4. Become overwhelmed with the complexity, label what exists as “legacy,” and
chase some new shiny thing perceived to be able to solve all the problems in a
much less complex way.

 5. Ignoring the problem and hoping it will go away. Arguing for an exception
“just this once,” so a particular business goal can be met, or some problem
fixed, within a very tight schedule, with the promise that the complexity issue
will be dealt with “later,” is a good example.

Robustness
Solution Effectiveness

In
cr

ea
si

ng

Complexity

Figure 1-8 Complexity, Effectiveness, and Robustness

Chapter 1 Fundamental Concepts28

Each of these solutions, however, has a set of tradeoffs to consider and manage.
Further, at some point, any complex system becomes brittle—robust yet fragile. A
system is robust yet fragile when it is able to react resiliently to an expected set of
circumstances, but an unexpected set of circumstances will cause it to fail. To give an
example from the real world—knife blades are required to have a somewhat unique
combination of characteristics. They must be hard enough to hold an edge and cut,
and yet flexible enough to bend slightly in use, returning to their original shape with-
out any evidence of damage, and they must not shatter when dropped. It has taken
years of research and experience to find the right metal to make a knife blade from,
and there are still long and deeply technical discussions about which material is right
for specific properties, under what conditions, etc.

“Trying to make a network proof against predictable problems tends to make it
fragile in dealing with unpredictable problems (through an ossification effect as
you mentioned). Giving the same network the strongest possible ability to defend
itself against unpredictable problems, it necessarily follows, means that it MUST
NOT be too terribly robust against predictable problems. Not being too robust
against predictable problems is necessary to avoid the ossification issue, but not
necessarily sufficient to provide for a robust ability to handle unpredictable net-
work problems.” —Tony Przygienda

Complexity is necessary, then: it cannot be “solved.”

Defining Complexity

Given complexity is necessary, engineers are going to need to learn to manage it in
some way, by finding or building a model or framework. The best place to begin in
building such a model is with the most fundamental question: What does complexity
mean in terms of networks? Can you put a network on a scale and have the needle
point to “complex”? Is there a mathematical model into which you can plug the con-
figurations and topology of a set of network devices to produce a “complexity
index”? How do the concepts of scale, resilience, brittleness, and elegance relate to
complexity? The best place to begin in building a model is with an example.

Control Plane State versus Stretch
What is network stretch? In the simplest terms possible, it is the difference between
the shortest path in a network and the path that traffic between two points actually
takes. Figure 1-9 illustrates this concept.

Assuming the cost of each link in this network is 1, the shortest physical path
between Routers A and C will also be the shortest logical path: [A,B,C]. What

Complexity 29

happens, however, if the metric on the [A,B] link is changed to 3? The shortest physi-
cal path is still [A,B,C], but the shortest logical path is now [A,D,E,C]. The differen-
tial between the shortest physical path and the shortest logical path is the distance
a packet being forwarded between Routers A and C must travel—in this case, the
stretch can be calculated as (4 [A,D,E,C])−(3 [A,B,C]), for a stretch of 1.

How Is Stretch Measured?
The way stretch is measured depends on what is most important in any given situa-
tion, but the most common way is by comparing hop counts through the network, as
is used in the examples here. In some cases, it might be more important to consider
the metric along two paths, the delay along two paths, or some other metric, but the
important point is to measure it consistently across every possible path to allow for
accurate comparison between paths.

It is sometimes difficult to differentiate between the physical topology and the
logical topology. In this case, was the [A,B] link metric increased because the link is
actually a slower link? If so, whether this is an example of stretch, or an example of
simply bringing the logical topology in line with the physical topology is debatable.

In line with this observation, it is much easier to define policy in terms of stretch
than almost any other way. Policy is any configuration that increases the stretch of a
network. Using Policy-Based Routing, or Traffic Engineering, to push traffic off the
shortest physical path and onto a longer logical path to reduce congestion on specific
links, for instance, is a policy—it increases stretch.

Increasing stretch is not always a bad thing. Understanding the concept of stretch
simply helps us understand various other concepts and put a framework around

A

B

C

D E

Figure 1-9 A Small Network to Illustrate State and Stretch

Chapter 1 Fundamental Concepts30

complexity and optimization tradeoffs. The shortest path, physically speaking, is
not always the best path.

Stretch, in this illustration, is very simple—it impacts every destination, and every
packet flowing through the network. In the real world, things are more complex.
Stretch is actually per source/destination pair, making it very difficult to measure on
a network-wide basis.

Defining Complexity: A Model
Three components—state, optimization, and surface—are common in virtually
every network or protocol design decision. These can be seen as a set of tradeoffs, as
illustrated in Figure 1-10 and described in the list that follows.

 • Increasing optimization always moves toward more state or more interaction
surfaces.

 • Decreasing state always moves toward less optimization or more interaction
surfaces.

 • Decreasing interaction surfaces always moves toward less optimization or
more state.

These are no ironclad rules, of course; they are contingent on the specific net-
work, protocols, and requirements, but they are generally true often enough to make
this a useful model for understanding tradeoffs in complexity.

Interaction Surfaces
While state and optimization are fairly intuitive, it is worthwhile to spend just a
moment more on interaction surfaces. The concept of interaction surfaces is difficult
to grasp primarily because it covers such a wide array of ideas. Perhaps an example
would be helpful; assume a function that

 • Accepts two numbers as input

 • Adds them

 • Multiplies the resulting sum by 100

 • Returns the result

This single function can be considered a subsystem in some larger system. Now
assume you break this single function into two functions, one of which does the

Complexity 31

addition, and the other of which does the multiplication. You have created two sim-
pler functions (each one only does one thing), but you have also created an interaction
surface between the two functions—you have created two interacting subsystems
within the system where there only used to be one.

As another example, assume you have two control planes running on a single
network. One of these two control planes carries information about destinations
reachable outside the network (external routes), while the other carries destinations
reachable inside the network (internal routes). While these two control planes are

Plane of the Possible

Realm of the
impossible

State

Su
rf

ac
e

(de)Optimization

Figure 1-10 The Plane of the Possible

Chapter 1 Fundamental Concepts32

different systems, they will still interact in many interesting and complex ways. For
instance, the reachability to an external destination will necessarily depend on reach-
ability to the internal destinations between the edges of the network. These two con-
trol planes must now work together to build a complete table of information that
can be used to forward packets through the network.

Even two routers communicating within a single control plane can be considered
an interaction surface. This breadth of definition is what makes it so very difficult to
define what an interaction surface is.

Interaction surfaces are not a bad thing; they help engineers and designers divide
and conquer in any given problem space, from modeling to implementation. At the
same time, interaction surfaces are all too easy to introduce without thought.

Managing Complexity through the Wasp Waist

The wasp waist, or hourglass model, is used throughout the natural world, and
widely mimicked in the engineering world. While engineers do not often consciously
apply this model, it is actually used all the time. Figure 1-11 illustrates the hourglass
model in the context of the four-layer Department of Defense (DoD) model that
gave rise to the Internet Protocol (IP) suite.

At the bottom layer, the physical transport system, there are a wide array of
protocols, from Ethernet to Satellite. At the top layer, where information is mar-
shaled and presented to applications, there is a wide array of protocols, from
Hypertext Transfer Protocol (HTTP) to TELNET (and thousands of others
besides). A funny thing happens when you move toward the middle of the stack,
however: the number of protocols decreases, creating an hourglass. Why does this
work to control complexity? Going back through the three components of com-
plexity—state, surface, and complexity—exposes the relationship between the
hourglass and complexity.

IPNetwork

Physical

Transport

Application

Ethernet, SONET, Token Ring, Microwave,
LTE, Satellite, etc.

TCP, UDP

HTML, SMTP, SNMP, FTP, TELNET, etc.

Figure 1-11 The DoD Model and the Wasp Waist

Complexity 33

 • State is divided by the hourglass into two distinct types of state: information
about the network and information about the data being transported across
the network. While the upper layers are concerned with marshaling and pre-
senting information in a usable way, the lower layers are concerned with dis-
covering what connectivity exists and what the connectivity properties actually
are. The lower layers do not need to know how to format an FTP frame, and
the upper layers do not need to know how to carry a packet over Ethernet—
state is reduced at both ends of the model.

 • Surfaces are controlled by reducing the number of interaction points between
the various components to precisely one—the Internet Protocol (IP). This sin-
gle interaction point can be well defined through a standards process, with
changes in the one interaction point closely regulated to prevent massive rapid
changes that will reflect up and down the protocol stack.

 • Optimization is traded off by allowing one layer to reach into another layer,
and by hiding the state of the network from the applications. For instance,
TCP does not really know the state of the network other than what it can
gather from local information. TCP could potentially be much more efficient
in its use of network resources, but only at the cost of a layer violation, which
opens up difficult-to-control interaction surfaces.

The layering of a stacked network model is, then, a direct attempt to control the
complexity of the various interacting components of a network.

Complexity and Tradeoffs

A very basic law of complexity might be stated thus: in any complex sys-
tem, there will exist sets of three-way tradeoffs. The State/Optimization/
Surface (SOS) model described here is one set of such tradeoffs. Another one,
more familiar to engineers who work primarily in databases, is Consistency/
Accessibility/Partitioning (the CAP theorem). Yet another, often found in a
wider range of contexts, is Quick/Cost/Quality (QSQ). These are not com-
ponents of complexity, but what can be called the consequents of complex-
ity. Engineers need to be adept at spotting these kinds of tradeoff triangles,
accurately understanding the “corners” of the triangle, determining where
along the plane of the possible the most optimal solution lies, and being able
to articulate why some solutions simply are not possible or desirable.

If you have not found the tradeoffs, you have not looked hard enough is a
good rule of thumb to follow in all engineering work.

Chapter 1 Fundamental Concepts34

Final Thoughts

This chapter is not intended to provide detail, but rather to frame key terms within the
scope of the history of computer network technology. The computer networking world
does not have a long history (for example, human history reaches back at least 6,000 years,
and potentially many millions, depending on your point of view), but this history still
contains a set of switchback turns and bumpy pathways, often making it difficult for the
average person to understand how and why things work the way they do.

With this introduction in hand, it is time to turn to the first topic of interest in
understanding how networks really work—the data plane.

Further Reading

Brewer, Eric. “Towards Robust Distributed Systems.” Presented at the ACM Sym-
posium on the Principles of Distributed Computing, July 19, 2000. http://
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf.

Buckwalter, Jeff T. Frame Relay: Technology and Practice. 1st edition. Reading, MA:
Addison-Wesley Professional, 1999.

Cerf, Vinton G., and Edward Cain. “The DoD Internet Architecture Model.” Com-
puter Networks 7 (1983): 307–18.

Gorrell, Mike. “Salt Lake County Data Breach Exposed Info of 14,200 People.”
The Salt Lake Tribune. Accessed April 23, 2017. http://www.sltrib.com/
home/3705923-155/data-breach-exposed-info-of-14200.

Ibe, Oliver C. Converged Network Architectures: Delivering Voice over IP, ATM,
and Frame Relay. 1st edition. New York: Wiley, 2001.

Kumar, Balaji. Broadband Communications: A Professional’s Guide to ATM, Frame
Relay, SMDs, Sonet, and Bisbn. New York: McGraw-Hill, 1995.

“LAN Emulation.” Microsoft TechNet. Accessed August 4, 2017. https://
technet.microsoft.com/en-us/library/cc976969.aspx.

“LAN Emulation (LANE).” Cisco. Accessed August 4, 2017. http://
www.cisco.com/c/en/us/tech/asynchronous-transfer-mode-atm/lan-emulation-
lane/index.html.

Padlipsky, Michael A. The Elements of Networking Style and Other Essays and
 Animadversions on the Art of Intercomputer Networking. Prentice-Hall, 1985.

Russell, Andrew L. “OSI: The Internet That Wasn’t.” Professional Organization.
IEEE Spectrum, September 27, 2016. https://spectrum.ieee.org/tech-history/
cyberspace/osi-the-internet-that-wasnt

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.sltrib.com/home/3705923-155/data-breach-exposed-info-of-14200
http://www.sltrib.com/home/3705923-155/data-breach-exposed-info-of-14200
https://technet.microsoft.com/en-us/library/cc976969.aspx
https://technet.microsoft.com/en-us/library/cc976969.aspx
http://www.cisco.com/c/en/us/tech/asynchronous-transfer-mode-atm/lan-emulation-lane/index.html
http://www.cisco.com/c/en/us/tech/asynchronous-transfer-mode-atm/lan-emulation-lane/index.html
http://www.cisco.com/c/en/us/tech/asynchronous-transfer-mode-atm/lan-emulation-lane/index.html
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt

Review Questions 35

“Understanding the CBR Service Category for ATM VCs.” Cisco. Accessed
June 10, 2017. http://www.cisco.com/c/en/us/support/docs/asynchronous-
transfer-mode-atm/atm-traffic-management/10422-cbr.html.

White, Russ, and Jeff Tantsura. Navigating Network Complexity: Next-Generation
Routing with SDN, Service Virtualization, and Service Chaining. Indianapolis,
IN: Addison-Wesley Professional, 2015.

Review Questions

 1. One specific realm where different business assumptions can be clearly seen
is in choosing to use a small number of large network devices (such as a chas-
sis-based router that supports multiple line cards) or using a larger number of
smaller devices (so-called pizza box, or one rack unit, routers having a fixed
number of interfaces available) to build a campus or data center network. List
a number of different factors that might make one option more expensive than
the other, and then explain what sorts of business conditions might dictate the
use of one instead of the other for both options.

 2. One “outside representation” of code bloat in software applications is nerd
knobs; while there are many definitions of a nerd knob, they are generally con-
sidered a configuration command that will modify some small, specific, point
of operation in the way a protocol or device operates. There are actually some
research papers and online discussions around the harm from nerd knobs; you
can also find command sets from various network devices across a number of
software releases through many years. In order to see the growth in complexity
in network devices, trace the number of available commands, and try to judge
how many of these would be considered nerd knobs versus major features. Is
there anything you can glean from this information?

 3. TDM is not the only kind of multiplexing available; there is also Frequency
Division Multiplexing (FDM). Would FDM be useful for dividing a channel in
the same way that TDM is? Why or why not?

 4. What is an inverse multiplexer, and what would it be used for?

 5. Read the two references to ATM LAN Emulation (LANE), in the “Further
Reading” section. Describe the complexity in this solution from within the
complexity model; where are state and interaction surfaces added, and what
sort of optimization is being gained with each addition? Do you think the ATM
LANE solution presents a good set of tradeoffs for providing the kinds of ser-
vices it is designed to offer versus something like a shared Ethernet network?

http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10422-cbr.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10422-cbr.html

Chapter 1 Fundamental Concepts36

 6. Describe, in human terms, why delay and jitter are bad in real time (interac-
tive) voice and video communications. Would these same problems apply to
recorded voice and video stored and played back at some later time? Why or
why not?

 7. How would real-time (interactive) voice and video use the network differently
than a large file transfer? Are there specific points at which you can compare
the two kinds of traffic, and describe how the network might need to react dif-
ferently to each traffic type?

 8. The text claims the “wasp waist” is a common strategy used in nature to man-
age complexity. Find several examples in nature. Research at least one other set
of protocols (protocol stack) than TCP/IP, such as Banyan Vines, Novell’s IPX,
or the OSI system. Is there a “wasp waist” in these sets of protocols, as well?
What is it?

 9. Are there wasp waists in other areas of computing, such as the operating sys-
tems used in personal computers, or mobile computing devices (such as tablets
and mobile phones)? Can you identify them?

 10. Research some of the arguments against removing fragmentation from the
Internet Protocol in IPv6. Summarize the points made by each side. Do you
agree with the final decision to remove fragmentation?

37

Chapter 2

Data Transport Problems
and Solutions

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the concept of marshaling data, different marshaling options,
and the tradeoffs between them

 0 Understand the concepts of dictionaries, grammars, and metadata within
the context of data marshaling

 0 Understand the concepts of fixed length fields, type length values, and
shared data dictionaries

 0 Understand the difference between error detection and error correction

 0 Understand the fundamental concepts of checking for errors in data
transmission

 0 Understand the relationship between addressing and multiplexing

 0 Understand the basic theory behind multicast and anycast

 0 Understand flow control mechanisms, including windowed flow control

When transport protocols dream, do they dream of applications? They probably
should, as the primary purpose of a network is to support applications—and the
primary resource that applications need from a network is data moved from one pro-
cess (or processor) to another. But how can data be transmitted over a wire, or
through the air, or over an optical cable?

Chapter 2 Data Transport Problems and Solutions38

Perhaps it is best to begin with a more familiar example: human language. The
authors of this book wrote it using formatting, language, and vocabulary enabling you
to read and understand the information presented. What problems does a language
need to overcome to make the communication, this writing and reading, possible?

Thoughts must be captured in a form that allows them to be retrieved by a
receiver. In human languages, information is packaged into words, sentences, para-
graphs, chapters, and books. Each level of this division implies some unit of informa-
tion, and some organizational system. For instance, sounds or ideas are encapsulated
into letters or symbols; sounds or ideas are then combined into words; words are
combined into sentences, etc. Sentences follow a particular grammatical form so you
can decode the meaning from the symbols. This encoding of thoughts and informa-
tion into symbols formatted which allows a reader (receiver) to retrieve the original
meaning will be called marshaling the data in this book.

One aspect of marshaling is definitional—the process of associating one set of
symbols to a particular meaning. Metadata, or data about the data, allows you to
understand how to interpret information in a flow or stream.

There must be some way of managing errors in transmission or reception. Sup-
pose you have a pet dog who likes to chase after a particular ball. The ball drops out of
a basket one day, and bounces into the street. The dog chases and appears to be heading
directly into the path of an oncoming car. What do you do? Perhaps you shout “Stop!”—
and then maybe “No!”—and perhaps “Stay!” Using several commands that should result
in the same action—the dog stopping before he runs into the street—is making certain
the dog has correctly received, and understood, the message. Shouting multiple messages
will, you hope, ensure there is no misunderstanding in what you are telling the dog to do.

This is, in fact, a form of error correction. There are many kinds of error correc-
tion built into human language. For instance, yu cn prbbly stll rd ths sntnce. Human
languages overspecify the information they contain, so a few missed letters do not cause
the entire message to be lost. This overspecification can be considered a form of forward
error correction. This is not the only form of error correction human languages contain,
however. They also contain questions, which can be asked to verify, validate, or gain
missing bits or context of information previously “transmitted” through the language.

There must be some way to talk to one person, or a small group of people,
using a single medium—air—within a larger crowd. It is not uncommon to need
to talk to one person out of a room full of people. Human language has built in ways
of dealing with this problem in many situations, such as calling someone’s name, or
speaking loudly enough to be heard by the person you are directly facing (the imple-
mentation of language can be directional, in other words). The ability to speak to
one person among many, or a specific subset of people, is multiplexing.

Finally, there must be some way to control the flow of a conversation. With
a book, this is a simple matter; the writer produces text in parts, which are then col-
lected into a format the reader can read, and reread, at a completely different pace.

Digital Grammars and Marshaling 39

Not many people think of a book as a form of flow control, but putting thoughts
into written form is an effective way to disconnect the speed of the sender (the speed
of writing) from the speed of the receiver (the speed of reading). Spoken language
has other forms of flow control, such as “um,” and the glazed-over look in a lis-
tener’s eyes when she has lost the line of reasoning a speaker is following, or even
physical gestures indicating the speaker should slow down.

To summarize, successful communication systems need to solve four problems:

 • Marshaling the data; converting ideas into symbols and a grammar the receiver
will understand

 • Managing errors, so the ideas are correctly transmitted from the sender to the receiver

 • Multiplexing, or allowing a common media or infrastructure to be used for
conversations between many different pairs of senders and receivers

 • Flow control, or the ability to make certain the receiver is actually receiving
and processing the information before the sender transmits more

The following sections examine each of these problems as well as some of the
solutions available in each problem space.

Digital Grammars and Marshaling

Consider the process you are using to read this book. You examine a set of marks
created to contrast with a physical carrier, ink on paper. These marks represent cer-
tain symbols (or, if you are hearing this book, certain sounds on a white noise back-
ground), which you then interpret as letters. These letters, in turn, you can put
together using rules of spacing and layout to form words. Words, through punctua-
tion and spacing, you can form into sentences.

At each stage in the process there are several kinds of things interacting:

 • A physical carrier onto which the signal can be imposed. This work of repre-
senting information against a carrier is grounded in the work of Claude Shan-
non, and is outside the scope of this book; further reading is suggested in the
following section for those who are interested.

 • A symbolic representation of units of information used to translate the physical
symbols into the first layer of logical content. When you are interpreting sym-
bols, two things are required: a dictionary, which describes the range of possible
logical symbols that can correspond to a certain physical state, and a grammar,
which describes how to determine which logical symbol relates to this instance
of physical state. These two things, combined, can be described as a protocol.

Chapter 2 Data Transport Problems and Solutions40

 • A way to convert the symbols into words and then the words into sentences.
Again, this will consist of two components, a dictionary and a grammar.
Again, these can be described as protocols.

As you move “up the stack,” from the physical to the letters to the words to the
sentences, etc., the dictionary will become less important, and the grammar, which
allows you to convert the context into meaning, more important—but these two
things exist at every layer of the reading and/or listening process. The dictionary and
grammar are considered two different forms of metadata you can use to turn physi-
cal representations into sentences, thoughts, lines of argument, etc.

Digital Grammars and Dictionaries

There really is not much difference between a human language, such as the one you
are reading right now, and a digital language. A digital language is not called a lan-
guage, however; it is called a protocol. More formally:

A protocol is a dictionary and a grammar (metadata) used to translate one
kind of information into another.

Protocols do not work in just one direction, of course; they can be used to encode as
well as decode information. Languages are probably the most common form of protocol
you encounter on a daily basis, but there are many others, such as traffic signs; the user
interfaces on your toaster, computer, and mobile devices; and every human language.

Given you are developing a protocol, which primarily means developing a diction-
ary and a grammar, there are two kinds of optimization you can work toward:

 • Resource Efficiency. How many resources are used in encoding any particular
bit of information? The more metadata included inline, with the data itself,
the more efficient the encoding will be—but the more implementations will
rely on dictionaries to decode the information. Protocols that use very small
signals to encode a lot of information are generally considered compact.

 • Flexibility. In the real world, things change. Protocols must somehow be
designed to deal with change, hopefully in a way not requiring a “flag day” to
upgrade the protocol.

The metadata tradeoff is one of many you will find in network engineering; either
include more metadata, allowing the protocol to better handle future requirements,
or include less metadata, making the protocol more efficient and compact. A good
rule of thumb, one you will see repeated many times throughout this book, is: if you
have not found the tradeoff, you have not looked hard enough.

Digital Grammars and Marshaling 41

What Is a Flag Day?

If you need to switch from one version of a protocol that is installed and run-
ning on many computers to a newer version of the same protocol, or perhaps
even a different protocol, you have three choices.

First, you can design the protocol (or protocols) so the old and new ver-
sions can overlap, or run on the same network at the same time. This is some-
times called the ships in the night solution; the old and new protocols (or
versions of the same protocol) do not interact at all.

Second, you can pick a day (and potentially a time, down to the millisecond
in some cases) to switch from the old protocol to the new. This is called a flag
day. How did this term become attached to this kind of protocol changeover
event? In 1966, every system running the Multics operating system needed to
be switched from one definition of characters to another, specifically to replace
ASCII 1965 with ASCII 1967. A holiday was chosen for the change, which would
give all the Multics system administrators a full day to replace their software
and have the systems operating for the first business day after the change. The
day chosen was Flag Day in the United States, June 14, 1966. Hence the term
flag day become forever associated with a change requiring every host in the
system to be rebooted at (roughly) the same time to ensure proper operation.1

The most famous flag day is the transition from the Network Control Pro-
gram (NCP) transport protocol to the Transmission Control Protocol (TCP)
on the entire Internet (as it existed then) in 1983. The process of moving from
one to the other required an Internet Engineering Task Force (IETF) Request
for Comment (RFC) to describe and coordinate the process—RFC801.2

Third, you can design the protocol so a single version can contain multiple ver-
sions of the same information, with each version being formatted differently. Send-
ers can send in either format, and receivers should be able to interpret the data in
either format. When all the systems have been upgraded to the newer version of
the software, the older encoding can be replaced. This mechanism relies heavily on
a principle laid out in RFC760:

 In general, an implementation must be conservative in its sending behav-
ior, and liberal in its receiving behavior. That is, it must be careful to send
well-formed datagrams, but must accept any datagram that it can inter-
pret (e.g., not object to technical errors where the meaning is still clear).3

1. “Flag Day.”

2. Postel, NCP/TCP Transition Plan.

3. Internet Protocol This quote, or something similar, is attributed to Jon Postel.

Chapter 2 Data Transport Problems and Solutions42

A dictionary in a protocol is a table of digital patterns to symbols and operations.
Perhaps the most commonly used digital dictionaries are character codes. Table 2-1
replicates part of the Unicode character code dictionary.

Table 2-1 A Partial Unicode Dictionary or Table

Code Glyph Decimal Description #

U+0030 0 0 Digit Zero 0017

U+0031 1 1 Digit One 0018

U+0032 2 2 Digit Two 0019

U+0033 3 3 Digit Three 0020

U+0034 4 4 Digit Four 0021

U+0035 5 5 Digit Five 0022

U+0036 6 6 Digit Six 0023

U+0037 7 7 Digit Seven 0024

U+0038 8 8 Digit Eight 0025

U+0039 9 9 Digit Nine 0026

U+003A : : Colon 0027

U+003B ; ; Semicolon 0028

U+003C < < Less-than sign 0029

Using Table 2-1, if a computer is “reading” an array representing a series of let-
ters, it will print out (or treat in processing) the number 6 if the number in the array
is 0023, the number 7 if the number in the array is 0024, etc. This table, or diction-
ary, relates specific numbers to specific symbols in an alphabet, just like a dictionary
relates a word to a range of meanings.

How can the computer determine the difference between the price of a banana
and the letters in the word banana? Through the context of the information. For
instance, perhaps the array in question is stored as a string, or a series of letters; the
array being stored as a string variable type provides the metadata, or the context,
which indicates the values in these particular memory locations should be treated as
letters rather than the numeric values contained in the array. This metadata, acted on
by the computer, provides the grammar of the protocol.

In protocols, dictionaries are often expressed in terms of what any particular field
in a packet contains, and grammars are often expressed in terms of how the packet is
built, or what fields are contained at what locations in a packet.

There are several ways to build dictionaries and basic (first-level) grammars;
several of these will be considered in the following sections.

Digital Grammars and Marshaling 43

Fixed Length Fields

Fixed length fields are the simplest of the dictionary mechanisms to explain. The
protocol defines a set of fields, what kind of data each field contains, and how large
each field is. This information is “baked into” the protocol definition, so every imple-
mentation is built to these same specifications, and hence can interoperate with one
another. Figure 2-1 illustrates a fixed length field encoding used in the Open Shortest
Path First (OSPF) protocol taken from RFC2328.4

The row of numbers across the top of Figure 2-1 indicates the individual bits in
the packet format; each row contains 32 bits of information. The first 8 bits indicate
the version number, the second 8 bits always have the number 5, the following 16
bits contain the total packet length, etc. Each of these fields is further defined in the
protocol specification with the kind of information carried in the field and how it is
encoded. For instance:

 • The version number field is encoded as an unsigned integer. This is metadata
indicating the dictionary and grammar used for this packet. If the packet for-
mat needs to be changed, the version number can be increased, allowing trans-
mitters and receivers to use the correct dictionary and grammar when encoding
and decoding the information in the packet.

 • The number 5 indicates the kind of packet within the protocol; this is part
of a dictionary defined elsewhere in the standards document, so it is simply
inserted as a fixed value in this illustration. This particular packet is a Link
State Acknowledgment Packet.

Figure 2-1 OSPF Fixed Length Field Definition in the Protocol Specification

4. Moy, OSPF Version 2, 201.

Chapter 2 Data Transport Problems and Solutions44

 • The packet length is encoded as an unsigned integer indicating the number of
octets (or sets of 8 bits) contained in the complete packet. This allows the packet
size to vary in length depending on how much information needs to be carried.

The fixed length field format has several advantages. Primarily, the location of
any piece of information within the packet will be the same from packet to packet,
which means it is easy to optimize the code designed to encode and decode the infor-
mation around the packet format. For instance, a common way of processing a fixed
length packet format is to create an in-memory data structure matching the packet
format precisely; when the packet is read off the wire, it is simply copied into this
data structure. The fields within the packet can then be read directly.

Fixed length formats tend to be somewhat compact. The metadata needed to
encode and decode the data is carried “outside the protocol,” in the form of a protocol
specification. The packets themselves contain only the value, and never any informa-
tion about the values. On the other hand, fixed length formats can waste a lot of space
by buffering the fields so they are always the same length. For instance, the decimal
number 1 can be represented with a single binary digit (a single bit), while the decimal
number 4 requires 3 binary digits (three bits); if a fixed length field must be able to rep-
resent any number between 0 and 4, it will need to be at least 3 bits long, even though
two of those bits will sometimes be “wasted” in representing smaller decimal numbers.

Fixed length formats also often waste space by aligning the field sizes on common
processor memory boundaries to improve the speed of processing. A field required
to take values between 0 and 3, even though it only needs two bits to represent the full
set of values, may be encoded as an 8-bit field (a full octet) in order to ensure the field
following is always aligned on an octet boundary for faster in-memory processing.

Flexibility is where fixed length encoding often runs into problems. If some field is
defined as an 8-bit value (a single octet) in the original specification, there is no obvi-
ous way to modify the length of the field to support new requirements. The primary
way this problem is solved in fixed length encoding schemes is through the version
number. If the length of a field must be changed, the version number is modified in
packet formats supporting the new field length. This allows implementations to use
the old format until all the devices in the network are upgraded to support the new
format; once they are all upgraded, the entire system can be switched to the new for-
mat, whether larger or smaller.

Type Length Value

The Type Length Value (TLV) format is another widely used solution to the problem
of marshaling data. Figure 2-2 shows an example from the Intermediate System to
Intermediate System (IS-IS) routing protocol.

Digital Grammars and Marshaling 45

In Figure 2-2, a packet consists of a header, which is normally fixed length, and
then a set of TLVs. Each TLV is formatted based on its type code. In this case, there
are two TLV types shown (there are many other types in IS-IS; two are used for illus-
tration here). The first type is a 135, which carries Internet Protocol version 4 (IPv4)
information. This type has several fields, some of which are fixed length—such as
the metric. Others, however, such as the prefix, are variable length; the length of the
field depends on the value placed in some other field within the TLV. In this case,
the prefix length field determines the length of the prefix field. There are also sub-
TLVs, which are similarly formatted, and carry information associated with this
IPv4 information. The type 236 is similar to the 135, but it carries IPv6, rather than
IPv4, information.

Essentially, the TLV can be considered a complete set of self-contained informa-
tion carried within a larger packet. The TLV consists of three parts:

 • The type code, which describes the format of the data

 • The length, which describes the total length of the data

 • The value, or the data itself

TLV-based formats are less compact than fixed length formats because they carry
more metadata within the packet itself. The type and length information carried in
the data provides the information about where to look in the dictionary for informa-
tion about the formatting, as well as information about the grammar to use (how
each field is formatted, etc.). TLV formats trade off the ability to change the format-
ting of the information being carried by the protocol without requiring every device
to upgrade, or allowing some implementations to choose not to support every pos-
sible TLV, against the additional metadata carried across the wire.

packet header sub TLVs

sub TLVs

135

236

metric prefix

prefixmetric

prefix
length

prefix
length

u/
d

u/
d

sp
sp

ig
no

re

ex
t

packet

header TLVs

Figure 2-2 An Example of a TLV Format from IS-IS

Chapter 2 Data Transport Problems and Solutions46

TLVs are generally considered a very flexible way of marshaling data in protocols;
you will find this concept to be almost ubiquitous.

Shared Object Dictionaries

One of the major problems with fixed length fields is the fixedness of the field defini-
tions; if you want to modify a fixed length field protocol, you need to bump the ver-
sion number and modify the packet, or you must create a new packet type with
different encodings for the fields. TLV formatting solves this by including metadata
inline, with the data being transmitted, at the cost of carrying more information and
reducing compactness. Shared compiled dictionaries attempt to solve this problem
by placing the dictionary in a sharable file (or library) rather than in a specification.
Figure 2-3 illustrates the process.

In Figure 2-3, the process begins with a developer building a data structure to
marshal some particular set of data to be transferred across the network. Once
the data structure has been built, it is compiled into a function, or perhaps copied
into a library of functions (1), and copied over to the receiver (2). The receiver then
uses this library to write an application to process this data (3). On the transmit-
ter side, the raw data is encoded into the format (4), and then carried by a protocol
across the network to the receiver (5). The receiver uses its shared copy of the data
format (6) to decode the data, and pass the decoded information to the receiving
 application (7).

This kind of system combines the flexibility of the TLV-based model with the
compactness of a fixed field protocol. While the fields are fixed length, the field defi-
nitions are given in a way that allows for fast, flexible updates when the marshaling
format needs to be changed. So long as the shared library is decoupled from the
application using the data, the dictionary and grammar can be changed by distribut-
ing a new version of the original data structure.

type

type

type

length

length

length

data 1

data 2

data 3

type

type

type

length

length

length

data 1

data 2

data 3

copy
object

library to
receiver

raw data raw data

data
encoded
in format

data
decoded
using
format

transfer encoded data to receiver

(1)
(2)

(3)

(4)

(5)

(6)

(7)

Figure 2-3 Shared Compiled Dictionaries

Errors 47

Would a flag day be required if a new version of the data structure is distributed?
Not necessarily. If a version number is included in the data structure, so the receiver
could match the received data with the correct data structure, then multiple versions
of the data structure could exist in the system at one time. Once no sender is found
using an older data format, the older structure can be safely discarded throughout
the entire system.

Note

gRPC is an example of a compiled shared library marshaling system; see the
“Further Reading” section for resources.

Note

While the fixed format and TLV systems count on the developers reading the
specifications, and writing code as a form of sharing the grammar and dictionary,
shared data structure systems, as described in this section, count on the shared
dictionary being distributed in some other way. There are many different ways
this could be done; for instance, a new version of software can be distributed to
all the senders and receivers, or some form of distributed database can be used to
ensure all the senders and receivers receive the updated data dictionaries, or some
part of an application that specifically manages marshaling data can be distrib-
uted and paired with an application that generates and consumes the data. Some
systems of this kind transfer the shared dictionary as part of their initial session
setup. All of these are possible, and outside the scope of this present text.

Errors

No data transmission medium can be assumed to be perfect. If the transmission
medium is shared, like Radio Frequency (RF), there is the possibility of interference,
or even datagram collisions. This is where more than one sender attempts to trans-
mit information simultaneously. The result is a garbled message that cannot be
understood by the intended receiver. Even a dedicated medium, such as a point-to-
point undersea optical (lightwave) fiber cable, can experience errors due to cable deg-
radation or point events—even seemingly insane events, such as solar flares causing
radiation, which in turn interferes with data transmission through a copper cable.

Chapter 2 Data Transport Problems and Solutions48

There are two key questions a network transport must answer in the area of
errors:

 • How can errors in the transmission of data be detected?

 • What should the network do about errors in data transmission?

The following sections consider some of the possible answers to these questions.

Error Detection

The first step in dealing with errors, whether they are because of a transmission
media failure, memory corruption in a switching device along the path, or any other
reason, is to detect the error. The problem is, of course, when a receiver examines the
data it receives, there is nothing to compare the data to in order to detect the error.

Parity checks are the simplest detection mechanisms. Two complementary parity
checking algorithms exist. With even parity checking, one additional bit is added to
each block of data. If the sum of bits in the block of data is even—that is, if there are
an even number of 1 bits in the data block—the additional bit is set to 0. This preserves
the even parity state of the block. If the sum of bits is odd, the additional bit is set to 1,
which sets the entire block to an even parity state. Odd parity uses the same additional
bit strategy, but it requires the block to have odd parity (an odd number of 1 bits).

As an example, calculate even and odd parity for these four octets of data:

00110011 00111000 00110101 00110001

Simply counting the digits reveals there are 14 1s and 18 0s in this data. To provide
for error detection using a parity check, you add one bit to the data, either making
the total number of 1s in the newly enlarged set of bits even for even parity, or odd
for odd parity. For instance, if you want to add an even parity bit in this case, the
additional bit should be set to 0. This is because the number of 1s is already an even
number. Setting the additional parity bit to 0 will not add another 1, and hence will
not change whether the total number of 1s is even or odd. For even parity, then, the
final set of bits is

00110011 00111000 00110101 00110001 0

On the other hand, if you wanted to add a single bit of odd parity to this set of
bits, you would need to make the additional parity bit a 1, so there are now 15 1s
rather than 14. For odd parity, the final set of bits is

00110011 00111000 00110101 00110001 1

Errors 49

To check whether or not the data has been corrupted or changed in transit, the
receiver can simply note whether even or odd parity is in use, add the number of 1s,
and discard the parity bit. If the number of 1s does not match the kind of parity in
use (even of odd), the data has been corrupted; otherwise, the data appears to be the
same as what was originally transmitted.

This new bit is, of course, transmitted along with the original bits. What happens
if the parity bit itself is somehow corrupted? This is actually okay; assume even par-
ity checking is in place, and a transmitter sends

00110011 00111000 00110101 00110001 0

The receiver, however, receives

00110011 00111000 00110101 00110001 1

The parity bit itself has been flipped from a 0 to a 1. The receiver will count the 1s,
determining there are 15; since even parity checking is in use, the received data will
be flagged as having an error even though it does not. The parity check is potentially
too sensitive to failures, but it is better to err on the side of caution in the case of
error detection.

There is one problem with the parity check: it can detect only a single bit flip in
the transmitted signal. For instance, if even parity is in use, and the transmitter sends

00110011 00111000 00110101 00110001 0

The receiver, however, receives

00110010 00111000 00110101 00110000 0

The receiver will count the number of 1s and find it is 12; since the system is using
even parity, the receiver will assume the data is correct and process it normally. How-
ever, the two bits marked out in bold have both been corrupted. If an even number
of bits, in any combination, is modified, the parity check cannot detect the change;
only when the change involves an odd number of bits can the parity check detect the
modification of the data.

The Cyclic Redundancy Check (CRC) can detect a wider range of modifications
in transmitted data by using division (rather than addition) in cycles across the entire
data set, one small piece at a time. Working through an example is the best way to
understand how a CRC is calculated. A CRC calculation begins with a polynomial,
as shown in Figure 2-4.

In Figure 2-4, a three-term polynomial, x3 + x2 + 1, is expanded to include all
the terms—including terms preceded by 0 (and hence do not impact the result of

Chapter 2 Data Transport Problems and Solutions50

the calculation regardless of the value of x). The four coefficients are then used as a
binary calculator, which will be used to calculate the CRC.

To perform the CRC, begin with the original binary data set, and add three extra
bits (because the original polynomial, without the coefficients, has three terms;
hence this is called a three-bit CRC check), as shown here:

10110011 00111001 (original data)

10110011 00111001 000 (with the added CRC bits)

These three bits are required to ensure all the bits in the original data are included
in the CRC; as the CRC moves from left to right across the original data, the last bits
in the original data will be included only if these padding bits are included. Now
begin at the left four bits (because the four coefficients are represented as four bits).
Use the Exclusive OR (XOR) operation to compare the far-left bits against the CRC
bits, and save the result, as shown here:

10110011 00111001 000 (padded data)

1101 (CRC check bits)

01100011 00111001 000 (result of the XOR)

1x3 + 1x2 + 0x + 1

x3 + x2 + 1

1101
binary calculator

base polynomial of three terms

Figure 2-4 A Polynomial Used to Calculate a CRC

Errors 51

Note

XOR’ing two binary digits results in a 0 if the two digits match, and a 1 if they do not.

The check bits, called a divisor, are moved one bit to the right (some steps can be
skipped here) and the operation is repeated until the end of the number is reached:

10110011 00111001 000

1101

01100011 00111001 000

 1101

00001011 00111001 000

 1101

00000110 00111001 000

 110 1

00000000 10111001 000

 1101

00000000 01101001 000

 1101

00000000 00000001 000

 1 101

00000000 00000000 101

The CRC is in the final three bits that were originally added on as padding; this is
the “remainder” of the division process of moving across the original data plus the
original padding. It is simple for the receiver to determine whether the data has been
changed by leaving the CRC bits in place (101 in this case), and using the original
divisor across the data, as shown here:

10110011 00111001 101

1101

01100011 00111001 101

 1101

Chapter 2 Data Transport Problems and Solutions52

00001011 00111001 101

 1101

00000110 00111001 101

 110 1

00000000 10111001 101

 1101

00000000 01101001 101

 1101

00000000 00000001 101

 1 101

00000000 00000000 000

If the data has not been changed, the result of this operation should always result
in 0. If a bit has been changed, the result will not be 0, as shown here:

10110011 00111000 000
1101

01100011 00111000 000
 1101

00001011 00111000 000
 1101

00000110 00111000 000
 110 1

00000000 10111000 000
 1101

00000000 01101000 000
 1101

00000000 00000000 000
 1 101

00000000 00000001 000

Errors 53

The CRC might seem like a complex operation, but it plays to a computer’s
strong points—finite length binary operations. If the length of the CRC is set the
same as a standard small register in common processors, say eight bits, calculat-
ing the CRC is a fairly straightforward and quick process. CRC checks have the
advantage of being resistant to multibit changes, unlike the parity check described
previously.

Error Correction

Detecting an error is only half of the problem, however. Once the error is detected,
what should the transport system do? There are essentially three options.

The transport system can simply throw the data away. In this case, the transport is
effectively transferring the responsibility of what to do about the error up to higher-
level protocols or perhaps the application itself. As some applications may need a
complete data set with no errors (think a file transfer system, or a financial transac-
tion), they will likely have some way to discover any missing data and retransmit it.
Applications that do not care about small amounts of missing data (think a voice
stream) can simply ignore the missing data, reconstructing the information at the
receiver as well as possible given the missing information.

The transport system can signal the transmitter that there is an error, and let the
transmitter decide what to do with this information (generally the data in error will
be retransmitted).

The transport system can go beyond throwing data away by including enough
information in the original transmission and determine where the error is and
attempt to correct it. This is called Forward Error Correction (FEC). Hamming
codes, one of the first FEC mechanisms developed, is also one of the simplest to
explain. The Hamming code is best explained by example; Table 2-2 will be used
to illustrate.

Table 2-2 An Illustration of the Hamming Code

1 2 3 4 5 6 7 8 9 10 11 12

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8

1 0 1 1 0 0 1 1

P1 1 X X X X X

P2 0 X X X X X

P4 1 X X X X

P8 0 X X X X

Chapter 2 Data Transport Problems and Solutions54

In Table 2-2:

 • Each bit in the 12-bit space that is a power of two (1, 2, 4, 6, 8, etc.) and the first
bit are set aside as parity bits.

 • The 8-bit number to be protected with FEC, 10110011, has been distributed
across the remaining bits in the 12-bit space.

 • Each parity bit is set to 0, and then parity is calculated for each parity bit by
adding the number of 1s in positions where the binary bit number has the same
bit set as the parity bit. Specifically:

 • P1 has the far-right bit set in its bit number; the other bits in the number
space that also have the far right bit set are included in the parity calculation
(see the second row in the table to find all the bit positions in the number
with the far-right bit set). These are indicated in the table with an X in the
P1 row. The total number of 1s is an odd number, 3, so the P1 bit is set to 1
(this example is using even parity).

 • P2 has the second bit from the right set; the other bits in the number space
that have the second from the right bit set are included in the parity calcula-
tion, as indicated with an X in the P2 row of the table. The total number of
1s is an even number, 4, so the P2 bit is set to 0.

 • P4 has the third bit from the right set, so the other bits that have the third
from the right bit set in their position numbers, as indicated with an X in
the P3 row. There are an odd number of 1s in the marked columns, so the P4
parity bit is set to 1.

To determine if any information has changed, the receiver can check the parity
bits in the same way the sender has calculated them; the total number of 1s in any set
should be an even number, including the parity bit. If one of the data bits has been
flipped, the receiver should never find a single parity error, because each of the bit
positions in the data is covered by multiple parity bits. To discover which data bit is
incorrect, the receiver adds the positions of the parity bits that are in error; the result
is the bit position that has been flipped. For instance, if the bit in position 9, which
is the fifth data bit, is flipped, then parity bits P1 and P8 would be both in error. In
this case, 8 + 1 = 9, so the bit in position 9 is in error and flipping it would correct the
data. If a single parity bit is in error—for example, P1 or P8—then it is that parity bit
which has been flipped, and the data itself is correct.

While the Hamming code is ingenious, there are many bit flip patterns it cannot
detect. A more modern code, such as Reed-Solomon, can detect and correct a wider
range of error conditions while adding less additional information to the data stream.

Multiplexing 55

Note

There are a large number of different kinds of CRC and error correction codes used
throughout the communications world. CRC checks are classified by the number
of bits used in the check (the number of bits of padding, or rather the length of
the polynomial), and, in some cases, the specific application. For instance, the
Universal Serial Bus uses a 5-bit CRC (CRC-5-USB); the Global System for Mobile
Communications (GSM), a widely used cellular telephone standard, uses CRC-3-
GSM; Code Division Multi-Access (CDMA), another widely used cellular tele-
phone standard, uses CRC-6-CDMA2000A, CRC-6-CDMA2000B, and CRC-30;
and some car area networks (CANs), used to tie together various components
in a vehicle, use CRC-17-CAN and CRC-21-CAN. Some of these various CRC
functions are not a single function, but rather a class, or family, of functions, with
many different codes and options within them.

Multiplexing

You walk into a room and shout, “Joe!” Your friend, Joe, turns around and begins a
conversation on politics and religion (the two forbidden topics, of course, in any
polite conversation). This ability to use a single medium (the air through which your
voice travels) to address one person, even though many other people are using the
same medium for other conversations at the same time, is what is called, in network
engineering, multiplexing. More formally:

Multiplexing is used to allow multiple entities attached to the network to
communicate over a shared network.

Why is the word entities used here instead of hosts? Returning to the “conver-
sation with Joe” example, imagine the one way you can communicate with Joe is
through his teenaged child, who only texts (never talks). In fact, Joe is part of a fam-
ily of several hundred to several thousand people, and all the communications for
this entire family must come through this one teenager, and each person in the fam-
ily has multiple conversations running concurrently, sometimes on different topics
with the same person. The poor teenager must text very quickly, and keep a lot of
information in her head, like “Joe is having four conversations with Mary,” and must
keep the information in each conversation completely separate from the other. This
is closer to how network multiplexing really works; consider:

Chapter 2 Data Transport Problems and Solutions56

 • There could be millions (or billions) of hosts connected to a single network, all
sharing the same physical network to communicate with one another.

 • Each of these hosts actually contains many applications, possibly several hun-
dred, each of which can communicate with any of the hundreds of applica-
tions on any other host connected to the network.

 • Each of these applications may, in fact, have several conversations to any other
application running on any other host in the network.

If this is starting to sound complicated, that is because it is. The question this sec-
tion needs to answer, then, is this:

How do hosts multiplex effectively over a computer network?

The following sections consider the most commonly used solutions in this space,
as well as some interesting problems tied up in this basic problem, such as multicast
and anycast.

Addressing Devices and Applications

Computer networks use a series of hierarchically arranged addresses to solve these
problems; Figure 2-5 illustrates.

In Figure 2-5, there are four levels of addressing shown:

 • At the physical link level, there are interface addresses that allow two devices to
address a particular device individually.

 • At the host level, there are host addresses that allow two hosts to address a
particular host directly.

 • At the process level, there are port numbers that, combined with the host address,
allow two processes to address a particular process on a particular device.

host host

interface interfaceinterface interface

process 1

process 2 process 2

process 1

conversation 1 conversation 1
conversation 2 conversation 2

Figure 2-5 Addressing Multiple Levels of Entities in a Network

Multiplexing 57

 • At the conversation level, the set of source port, destination port, source
address, and destination address can be combined to uniquely identify a par-
ticular conversation, or flow.

This diagram and explanation appear very clean. In real life, things are much
messier. In the most widely deployed addressing scheme, the Internet Protocol (IP),
there are no host-level addresses. Instead, there are logical and physical addresses on
a per interface basis.

Note

IP and IP addressing will be considered in more detail in Chapter 5, “Higher Layer
Data Transports.”

Multiplexing and multiplexing identifiers (addresses) are stacked hierarchically
on top of one another in a network.

Note

Mechanisms that associate one kind of address with another between some layers
will be considered more fully in Chapter 6, “Interlayer Discovery.”

There are some situations, however, in which you want to send traffic to more
than one host at a time; for these situations, there are multicast and anycast. These
two special kinds of addressing will be considered in the following sections.

On Physical Links, Broadcasts, and Failure Domains

The clear-cut model illustrated in Figure 2-5 is made more complex when
you consider the concept of broadcast domains and physical connectiv-
ity. Some media types (notably Ethernet, which is covered in more detail in
Chapter 4, “Lower Layer Transports”) are designed so every device connected
to the same physical link receives every packet transmitted onto the physi-
cal media—hosts just ignore packets not addressed to one of the addresses
associated with the physical interface connected to the physical wire. In mod-
ern networks, however, physical Ethernet wiring rarely allows every device to
receive every other device’s packets; instead, there is a switch in the middle
of the network that blocks packets not destined to a particular device from
being transmitted on the physical wire connected to that host.

Chapter 2 Data Transport Problems and Solutions58

Multicast

Note

This short explanation cannot really do justice to the entire scope of solutions
available to build multicast trees; see the “Further Reading” section at the end of
the chapter for more material to consider in this area.

If you have a network like the one shown in Figure 2-6, and you need A to distrib-
ute the same content to G, H, M, and N, how would you go about doing this?

You could either generate four copies of the traffic, sending one stream to each
of the receivers using normal (unicast) forwarding, or you could somehow send the
traffic to a single address that the network knows to replicate so all four hosts receive
a copy. This latter option is called multicast, which means using a single address
to transmit traffic to multiple receivers. The key problem to solve in multicast is to
 forward and replicate traffic as it passes through the network so each receiver who is
interested in the stream will receive a copy.

In these protocols, however, there are explicit addresses set aside for packets
that should be transmitted to every host that would normally receive every
packet if the switch was not there, or that every host should receive and pro-
cess (normally, this is some form of the all 1s or all 0s version of the address).
These are called broadcasts. Any device that will receive, and process, a broad-
cast sent by a device is said to be part of the device’s broadcast domain. The
concept of a broadcast domain has traditionally been closely associated with a
failure domain, because network failures impacting one device on a broadcast
domain often impact every device on the broadcast domain (see Chapter 23,
“Redundant and Resilient,” for more information on failure domains).

Do not be surprised if you find all of this rather confusing, because it is,
in fact, rather confusing. The basic concepts of broadcasts and broadcast
domains still exist, and are still important in understanding the operation of
a network, but the meaning of the term can change, or even not apply, in
some situations. Be careful when considering any situation to make certain
you really understand how and where such broadcast domains really are, and
how specific technologies impact the relationship between physical connec-
tivity, addressing, and broadcast domains.

Multiplexing 59

Note

The set of devices interested in receiving a stream of packets from a multicast
source is called a multicast group. This can be a bit confusing because the address
used to describe the multicast stream is also called a multicast group in some sit-
uations. The two uses are practically interchangeable in that the set of devices
interested in receiving a particular set of multicast packets will join the multicast
group, which, in effect, means listening to a particular multicast address.

Note

In cases where the multicast traffic is bidirectional, this problem is much more
difficult to solve. For instance, assume there is a requirement to build a multicast
group with every host in the network shown in Figure 2-6 except N, and further
that any multicast transmitted to the multicast group’s address be delivered to
every host within the multicast group.

The key problem for multicast to solve can be broken into two problems:

 • How do you discover which devices would like to receive a copy of traffic trans-
mitted to the multicast group?

A B

C

D

G

H

M

N

Figure 2-6 A Multicast Example

Chapter 2 Data Transport Problems and Solutions60

 • How do you determine which devices in the network should replicate the traf-
fic, and on which interfaces they should send copies?

One possible solution is to use local requests to build a tree through which the
multicast traffic should be forwarded through the network. An example of such a
system is Sparse Mode in Protocol Independent Multicast (PIM). In this this pro-
cess, each device sends a join message for the multicast streams it is interested in;
these joins are passed upstream in the network until the sender (the host sending
packets through the multicast stream) is reached. Figure 2-7 is used to illustrate
this process.

In Figure 2-7:

 1. A is sending some traffic to a multicast group (address); call it Z.

 2. N would like to receive a copy of Z, so it sends a request (a join) to its upstream
router, D, for a copy of this traffic.

 3. D does not have a source for this traffic, so it sends a request to the routers it is
connected to for a copy of this traffic; in this case, the only router D sends the
request to is B.

A B

C

D

G

H

M

N

2

1

3

Figure 2-7 Sparse mode multicast

Multiplexing 61

At each hop, the router receiving the request will place the interface on which it
received the request into its Outbound Interface List (OIL), and begin forwarding
traffic received in the given multicast group received on any other interface. In this
way, a path from the receiver to the originator of the traffic can be built; this is called
a reverse path tree.

A second option for discovering which hosts are interested in receiving traffic for
a specific multicast group is through some sort of registration server. Each host that
would like to receive a copy of the stream can register its desire with a server. There
are several ways the host can discover the presence of the server, including

 • Treating the multicast group address like a domain name, and looking up the
address of the registration server by querying for the multicast group address

 • Building and maintaining a list, or mapping, of groups to servers mapping in
a local table

 • Using some form of hash algorithm to compute the registration server from
the multicast group address

The registrations can either be tracked by devices on the path to the server, or,
once the set of receivers and transmitters is known, the server can signal the appro-
priate devices along the path which ports should be configured for replicating and
forwarding packets.

Anycast

Another problem multiplexing solutions face is being able to address a specific
instance of a service residing in implemented on multiple hosts using a single address.
Figure 2-8 illustrates.

In Figure 2-8, some service, S, needs to be designed to increase its performance.
To accomplish this goal, a second copy of the service has been created, with the two
copies being named S1 and S2. These two copies of the service are running on two
servers, M and N. The problem anycast seeks to solve is this:

How can clients be directed to the most optimal instance of a service?

One way of solving this problem is to direct all the clients to a single device and
have a load balancer split the traffic to the servers based on the topological location
of the client, the load of each server, and other factors. This solution is not always
ideal, however. For instance, what if the load balancer cannot handle all the con-
nection requests generated by the clients who want to reach various copies of the

Chapter 2 Data Transport Problems and Solutions62

service? What sorts of complexities are going to be added to the network to allow the
load balancer to track the health of the various copies of the service?

Note

Load balancing is considered in Chapter 7, “Packet Switching.”

Anycast solves this problem by assigning the same address to each copy of the
service. In the network illustrated in Figure 2-8, then, M and N would use the same
address to provide reachability to S1 and S2. M and N would have different addresses
assigned and advertised to provide reachability to other services, and to the devices
themselves, as well.

H and K, the first hop routers beyond M and N, would advertise this same address
into the network. When C and D receive two routes to the same destination, they
will choose the closest route in terms of metrics. In this case, if every link in the same
network is configured with the same metric, then C would direct traffic sourced from
A, and destined to the service’s address, toward M. D, on the other hand, will direct
traffic sourced from B, and destined to the service’s address, toward N. What hap-
pens if two instances of the service are about the same distance apart? The router
will choose one of the two paths using a local hash algorithm.

A

B

C

D

E

F

G

H

K

M

S1

S2

N

Figure 2-8 An Anycast Example

Flow Control 63

Note

See Chapter 7 for more information about equal cost multipath switching, and
how using a hash ensures the same path is used for each packet in a flow. Rout-
ing is generally stable enough, even in the Internet, to use anycast solutions with
stateful protocols.5

 Anycast is often used for large-scale services that must scale by provisioning a lot
of servers to support the single service. Examples include the following:

 • Most large-scale Domain Name Service (DNS) system servers are actually a set
of servers accessible through an anycast address.

 • Many large-scale web-based services, particularly social media and search,
where a single service is implemented on a large number of edge devices.

 • Content caching services often use anycast in distributing and serving
information.

Designed correctly, anycast can provide effective load balancing as well as optimal
performance for services.

Flow Control

Do you remember your great aunt (or was it your second cousin once removed?) who
talked so fast that you could not understand a word she was saying? Some computer
programs talk too fast, too. Figure 2-9 illustrates.

In Figure 2-9:

 • At Time 1 (T1), the sender is transmitting about four packets for every three
the receiver can process. The receiver has a five-packet buffer to store unpro-
cessed information; there are two packets in this buffer.

 • At T2, the sender has transmitted four packets, and the receiver has processed
three; the buffer at the receiver is now holding three packets.

 • At T3, the sender has transmitted four packets, and the receiver has processed
three; the buffer at the receiver is now holding four packets.

 • At T4, the sender has transmitted four packets, and the receiver has processed
three; the buffer at the receiver is now holding five packets.

5. Palsson et al., “TCP over IP Anycast—Pipe Dream or Reality?”

Chapter 2 Data Transport Problems and Solutions64

FC

Figure 2-10 A Feedback Loop to Control Packet Flow

T1

T2

T3

T4

send rate process ratequeue

Figure 2-9 Buffer Overflow Example

The next packet transmitted will be dropped by the receiver because there is no
space in the buffer to store it while the receiver is processing packets so they can be
removed. What is needed is some sort of feedback loop to tell the transmitter to slow
down the rate at which it is sending packets, as illustrated in Figure 2-10.

This kind of feedback loop requires either implicit signaling or explicit signaling
between the receiver and the transmitter. Implicit signaling is more widely deployed.
In implicit signaling, the transmitter assumes the packet has not been received based
on some observation about the traffic stream. For instance, the receiver may acknowl-
edge the receipt of some later packet, or the receiver may simply not acknowledge
receiving a particular packet, or the receiver may not send anything for a long period
of time (in network terms). In explicit signaling, the receiver somehow directly
informs the sender that a specific packet has not been received.

Flow Control 65

Windowing

Windowing, combined with implicit signaling, is by far the most widely deployed
flow control mechanism in real networks. Windowing essentially consists of the
following:

 1. A transmitter sends some amount of information to the receiver.

 2. The transmitter waits before deciding if the information has been correctly
received or not.

 3. If the receiver acknowledges receipt within a specific amount of time, the
transmitter sends new information.

 4. If the receiver does not acknowledge receipt within a specific amount of time,
the transmitter resends the information.

Implicit signaling is normally used with windowing protocols by simply not
acknowledging the receipt of a particular packet. Explicit signaling is sometimes
used when the receiver knows it has dropped a packet, when received data contains
errors, data is received out of order, or data is otherwise corrupted in some way.
 Figure 2-11 illustrates the simplest windowing scheme, a single packet window.

In a single packet window (also sometimes called a ping pong), the transmitter
sends a packet only when the receiver has acknowledged (shown as an ack in the
illustration) the receipt of the last packet transmitted. If the packet is not received,
the receiver will not acknowledge it. On sending a packet, the sender sets a timer,

T1

T2

T3

T4

send

send

send

ack

ack

ack

A (sender) B (receiver)

Figure 2-11 A Single Packet Window

Chapter 2 Data Transport Problems and Solutions66

normally called the retransmit timer; once this timer wakes up (or expires), the
sender will assume the receiver has not received the packet, and resend it.

How long should the sender wait? There are a number of possible answers to this
question, but essentially the sender can either wait a fixed amount of time, or it can
set a timer based on information inferred from previous transmissions and network
conditions. A simple (and naïve) scheme would be to

 • Measure the length of time between sending a packet and receiving an
acknowledgment, called the Round Trip Time (RTT, though normally written
in the lowercase, so rtt).

 • Set the retransmit timer to this number plus some small amount of buffer time
to account for any variability in the rtt over multiple transmissions.

Note

More information about various ways to calculate the retransmit timer are con-
sidered in Chapter 5.

It is also possible for the receiver to receive two copies of the same information:

 1. A transmits a packet and sets its retransmit timer.

 2. B receives the packet, but

a. Is not able to acknowledge receipt because it is out of memory or is experi-
encing high processor utilization or some other condition.

b. Sends an acknowledgment, but the acknowledgment is dropped by a
 network device.

 3. The retransmit timer at A times out, so the sender transmits another copy of
the packet.

 4. B receives this second copy of the same information.

How can the receiver detect duplicated data? It does seem possible for the
receiver to compare the packets received to see if there is duplicate information, but
this will not always work—perhaps the sender intended to send the same informa-
tion twice. The usual method of detecting duplicate information is by including
some sort of sequence number in transmitted packets. Each packet is given a unique

Flow Control 67

sequence number while being built by the sender; if the receiver receives two packets
with the same sequence number, it assumes the data is duplicated and discards the
copies.

A window size of 1, or a ping pong, requires one round trip between the sender
and the receiver for each set of data transmitted. This would generally result in a
very slow transmission rate. If you think of the network as the end-to-end railroad
track, and each packet as a single train car, the most efficient use of the track, and
the fastest transmission speed, is going to be when the track is always full. This is not
physically possible, however, in the case of a network because the network is used by
many sets of senders and receivers, and there are always network conditions that will
prevent the network utilization from reaching 100%. There is some balance between
the increased efficiency and speed of sending more than one packet at a time, and
the multiplexing and “safety” of sending fewer packets at a time (such as one). If
a correct balance point can be calculated in some way, a fixed window flow control
scheme may work well. Figure 2-12 illustrates.

In Figure 2-12, assuming a three-packet fixed window:

 • At T1, T2, and T3, A transmits packets; A does not need to wait for B to
acknowledge anything to send these three packets, as the window size is fixed
at 3.

 • At T4, B acknowledges these three packets, which allows A to transmit another
packet.

 • At T5, B acknowledges this new packet, even though is it only one packet. B
does not need to wait until A has transmitted three more packets to acknowl-
edge a single packet. This acknowledgment allows A to have enough budget to
send three more packets.

 • At T5, T6, and T7, A sends three more packets, filling its window. It must now
wait until B acknowledges these three packets to send more information.

 • At T8, B acknowledges the receipt of these three packets.

In windowing schemes where the window size is more than one, there are four
kinds of acknowledgments a receiver can send to the transmitter:

 • Positive acknowledgment: The receiver acknowledges the receipt of each
packet individually. For instance, if sequence numbers 1, 3, 4, and 5 have been
received, the receiver will acknowledge receiving those specific packets. The
transmitter can infer which packets the receiver has not received by noting
which sequence numbers have not been acknowledged.

Chapter 2 Data Transport Problems and Solutions68

 • Negative acknowledgment: The receiver sends a negative acknowledgment
for packets it infers are missing, or were corrupted when received. For instance,
if sequence numbers 1, 3, 4, and 5 have been received, the receiver may infer
that sequence number 2 is missing and send a negative acknowledgment for
this packet.

 • Selective acknowledgment: This essentially combines positive and nega-
tive acknowledgment, as above; the receiver sends both positive and negative
acknowledgments for each sequence of received information.

T1 send

T1 send

T1

ack

send

T1

ack

send

T1

ack

send

T1

ack

send

T1

ack

send

T1

ack

A (sender) B (receiver)

Figure 2-12 An Example of Fixed Window Flow Control

Flow Control 69

 • Cumulative acknowledgment: Acknowledgment of the receipt of a sequence
number implies receipt of all information with lower sequence numbers. For
instance, if sequence number 10 is acknowledged, the information contained
in sequence numbers 1–9 is implied, as well as the information contained in
sequence number 10.

A third windowing mechanism is called sliding window flow control. This mecha-
nism is very similar to a fixed window flow control mechanism, except the size of the
window is not fixed. In sliding window flow control, the transmitter can dynami-
cally modify the size of the window as network conditions change. The receiver
does not know what size the window is, only that the sender transmits packets, and,
from time to time, the receiver acknowledges some or all of them using one of the
acknowledgment mechanisms described in the preceding list.

Sliding window mechanisms add one more interesting question to the questions
already considered in other windowing mechanisms: What size should the window
be? A naïve solution might just calculate the rtt and set the window size to some multi-
ple of the rtt. More complex solutions have been proposed; some of these will be con-
sidered in Chapter 5, in the discussion of the Transmission Control Protocol (TCP).

Negotiated Bit Rates

Another solution, more often used in circuit switched rather than packet switched
networks, is for the sender, receiver, and network to negotiate a bit rate for any par-
ticular flow. A wide array of possible bit rates have been designed for a number of
different networking technologies; perhaps the “most complete set” is for Asynchro-
nous Transfer Mode (ATM)—look for ATM networks in your nearest networking
history museum, because ATM is rarely deployed in production networks any longer.
The ATM bit rates are:

 • Constant Bit Rate (CBR): The sender will be transmitting packets (or infor-
mation) at a constant rate; hence, the network can plan around this constant
bandwidth load, and the receiver can plan around this constant bit rate. This
bit rate is normally used for applications requiring time synchronization
between the sender and receiver.

 • Variable Bit Rate (VBR): The sender will be transmitting traffic at a variable
rate. This rate is normally negotiated with several other pieces of information
about the flow that help the network and the receiver plan resources, including:

 • The peak rate, or the maximum packets per second the sender plans to
transmit

Chapter 2 Data Transport Problems and Solutions70

 • The sustained rate, or the rate at which the sender plans to transmit
normally

 • The maximum burst size, or the largest number of packets the sender
intends to transmit over a very short period of time

 • Available Bit Rate (ABR): The sender intends to rely on the capability of the
network to deliver traffic on a best-effort basis, using some other form of flow
control, such as a sliding window technique, to prevent buffer overflows and
adjust transmitted traffic to the available bandwidth.

Final Thoughts on Transport

This chapter begins with the fundamentals of understanding the entire scope of the
network engineering problem space: transporting data across the network. Four spe-
cific problems were uncovered by considering the human language space, and several
solutions were presented at a high level:

 • To marshal the data, fixed length and TLV-based systems were considered, as
well as the concepts of metadata, dictionaries, and grammars.

 • To manage errors, two methods were considered to detect errors, parity checks
and the CRC; and one method was considered for error correction, the Ham-
ming Code.

 • To allow multiple senders and receivers to use the same physical media, several
concepts in multiplexing were considered, including multicast and anycast.

 • To prevent buffer overflows, several kinds of windowing were explored, and
negotiated bit rates defined.

Like many other areas you will encounter in this book, the world of transport can
become an entire specialty. Understanding the basics, however, is important for every
network engineer. The next chapter will consider some models that will help you to
put data transport, which is generally associated with forwarding, or the data plane,
into a larger context. Chapters 4 and 5 will consider several different examples of
transport protocols, pulling the concepts in this chapter and the next into real-life
examples.

71Further Reading

Further Reading

Some of these further reading resources are provided to help in answering the study
questions for this chapter.

Conran, Matt. “Know Anycast? Think Before You Talk.” Blog. CacheFly, February
22, 2017. https://insights.cachefly.com/anycast-think-before-you-talk-part-i.

———. “Anycast—Think Before You Talk.” Blog. CacheFly, February 22, 2017.
https://insights.cachefly.com/anycast-think-before-you-talk-part-ii.

“Flag Day.” Accessed June 6, 2017. http://www.catb.org/jargon/html/F/flag-day.html.

Gleick, James. The Information: A History, A Theory, A Flood. New York: Vintage,
2012.

“Grpc /.” Accessed June 7, 2017. http://www.grpc.io/docs/tutorials/basic/c.html.

Internet Protocol. Request for Comments 791. RFC Editor, 1981. doi:10.17487/
RFC0791.

Koopman, P. “32-Bit Cyclic Redundancy Codes for Internet Applications.” In Pro-
ceedings International Conference on Dependable Systems and Networks,
459–68, 2002. doi:10.1109/DSN.2002.1028931.

Koopman, P., and T. Chakravarty. “Cyclic Redundancy Code (CRC) Polynomial Selec-
tion for Embedded Networks.” In International Conference on Dependable
Systems and Networks, 2004, 145–54, 2004. doi:10.1109/DSN.2004.1311885.

Loveless, Josh, Ray Blair, and Arvind Durai. IP Multicast, Volume I: Cisco IP Multi-
cast Networking. 1st edition. Indianapolis, IN: Cisco Press, 2016.

———. IP Multicast, Volume II: Advanced Multicast Concepts and Large-Scale
Multicast Design. 1st edition. Indianapolis, IN: Cisco Press, 2017.

McPherson, Danny R., David Oran, Dave Thaler, and Eric Osterweil. Architectural
Considerations of IP Anycast. Request for Comments 7094. RFC Editor, 2014.
doi:10.17487/RFC7094.

Moon, Todd K. Error Correction Coding: Mathematical Methods and Algorithms.
1st edition. Hoboken, NJ: Wiley-Interscience, 2005.

Morelos-Zaragoza, Robert H. The Art of Error Correcting Coding. 2nd edition.
Chichester; Hoboken, NJ: Wiley, 2006.

Moy, John. “OSPF Specification.” Request for Comment. RFC Editor, October 1989.
doi:10.17487/RFC1131.

https://insights.cachefly.com/anycast-think-before-you-talk-part-i
https://insights.cachefly.com/anycast-think-before-you-talk-part-ii
http://www.catb.org/jargon/html/F/flag-day.html
http://www.grpc.io/docs/tutorials/basic/c.html

Chapter 2 Data Transport Problems and Solutions72

———. “OSPF Version 2.” Request for Comment. RFC Editor, April 1998.
doi:10.17487/RFC2328.

Palsson, Bret, Prashanth Kumar, Samir Jafferali, and Zaid Ali Kahn. “TCP over
IP Anycast—Pipe Dream or Reality?” Blog. LinkedIn Engineering Blog,
September 2015. https://engineering.linkedin.com/network-performance/
tcp-over-ip-anycast-pipe-dream-or-reality.

Postel, J. NCP/TCP Transition Plan. Request for Comments 801. RFC Editor, 1981.
doi:10.17487/RFC0801.

Shannon, Claude E., and Warren Weaver. The Mathematical Theory of Communi-
cation. 4th edition. Champaign, IL: University of Illinois Press, 1949.

Soni, Jimmy, and Rob Goodman. A Mind at Play: How Claude Shannon Invented
the Information Age. New York: Simon & Schuster, 2017.

Stone, James V. Information Theory: A Tutorial Introduction. 1st edition. England:
Sebtel Press, 2015.

“Understanding the CBR Service Category for ATM VCs.” Cisco. Accessed June
10, 2017. http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-
mode-atm/atm-traffic-management/10422-cbr.html.

Warren, Henry S. Hacker’s Delight. 2nd edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2012.

Williamson, Beau. Developing IP Multicast Networks, Volume I. Indianapolis, IN:
Cisco Press, 1999.

Review Questions

 1. While TLVs almost always require more space to carry a piece of informa-
tion than a fixed length field, there are some cases where the fixed length field
will be less efficient. Carrying IPv6 addresses is one specific instance of a TLV
being more efficient than a fixed length field. Describe why this is. Comparing
the way routing protocols carry IPv4 and IPv6 addresses is a good place to start
in understanding the answer. In particular, examine the way IPv4 addresses are
carried in OSPF version 2, and compare this with the way these same addresses
are carried in BGP.

 2. Consider the following data types and determine whether you would use a
fixed length field or a TLV to carry each one, and why.

a. The time and date

b. A person’s full name

https://engineering.linkedin.com/network-performance/tcp-over-ip-anycast-pipe-dream-or-reality
https://engineering.linkedin.com/network-performance/tcp-over-ip-anycast-pipe-dream-or-reality
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10422-cbr.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10422-cbr.html

Review Questions 73

c. A temperature reading

d. The square footage of a building

e. A series of audio or video clips

f. A book broken down into sections such as paragraphs and chapters

g. The city and state in an address

h. The house number or postal code in an address

 3. What is the relationship between the bit error rate (BER) and the amount of
information required to detect and/or repair errors in a data transmission
stream? Can you explain why this might be?

 4. Under some conditions, it makes more sense to send enough information to
correct data on receipt (such as using a Hamming code). In others, it makes
more sense to discover the error and throw the data away. These conditions
would not be just the link type, however, or just the application; they would
be a combination of the two. What link characteristics, combined with what
kinds of application characteristics, would suggest the use of FEC? Which
ones would suggest the use of error detection combined with retransmitting
the data? It might be best to think of specific applications and specific link
types first, and then generalize from there.

 5. How many bit flip changes can a parity check detect?

 6. Implicit and explicit signaling have different characteristics, or rather different
tradeoffs. Describe at least one positive and one negative aspect of each form
of signaling for error detection and/or correction.

 7. In a large-scale deployment of anycast, it is possible for packets from a single
stream to be delivered to multiple receivers. There are two broad solutions to
this problem; the first is for receivers to force the sender to reset their state
if a packet appears to be misdelivered in this way. Another is to constrict the
interface between the sender and receiver in a way that allows state to be con-
tained to a single transaction. One form of this latter solution is called atomic
transactions, and is often implemented in RESTful interfaces. Consider these
two possible solutions, and describe the kinds of applications, giving specific
examples of applications, that might be better suited for each of these two
solutions.

 8. Would you always consider the dictionary and the grammar forms of meta-
data? Why or why not?

Chapter 2 Data Transport Problems and Solutions74

 9. Find three other kinds of metadata that do not involve the way the data is for-
matted, but rather describe the data in a way that might be useful to an attacker
trying to understand a specific process, such as transferring funds between two
accounts. Is there a specific limit to what might be considered metadata, or is it
more accurate to say “metadata is in the eye of the beholder”?

 10. Consider the negotiated bit rates explained toward the end of the chapter. Is it
possible to truly provide a constant bit rate in a packet switched network? Does
your answer depend on the network conditions? If so, what conditions would
impact the answer to the question?

75

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the value of protocol stack models to network engineering

 0 Understand the Department of Defense (DoD) network protocol stack
model, including the purpose of each layer

 0 Understand the Open Systems Interconnect (OSI) network protocol stack
model, including the purpose of each layer

 0 Understand the Recursive Internet Architecture (RINA) model, and how it
is different from the DoD and OSI models

 0 Understand the difference between the connection-oriented and connec-
tionless models

The set of problems and solutions considered in the preceding chapter provides some
insight into the complexity of network transport systems. How can engineers engage
with the apparent complexity involved in such systems?

The first way is to look at the basic problems transport systems solve, and under-
stand the range of solutions available for each of those problems. The second is to
build models that will aid in the understanding of transport protocols by

 • Helping engineers classify transport protocols by their purpose, the informa-
tion each protocol contains, and the interfaces between protocols

Chapter 3

Modeling Network Transport

Chapter 3 Modeling Network Transport76

 • Helping engineers know which questions to ask in order to understand a par-
ticular protocol, or to understand how a particular protocol interacts with the
network over which it runs, and the applications that it carries information for

 • Helping engineers understand how single protocols fit together to make a
transport system

Chapter 1, “Fundamental Concepts,” provided a high-level overview of the
transport problem and solution spaces. This chapter will tackle the second way in
which engineers can understand protocols more fully: models. Models are essentially
abstract representations of the problems and solutions considered in the previous
chapter; they provide a more visual and module-focused representation, showing
how things fit together. This chapter will consider this question:

How can transport systems be modeled in a way that allows engineers to
quickly and fully grasp the problems these systems need to solve, as well as
the way multiple protocols can be put together to solve them?

Three specific models will be considered in this chapter:

 • The United States Department of Defense (DoD) model

 • The Open Systems Interconnect (OSI) model

 • The Recursive Internet Architecture (RINA) model

Each of these three models has a different purpose and history. A second form of
protocol classification, connection oriented versus connectionless, will also be con-
sidered in this chapter.

United States Department of Defense (DoD) Model

In the 1960s, the US Defense Advanced Research Projects Agency (DARPA) spon-
sored the development of a packet switched network to replace the telephone net-
work as a primary means of computer communications. Contrary to the myth, the
original idea was not to survive a nuclear blast, but rather to create a way for the vari-
ous computers then being used at several universities, research institutes, and govern-
ment offices to communicate with one another. At the time, each computer system
used its own physical wiring, protocols, and other systems; there was no way to
interconnect these devices in order to even transfer data files, much less create any-
thing like the “world wide web,” or cross-execute software. These original models

United States Department of Defense (DoD) Model 77

were often designed to provide terminal-to-host communications, so you could
install a remote terminal into an office or shared space, which could then be used to
access the shared resources of the system, or host. Much of the original writing
around these models reflects this reality.

One of the earliest developments in this area was the DoD model, shown in
Figure 3-1.

The DoD model separated the job of transporting information across a network
into four distinct functions, each of which could be performed by one of many pro-
tocols. The idea of having multiple protocols at each layer was considered somewhat
controversial until the late 1980s, and even into the early 1990s. In fact, one of the key
differences between the DoD and the original incarnation of the OSI model is the
concept of having multiple protocols at each layer.

In the DoD model:

 • The physical layer is responsible for getting the 0s and 1s modulated, or serialized,
onto the physical link. Each link type has a different format for signaling a 0 or a
1; the physical layer is responsible for translating 0s and 1s into physical signals.

 • The internet layer is responsible for transporting data between systems that
are not connected through a single physical link. The internet layer, then, pro-
vides networkwide addresses, rather than link local addresses, and also pro-
vides some means for discovering the set of devices and links that must be
crossed to reach these destinations.

 • The transport layer is responsible for building and maintaining sessions
between communicating devices and providing a common transparent data
transmission mechanism for streams or blocks of data. Flow control and reli-
able transport may also be implemented in this layer, as in the case of TCP.

Application Application

Transport Transport

Internet Internet

Link LinkFrame

Packet

Stream/Block

Figure 3-1 The Four-Layer DoD Model

Chapter 3 Modeling Network Transport78

 • The application layer is the interface between the user and the network
resources, or specific applications that use and provide data to other devices
attached to the network.

The application layer, in particular, seems out of place in a model of network
transport. Why should the application using the data be considered part of the trans-
port system? Because early systems considered the human user the ultimate user of
the data, and the application as primarily a way to munge data to be presented to
the actual user. Much of the machine-to-machine processing, heavy processing of
data before it is presented to a user, and simple storage of information in digital
format were not even considered viable use cases. As information was being trans-
ferred from one person to another, the application was just considered a part of the
transport system.

Two other points might help the inclusion of the application make more sense.
First, in the design of these original systems, there were two components: a terminal
and a host. The terminal was really a display device; the application lived on the host.
Second, the networking software was not thought of as a separate “thing” in the sys-
tem; routers had not yet been invented, nor any other separate device to process and
forward packets. Rather, a host was just connected to either a terminal or another
host; the network software was just another application running on these devices.

Over time, as the OSI model came into more regular use, the DoD model was
modified to include more layers. For instance, in Figure 3-2, a diagram replicated
from a 1983 paper on the DoD model, there are seven layers (seven being a magic
number for some reason).1

Here three layers have been added:

 • The utility layer is a set of protocols living between the more generic transport
layer and applications. Specifically, the Simple Mail Transfer Protocol (SMTP),
File Transfer Protocol (FTP), and other protocols were seen as being a part of
this layer.

 • The network layer from the four-layer version has been divided into the net-
work layer and the internetwork layer. The network layer represents the differ-
ing packet formats used on each link type, such as radio networks and Ethernet
(still very new in the early 1980s). The internetwork layer unifies the view of
the applications and utility protocols running on the network into a single
internet datagram service.

1. Cerf and Cain, “The DoD Internet Architecture Model.”

United States Department of Defense (DoD) Model 79

 • The link layer has been inserted to differentiate between the encoding of infor-
mation onto the various link types and a device’s connection to the physical
link. Not all hardware interfaces provided a link layer.

Over time, these expanded DoD models fell out of favor; the four-layer model is
the one most often referenced today. There are several reasons for this:

 • The utility and application layers are essentially duplicates of one another
in most cases. FTP, for instance, multiplexes content on top of the Transmis-
sion Control Protocol (TCP), rather than as a separate protocol or layer in the
stack. TCP and the User Datagram Protocol (UDP) eventually solidified as the
two protocols in the transport layer, with everything else (generally) running
on top of one of these two protocols.

 • With the invention of devices primarily intended to forward packets (routers
and switches), the separation between the network and internetwork layers
was overcome by events. The original differentiation was primarily between
lower-speed long haul (wide area) links and shorter-run local area links; rout-
ers generally took the burden of installing links into wide area networks out of
the host, so the differentiation became less important.

Application

Utility

Transport

Internetwork

Network

Link

Physical

Figure 3-2 A Later Version of the DoD Model

Chapter 3 Modeling Network Transport80

 • Some interface types simply do not have a way to separate signal encoding from
the host interface, as was envisioned in the split between the link and physical
layers. Hence these two layers are generally munged into a single “thing” in the
DoD model.

The DoD model is historically important because

 • It is one of the first attempts to codify network functionality into a model.

 • It is the model on which the TCP/IP suite of protocols (on which the global
Internet operates) was designed; the artifacts of this model are important in
understanding many aspects of TCP/IP protocol design.

 • It had the concept of multiple protocols at any particular layer in the model
“built in.” This set the stage for the overall concept of narrowing the focus of
any particular protocol, while allowing many different protocols to operate at
once over the same network.

Open Systems Interconnect (OSI) Model

In the 1960s, carrying through to the 1980s, the primary form of communications
was the switched circuit; a sender would ask a network element (a switch) to connect
it to a particular receiver, the switch would complete the connection (if the receiver
was not busy), and traffic would be transmitted over the resulting circuit. If this
sounds like a traditional telephone system, this is because it is, in fact, based on the
traditional network system (now called Plain Old Telephone Service [POTS]). Large
telephone and computer companies were deeply invested in this model, and received
a lot of revenue from systems designed around circuit switching techniques. As the
DoD model (and its set of accompanying protocols and concepts) started to catch on
with researchers, these incumbents decided to build a new standards organization
that would, in turn, build an alternate system providing the “best of both worlds.”
They would incorporate the best elements of packet switching, while retaining the
best elements of circuit switching, creating a new standard that would satisfy every-
one. In 1977, this new standards organization was proposed, and adopted, as part of
the International Organization for Standardization (ISO).

This new ISO working group designed a layered model similar to the pro-
posed (and rejected) packet-based model, grounded in database communications.
The primary goal was to allow intercommunication between the large database-
focused systems dominant in the late 1970s. The committee was divided between
telecom engineers and the database contingent, making the standards complex. The

Open Systems Interconnect (OSI) Model 81

protocols developed needed to provide for both connection-oriented and connec-
tionless session control, and invent the entire application suite to create email, file
transfer, and many other applications (remember, applications are part of the stack).
For instance, various transport modes needed to be codified to carry a wide array of
services. In 1989—a full ten years later—the specifications were still not completely
done. The protocol had not reached widespread deployment, even though many gov-
ernments, large computer manufacturers, and telecom companies supported it over
the DoD protocol stack and model.

But during the ten years the DoD stack continued to develop; the Internet Engi-
neering Task Force (IETF) was formed to shepherd the TCP/IP protocol stack, pri-
marily for researchers and universities (the Internet, as it was then known, did not
allow commercial traffic, and would not until 1992). With the failure of the OSI
protocols to materialize, many commercial networks, and networking equipment,
turned to the TCP/IP protocol suite to solve real-world problems “right now.”

Further, because the development of the TCP/IP protocol stack was being paid
for under grants by the U.S. government, the specifications were free. There were, in
fact, TCP/IP implementations written for a wide range of systems available because
of the work of universities and graduate students who needed the implementations
for their research efforts. The OSI specifications, however, could only be purchased
in paper form from the ISO itself, and only by members of the ISO. The ISO was
designed to be a “members only” club, meant to keep the incumbents firmly in con-
trol of the development of packet switching technology. The “members only” nature
of the organization, however, worked against the incumbents, eventually playing a
role in their decline.

The OSI model, however, made many contributions to the advancement of net-
working; for instance, the careful attention paid to Quality of Service (QoS) and
routing issues paid dividends in the years after. One major contribution was the con-
cept of clear modularity; the complexity of interconnecting many different systems,
with many different requirements, drove the OSI community to call for clear lines of
responsibility, and well-defined interfaces between the layers.

A second was the concept of machine-to-machine communication. Middle boxes,
then called gateways, now called routers and switches, were explicitly considered
part of the networking model, as shown in Figure 3-3.

You probably do not even need to see this image to remember the OSI model—
everyone who’s ever been through a networking class, or studied for a network engi-
neering certification, is familiar with using the seven-layer model to describe the way
networks work.

The genius of modeling a network in this way is it makes the interactions
between the various pieces much easier to see and understand. Each pair of lay-
ers, moving vertically through the model, interacts through a socket, or Application

Chapter 3 Modeling Network Transport82

Programming Interface (API). So to connect to a particular physical port, a piece of
code at the data link layer would connect to the socket for that port. This allows the
interaction between the various layers to be abstracted and standardized. A piece of
software at the network layer does not need to know how to deal with various sorts
of physical interfaces, only how to get data to the data link layer software on the
same system.

Each layer has a specific set of functions to perform.
The physical layer, also called layer 1, is responsible for getting the 0s and 1s mod-

ulated, or serialized, onto the physical link. Each link type will have a different for-
mat for signaling a 0 or 1; the physical layer is responsible for translating 0s and 1s
into these physical signals.

The data link layer, also called layer 2, is responsible for making certain transmit-
ted information is actually sent to the right computer connected to the same link.
Each device has a different data link (layer 2) address that can be used to send traffic
to a specific device. The data link layer assumes each frame within a flow of informa-
tion is separate from all other frames within the same flow, and only provides com-
munication for devices connected through a single physical link.

The network layer, also called layer 3, is responsible for transporting data between
systems not connected through a single physical link. The network layer, then, pro-
vides networkwide (or layer 3) addresses, rather than link local addresses, and also

Application Application

Presentation Presentation

Session Session

Transport Transport

Network Network Network

Data Link Data Link Data Link

Physical Physical PhysicalBits

Segment

Stream/Block

Packet

Frame

End System

Intermediate System

End System

Figure 3-3 The OSI Model, Including the Concept of an Intermediate System

Open Systems Interconnect (OSI) Model 83

provides some means for discovering the set of devices and links that must be crossed
to reach these destinations.

The transport layer, also called layer 4, is responsible for the transparent transfer
of data between different devices. Transport layer protocols can be either be “reli-
able,” which means the transport layer will retransmit data lost at some lower layer,
or “unreliable,” which means data lost at lower layers must be retransmitted by some
higher layer application.

The session layer, also called layer 5, does not really transport data, but rather
manages the connections between applications running on two different computers.
The session layer makes certain the type of data, the form of the data, and the reli-
ability of the data stream are all exposed and accounted for.

The presentation layer, also called layer 6, actually formats data in a way to allow
the application running on the two devices to understand and process the data.
Encryption, flow control, and any other manipulation of data required to provide an
interface between the application and the network happen here. Applications inter-
act with the presentation layer through sockets.

The application layer, also called layer 7, provides the interface between the user
and the application, which in turn interacts with the network through the presenta-
tion layer.

Not only can the interaction between the layers be described in precise terms
within the seven-layer model, the interaction between parallel layers on multiple
computers can be described precisely. The physical layer on the first device can be
said to communicate with the physical layer on the second device, the data link layer
on the first device with the data link layer on the second device, and so on. Just as
interactions between two layers on a device are handled through sockets, interactions
between parallel layers on different devices are handled through network protocols.

Ethernet describes the signaling of 0s and 1s onto a physical piece of wire, a for-
mat for starting and stopping a frame of data, and a means of addressing a single
device among all the devices connected to a single wire. Ethernet, then, falls within
both the physical and data link layers (1 and 2) in the OSI model.

IP describes the formatting of data into packets, and the addressing and other
means necessary to send packets across multiple data link layer links to reach a
device several hops away. IP, then, falls within the network layer (3) of the OSI model.

TCP describes session setup and maintenance, data retransmission, and inter-
action with applications. TCP, then, falls within the transport and session layers
(4 and 5) of the OSI model.

One of the more confusing points for engineers who only ever encounter the TCP/
IP protocol stack is the different way the protocols designed in/for the OSI stack
interact with devices. In TCP/IP, addresses refer to interfaces (and, in a world of net-
works with a lot of virtualization, multiple addresses can refer to a single interface,

Chapter 3 Modeling Network Transport84

or to an anycast service, or to a multicast data stream, etc.). In the OSI model, how-
ever, each device has a single address. This means the protocols in the OSI model are
often referred to by the types of devices they are designed to connect. For instance,
the protocol carrying reachability and topology (or routing) information through the
network is called the Intermediate System to Intermediate System (IS-IS) protocol,
because it runs between intermediate systems. There is also a protocol designed to
allow intermediate systems to discover end systems; this is called the End System to
Intermediate System (ES-IS) protocol (you did not expect creative names, did you?).

Note

It is one of the sad facts of network engineering history that proponents of the
TCP/IP protocol suite developed an early dislike of the OSI protocol suite, to the
point of rejecting the lessons learned in their development. While this has largely
worn down into a rather more mild bit of fun in more recent years, the years lost
to rejecting a protocol based on its origins, rather than its technical merits, are a
lesson in humility in network engineering. Focus on the ideas, rather than the peo-
ple; learn from everyone and every project you can; do not allow your ego to get in
the way of the larger project, or solving the problem at hand.

Recursive Internet Architecture (RINA) Model

The DoD and OSI models have two particular focal points in common:

 • They both contain application layers; this makes sense in the context of the
earlier world of network engineering, as the application and network software
were all part of a larger system.

 • They combine the concepts of what data should be contained where with the
concept of what goal is accomplished by a particular layer.

This leads to some odd questions, such as

 • The Border Gateway Protocol (BGP), which provides routing (reachability)
between independent entities (autonomous systems), runs on top of the trans-
port layer in both models. Does this make it an application? At the same time,
this protocol is providing reachability information the network layer needs to
operate. Does this make it a network layer protocol?

Recursive Internet Architecture (RINA) Model 85

 • IPsec adds information to the Internet Protocol (IP) header, and specifies the
encryption of information being carried across the network. Because IP is a
network layer, and IPsec (sort of) runs on top of IP, does this make IPsec a
transport protocol? Or, because IPsec run parallel to IP, is it a network layer
protocol?

Arguing over these kinds of questions can provide a lot of entertainment at a
technical conference or standards meeting; however, they also point to some amount
of ambiguity in the way these models are defined. The ambiguity comes from the
careful mixture of form and function found in these models; do they describe where
information is contained, who uses the information, what is done to the informa-
tion, or a specific goal that needs to be met to resolve a specific problem in transport-
ing information through a network? The answer is—all of the above. Or perhaps,
it depends.

This leads to the following observation: there are really only four functions any
data-carrying protocol can serve: transport, multiplexing, error correction, and flow
control. If these sound familiar, they should—because these are the same four func-
tions uncovered in the investigation of human language in Chapter 2, “Data Trans-
port Problems and Solutions.”

There are two natural groupings within these four functions: transport and multi-
plexing, error and flow control. So most protocols fall into doing one of two things:

 • The protocol provides transport, including some form of translation from one
data format to another; and multiplexing, the capability of the protocol to
keep data from different hosts and applications separate.

 • The protocol provides error control, either through the capability to correct
small errors or to retransmit lost or corrupted data; and flow control, which
prevents undue data loss because of a mismatch between the network’s capa-
bility to deliver data and the application’s capability to generate data.

From this perspective, Ethernet provides transport services and flow control, so
it is a mixed bag concentrated on a single link, port to port (or tunnel endpoint to
tunnel endpoint) within a network. IP is a multihop protocol (a protocol that spans
more than one physical link) providing transport services, while TCP is a multihop
protocol that uses IP’s transport mechanisms and provides error correction and flow
control. Figure 3-4 illustrates the iterative model.

Each layer of the model has one of the same two functions, just at a different
scope. This model has not caught on widely in network protocol work, but it pro-
vides a much simpler view of network protocol dynamics and operations than either

Chapter 3 Modeling Network Transport86

the seven- or four-layer models, and it adds in the concept of scope, which is of vital
importance in considering network operation. The scope of information is the foun-
dation of network stability and resilience.

Connection Oriented and Connectionless

The iterative model also brings the concepts of connection-oriented and connection-
less network protocols out into the light of day again.

Connection-oriented protocols set up an end-to-end connection, including all the
state to transfer meaningful data, before sending the first bit of data. The state could
include such things as the Quality of Service requirements, the path the traffic will
take through the network, the specific applications that will send and receive the
data, the rate at which data can be sent, and other information. Once the connection
is set up, data can be transferred with very little overhead.

Connectionless services, on the other hand, combine the data required to trans-
mit data with the data itself, carrying both in a single packet (or protocol data unit).
Connectionless protocols simply spread the state required to carry data through the
network to every possible device that might need the data, while connection-oriented
models constrain state to only devices that need to know about a specific flow of
packets. The result is single device or link failures in a connectionless network can be
healed by moving the traffic onto another possible path, rather than redoing all the
work needed to build the state to continue carrying traffic from source to destination.

Most modern networks are built with connectionless transport models combined
with connection-oriented Quality of Service, error control, and flow control models.
This combination is not always ideal; for instance, Quality of Service is normally
configured along specific paths to match specific flows that should be following
those paths. This treatment of Quality of Service as more connection oriented than

Transport/Multiplex

Transport/Multiplex

Error/Flow

Transport/Multiplex

Error/Flow

Error/Flow

Transport/Multiplex

Error/Flow

Link 1 Link 2 Link 3

Figure 3-4 The RINA Model

87Further Reading

the actual traffic flows being managed causes strong disconnects between the ideal
state of a network and various possible failure modes.

Final Thoughts

Knowing a number of models, and how they apply to various network protocols, can
help you quickly understand a protocol you have not encountered before and diag-
nose problems in an operational network. Knowing the history of the protocol mod-
els can help you understand why particular protocols were designed the way they
were, particularly the problems the protocol designers thought needed to be solved,
and the protocols surrounding the protocol when it was originally designed. Differ-
ent kinds of models abstract a set of protocols in different ways; knowing several
models, and how to fit a set of protocols into each of the models, can help you under-
stand the protocol operation in different ways, rather than a single way, much like
seeing a vase in a painting is far different than seeing it in a three-dimensional
presentation.

Of particular importance are the two concepts of connectionless and connection-
oriented protocols. These two concepts will be foundational in understanding flow
control, error management, and many other protocol operations.

The next chapter is going to apply these models to lower layer transport protocols.

Further Reading

Cerf, Vinton G., and Edward Cain. “The DoD Internet Architecture Model.” Com-
puter Networks 7 (1983): 307–18.

Day, J. Patterns in Network Architecture: A Return to Fundamentals. Indianapolis,
IN: Pearson Education, 2007.

Grasa, Eduard. “Design Principles of the Recursive InterNetwork Architecture.” In
3rd FIArch Workshop. Brussels, 2011. http://www.future-internet.eu/fileadmin/
documents/fiarch23may2011/06-Grasa_DesignPrinciplesOTheRecursiveInter-
NetworkArchitecture.pdf.

Maathuis, I., and W. A. Smit. “The Battle between Standards: TCP/IP Vs OSI Vic-
tory through Path Dependency or by Quality?” In Standardization and Inno-
vation in Information Technology, 2003. The 3rd Conference on, 161–76, 2003.
doi:10.1109/SIIT.2003.1251205.

Padlipsky, Michael A. The Elements of Networking Style and Other Essays and Ani-
madversions on the Art of Intercomputer Networking. Prentice-Hall, 1985.

http://www.future-internet.eu/fileadmin/documents/fiarch23may2011/06-Grasa_DesignPrinciplesOTheRecursiveInter-NetworkArchitecture.pdf
http://www.future-internet.eu/fileadmin/documents/fiarch23may2011/06-Grasa_DesignPrinciplesOTheRecursiveInter-NetworkArchitecture.pdf
http://www.future-internet.eu/fileadmin/documents/fiarch23may2011/06-Grasa_DesignPrinciplesOTheRecursiveInter-NetworkArchitecture.pdf

Chapter 3 Modeling Network Transport88

Russell, Andrew L. “OSI: The Internet That Wasn’t.” Professional Organization.
IEEE Spectrum, September 27, 2016. https://spectrum.ieee.org/tech-history/
cyberspace/osi-the-internet-that-wasnt.

White, Russ, and Denise Donohue. The Art of Network Architecture: Busi-
ness-Driven Design. 1st edition. Indianapolis, IN: Cisco Press, 2014.

Review Questions

 1. Research the protocols in the X.25 stack, which predates the three network
models described in this chapter. Does the X.25 protocol stack show a lay-
ered design? Which layers of the DoD and OSI models does each protocol in
the X.25 stack fit into? Can you describe each protocol in terms of the RINA
model?

 2. Research the protocols in the IBM Systems Network Architecture (SNA) stack,
which predates the three network models described in this chapter. Does the
SNA protocol stack show a layered design? Which layers of the DoD and OSI
models does each protocol in the SNA stack fit in to? Can you describe each
protocol in terms of the RINA model?

 3. Billing is considered in some protocol stacks and models (such as the X.25
stack), and not in others. Why do you think this might be the case? Consider
the way in which network utilization is used in the IP and X.25 stacks, specifi-
cally the use of bandwidth versus packets as a primary measurement system.

 4. How does a layered network model contribute to the modularity of network
protocol stacks?

 5. How does a layered network model improve an engineer’s understanding of
how a network works?

 6. Draw a diagram comparing the DoD and OSI models. Does each layer from
one model fit neatly into the other?

 7. Consider the OSI and RINA models; can you figure out which services from
the RINA model fit into which layers in the OSI model?

 8. Consider the connectionless versus connection-oriented models of protocol
operation in light of the State/Optimization/Surface model, specifically in
terms of state and optimization. Can you explain where adding state in a con-
nection-oriented model increases optimal use of network resources? How does
it decrease the optimal use of network resources?

https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt

Review Questions 89

 9. In older network models, applications were often considered part of the proto-
col stack. Over time, however, applications seem to have been largely separated
out of the network protocol stack, and considered as a “user” or “consumer”
of network services. Can you think of a particular shift in the design of end
hosts in relationship to the applications running on end hosts that would cause
this shift in thinking in network engineering?

 10. Do you think fixed length packets (or frames, or cells) make more sense from a
protocol design perspective than variable length packets? How much state does
a variable length packet format add compared to a fixed length format? How
much optimization is gained? A useful point of departure for answering this
question would be a list or chart of the average packet lengths carried through
the global Internet.

This page intentionally left blank

91

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the mechanism Ethernet uses to prevent collisions among
multiple transmitters on a single physical wire

 0 Understand how physical addresses are assigned in an Ethernet network

 0 Understand half and full duplex modes of operation in Ethernet networks

 0 Understand the mechanism 802.11 WiFi uses to prevent collisions among
multiple transmitters

 0 Understand the basic concepts of modulation, spatial multiplexing, and
beamforming

Data transport protocols are often layered, with lower layers providing services along
a single hop, a middle set of layers providing services end to end between two devices,
and, potentially, a set of layers providing services end to end between two applica-
tions, or two instances of a single application. Figure 4-1 illustrates.

Each set of protocols is shown as a pair of protocols, because—as shown in the
Recursive Internet Architecture (RINA) model in the previous chapter—transport
protocols normally come in pairs, with each protocol in the pair taking on specific
functions. This chapter will consider the physical and datalink protocols, as shown
in Figure 4-1. Specifically, this chapter will consider two widely used protocols for
point-to-point transport in networks: Ethernet and WiFi (802.11).

Chapter 4

Lower Layer Transports

92 Chapter 4 Lower Layer Transports

Ethernet

Many of the early mechanisms designed to allow multiple computers to share a
single wire were based on designs adopted from more telephone-oriented technolo-
gies. They generally focused on token passing and other more deterministic
schemes for ensuring two devices did not try to use the single shared electrical
medium at the same time. Ethernet, invented in the early 1970s by Bob Metcalf
(who was working at Xerox at the time), resolved overlapping talkers in a different
way—through a very simple set of rules to prevent the majority of overlapping
transmissions, and then resolving any overlapping transmissions through detection
and backoff.

The initial focus of any protocol that interacts with a physical medium is going
to be in the area of multiplexing, as few other problems can be addressed until
this first problem is solved. Therefore, this section will begin with a description
of the multiplexing components of Ethernet and then move to other operational
aspects.

Multiplexing

To understand the multiplexing problem Ethernet faced when it was first invented,
consider the following problem: In a shared medium network, the entire shared
medium is a single electrical circuit (or wire).

When one host transmits a packet, every other host on the network receives the
signal. This is much like a conversation held in an open air environment; a sound

layer 5/6: application to application

layer 1/2:
single link

layer 3/4: single link

layer 1/2:
single link

Figure 4-1 Transport Layers

93Ethernet

transmitted over the common medium (the air) is heard by every listener. There is no
physical way to restrict the set of listeners during the transmission process.

CSMA/CD
The resulting system, called Carrier Sense Multiple Access with Collision Detection
(CSMA/CD), operates using a set of steps:

 1. The host listens on the medium to see if there are any existing transmissions in
progress; this is the carrier sense part of the process.

 2. On hearing there is no other transmission in progress, the host will begin seri-
alizing the bits in the frame onto the wire.

This part is simple—just listen before transmitting. It is possible, of course, for
the transmissions of two (or more) hosts to collide as Figure 4-2 illustrates.

In Figure 4-2:

 1. At time 1 (T1), A begins transmitting a frame onto the shared medium. It takes
some amount of time for the signal to travel from one end of the wire to the
other; this is called the propagation delay.

A B C

A B C

A B C

T1

T2

T3

Figure 4-2 Collisions in a Shared Medium

94 Chapter 4 Lower Layer Transports

 2. At time 2 (T2), C listens for a signal on the wire, and, detecting none, begins
transmitting a frame onto the shared medium. A collision has already occurred
at this point, as both A and C are transmitting a frame at the same moment,
but neither of them has yet detected the collision.

 3. At time 3 (T3), the two signals actually collide on the wire, causing them both
to be malformed, and hence unreadable.

A collision can be detected at A at the moment the signal from C reaches A by
having A listen to its own signal as it is transmitted onto the wire. When the signal
from C reaches A, A will receive the malformed signal caused by the combination
of the two signals (the result of the collision). This is the collision detection portion
(the CD portion) of CSMA/CD operation.

What should a host do when it detects a collision? In the original Ethernet design,
the host will send a jam signal long enough to force any other host connected to the
wire to sense the collision and stop transmitting. The length of the jam signal was
originally set so the jam signal would consume at least the amount of time required
to transmit a maximum-sized frame on the wire across the entire length of the wire.
Why this specific amount of time?

 • If a shorter than maximum frame was used in determining the amount of time
the jam signal is transmitted, then a host with older interfaces (which cannot
send and receive at the same time) may actually miss the entire jam signal while
transmitting a single large frame, making the jam signal ineffective.

 • It is important to allow enough time for the hosts connected at the very end of
the wires to receive the jam signal, so they will sense the collision and take the
following steps.

Once the jam signal is received, each host connected to the wire will set a back-
off timer so they will each wait some random amount of time before attempting to
transmit again. Because these timers are set to a random number, when the two hosts
with frames waiting to be transmitted attempt their next transmission, the collision
should not occur again.

If every host connected to the single wire receives the same signal at roughly the
same time (given propagation delay through the wire), how does any particular host
know whether it should actually receive a particular frame (or rather, copy the infor-
mation within a frame from the wire to local memory)? This is the job of Media
Access Control (MAC) addresses.

Each physical interface is assigned (at least) one MAC address. Each Ethernet
frame contains a source and destination MAC address; the frame is formatted so

95Ethernet

the destination MAC address is received before any data. Once the entire destination
MAC address has been received, a host can decide whether it should continue receiv-
ing the packet or not. If the destination address matches the interface address, the
host continues copying information off the wire and into memory. If the destination
address does not match the local interface address, the host simply stops receiving
the packet.

Ethernet Chipsets, Broadcast, Multicast, and Promiscuous Mode

The basic functionality of Ethernet requires Ethernet chipsets not only be
able to receive traffic to the local MAC address, but also the ability for an
Ethernet chipset to receive traffic to other MAC addresses. For instance, an
Ethernet chipset should also accept any packets transmitted to a broadcast
address, as frames transmitted to the broadcast address are intended for every
device connected to the physical medium. A second class of addresses Ether-
net chipsets must be able to accept are multicast addresses. A specific range
of MAC addresses are set aside for use as multicast addresses; each address in
this range is called a group, because it can be used to send a single frame to a
group of listeners.

Each Ethernet chipset, then, is designed with a programmable set of
addresses the chipset can be instructed to listen to. If the set of addresses the
chipset must listen to is larger than the space set aside to hold this table of
addresses, the Ethernet chipset can be set to promiscuous mode, which means
it will copy every Ethernet frame off the wire and into memory.

Why not just set all Ethernet chipsets to promiscuous mode, so every
frame is received on every host? Because this transfers the problem of deter-
mining which frames need to be locally processed from the Ethernet chipset
(in hardware) to the software that processes these frames once the frame is
completely copied into memory. Copying every frame off the wire, and push-
ing the matching job to software, has several negative side effects:

 • The matching software must run someplace; this someplace is almost
always the general processor that is also running all the rest of the software
on the system. Determining which frames need to be processed locally or
not on the main processor takes away cycles from other processes, slowing
down the entire operation of the system and software.

96 Chapter 4 Lower Layer Transports

What about duplicate MAC addresses? If multiple hosts connected to the same
medium have the same physical address, they would each receive, and potentially
process, the same frames. There are ways to detect duplicate MAC addresses, but
these are implemented as part of interlayer discovery rather than Ethernet itself;
these will be considered in Chapter 6, “Interlayer Discovery.” Ethernet itself assumes
either

 • MAC addresses will be properly assigned by the system administrator, if they
are manually assigned.

 • MAC addresses will be assigned by the device manufacturer so duplicate
MAC addresses never occur, no matter how many hosts are connected to
one another.

 • Frames copied off the wire must be stored someplace while they are wait-
ing to be processed; this will generally be some kind of memory. Memory
used to store packets waiting to be processed will not be available for use
by other applications. Again, this can have a negative performance impact
on the overall system.

 • Determining which frames need to be processed locally in software is
much slower than making this determination in hardware. Because of this,
the rate at which a system that copies every frame into memory can pro-
cess packets will be much lower than a system that does even some of this
matching in hardware. Matching packets in software will also reduce the
efficiency of the network interface on the host.

Given these disadvantages, does it ever make sense for a device to configure
the Ethernet chipset in promiscuous mode? There are at least two cases where
it does make sense:

 • When a device is a router, which means it must receive most of the traffic
transmitted on a particular interface to determine if each received packet
needs to be forwarded. The operation of routers will be considered more
fully in Chapter 7, “Packet Switching.”

 • When a device is monitoring the network. In this case, every packet must
be captured to see all the traffic flowing across the wire. These kinds of
devices are often used to troubleshoot network operation, protocol opera-
tion, or monitor network performance.

97Ethernet

Note

Because MAC addresses are normally rewritten at every router (see Chapter 7 for
more information), they only need to be unique within the segment or broadcast
domain. While many older systems strove to ensure per segment or broadcast domain
uniqueness, this must normally be enforced through manual configuration, and hence
has largely been abandoned in favor of attempting to provide each device with a glob-
ally unique MAC address “baked into” the Ethernet chipset when it is created.

The first solution is difficult to implement in most large-scale networks; manual
configuration of MAC addresses is extremely rare in the real world to the point of
nonexistence. The second option essentially means MAC addresses must be assigned
to individual devices so no two devices in the world share the same MAC address.
How is this possible? By assigning MAC addresses out of a central repository man-
aged through a standards organization. Figure 4-3 illustrates.

The MAC address is broken up into two sections: an Organizationally Unique
Identifier (OUI) and a network interface identifier. The network interface identifier
is assigned by the manufacturer of the Ethernet chipset. Companies producing Eth-
ernet chipsets, in turn, are assigned the organizational identifiers by the Institute of
Electrical and Electronic Engineers (the IEEE). So long as an organization (or manu-
facturer) always assigns addresses to a chipset with its OUI in the first three octets of
the MAC address, and does not assign any two devices the same network interface
identifier in the last three octets of the MAC address, no two MAC addresses should
be the same for any Ethernet chipset.

1st octet 2nd octet 3rd octet 4th octet 5th octet 6th octet

organizationally
unique

identifier

network
interface controller

specific

7 6 5 4 3 2 1 0

0: unicast
1: multicast

0: globally unique
1: locally assigned

Figure 4-3 MAC-48/EUI-48 Address Format

98 Chapter 4 Lower Layer Transports

Two bits within the OUI space are set aside to signal whether the MAC address
has been locally assigned (which means the manufacturer’s assigned MAC
address has been overridden by the device’s configuration), and whether the MAC
address is intended as one of the following:

 • Unicast address, which means it describes a single interface

 • Multicast address, which means it describes a group of receivers

The MAC address consists of 48 bits; with these two bits removed, the MAC
address space is 46 bits, which means it can describe 246—or 70,368,744,177,664—
addressable interfaces. Because this is (potentially) not enough to account for the
rapid number of new addressable devices, such as Bluetooth headsets and sensors,
the length of a MAC address was increased to 64 bits to create the EUI-64 MAC
address, which is constructed in the same way as the shorter 48-bit MAC address.
These addresses can support 262—or 4,611,686,018,427,387,904—addressable
interfaces.

The End of CSMA/CD
The shared medium model of Ethernet deployment has largely (though not com-
pletely!) been replaced in most networks. Rather than a shared medium, most Ether-
net deployments now are switched, which means the single electrical circuit, or the
single wire, is broken up into multiple circuits by connecting each device to a port on
a switch. Figure 4-4 illustrates.

In Figure 4-4, each device is connected to a different set of wires, all of which ter-
minate in a single switch. If the network interfaces at the three hosts (A, B, and C),
and the switch network interfaces, can send or receive at any moment in time, rather
than being able to do both, it is possible for A to send while the switch is also sending.
In this case, the CSMA/CD process must still be followed in order to prevent colli-
sions, even on networks where only two transmitters are connected to the same wire.
This mode of operation is called half duplex.

If the Ethernet chipsets can both listen and transmit at the same time in order to
detect collisions, however, this situation can be changed. The easiest way to manage
this is to place the receive and transmit signals on different physical wires within the
set of wires used in the Ethernet cable. Using different wires means there is no way
for the transmissions from the two connected systems to collide, so the chipset can
both transmit and receive at the same time. To enable this mode of operation, called
full duplex, twisted pair Ethernet carries the signal in one direction on one pair of
wires, and the signal in the opposite direction on another set of wires. In this case,
CSMA/CD is no longer needed.

99Ethernet

Note

The switch must learn which device (host) is connected to each port for this
 system to work; learning about the reachable destinations in a switched network
is considered in Chapter 15, “Distance Vector Control Planes.”

Error Control

CSMA/CD is designed to prevent one kind of detectable error in Ethernet: when col-
lisions cause a frame to be malformed. Other kinds of errors can slip into a signal,
however, as with any other electrical or optical system. For instance, in a twisted pair
cabling system, if the twisted wires are “unwound” too much in installing a connec-
tor, one wire can transfer its signal to another wire through magnetic interference,
causing cross talk. As a signal travels down a wire, it can reach the other end of the
wire and reflect back along the length of the wire, as well.

How does Ethernet control for these errors? The original Ethernet standard
included a 32-bit Cyclic Redundancy Check (CRC) in each frame, which can detect
a large array of errors in transmission, as noted in Chapter 2, “Data Transport
Problems and Solutions.” At higher speeds, and on optical (rather than electrical)
transport mechanisms, however, CRC can fail to detect enough errors to impact the
operation of the protocol. To provide better error control, later (and faster) Ethernet
standards have included more robust error control mechanisms.

For instance, Gigabit Ethernet specifies an 8B10B encoding scheme designed
to ensure the correct synchronization of sender and receiver clocks; this scheme
also detects some bit errors, as well. Ten-gigabit Ethernet is often implemented in

electrical circuit
terminates here

internal fabric

A B

C

switch

Figure 4-4 Switched Ethernet Network Operation

100 Chapter 4 Lower Layer Transports

hardware with a Reed-Solomon code Error Correction (EC) system and a 16B18B
encoding system, which provides good Forward Error Correction (FEC) and clock
synchronization with 18% overhead.

Data Marshaling

Ethernet transmits data in packets and frames; the packet is made up of the preamble
information, the frame, and any trailing information. The frame contains a header,
which is made up of fixed length fields, and the data being carried. Figure 4-5
 illustrates an Ethernet packet; the frame is marked out as well.

In Figure 4-5, the preamble contains a beginning of frame marker, information
the receiver can use to synchronize its clock to synchronize to the incoming packet,
and other information. The destination address is received immediately after the
preamble, so the receiver can quickly decide whether to copy this packet into mem-
ory or not. The addresses, protocol type, and carried data are all part of the frame.
Finally, any FEC information and other trailers are added onto the frame to make up
the final section(s) of the packet.

The type field is of particular interest, as this provides the information for
the next layer up—the protocol providing the information carried in the data

preamble
(64 bits)

dest add
(48 bits)

src add
(48 bits)

type
(16 bits)

FEC
(e.g. CRC)

carried
data

packet

frame

Figure 4-5 An Ethernet Packet and Frame

Note

The 8B10B encoding scheme attempts to ensure there are approximately the same
number of 0 and 1 bits in a data stream, which allows for efficient laser utilization
and provides for clock synchronization to be embedded in the signal. The scheme
works by encoding 8 bits of data (8B) into 10 transmitted bits on the wire (10B),
which means there is about 25% overhead for each character transmitted. Single
bit parity errors can be detected and corrected because the receiver knows how
many 0s and 1s should have been received.

101Ethernet

field—to identify the protocol. This information is opaque to Ethernet—the Eth-
ernet chipset does not know how to interpret this information (only where it is),
and how to carry it. Without this field there would be no consistent way for the
carried data to be dispatched to the correct upper-layer protocol, or rather, for
multiple upper-layer protocols to be properly multiplexed into Ethernet frames,
and then properly demultiplexed.

Flow Control

In the original CSMA/CD implementation of Ethernet, the shared medium itself
provided a sort of basic flow control mechanism. Assuming no two hosts can trans-
mit at the same time, and information transmitted by some upper-layer protocol
must be acknowledged or answered at least occasionally, the transmitter must peri-
odically take a break to receive any acknowledgment or reply. There are sometimes
situations where this rather rough form of flow control does not work; the Ethernet
specification assumes some higher layer protocol will control the flow of informa-
tion to prevent failures in this case.

In switched full duplex Ethernet, there is no CSMA/CD, as there is no shared
medium. The two hosts connected to the pair of transmission channels can send
data as quickly as the wires permit. This can, in fact, result in a situation where a
host receives more data than it can process. To resolve this, a pause frame was devel-
oped for Ethernet. When a receiver sends the pause frame, the sender is supposed to
stop sending traffic for a specified period of time.

Pause frames are not widely deployed.

Note

Many protocols do not contain all four of the functions described as part of the
Recursive Internet Architecture (RINA) model described in Chapter 3, “Model-
ing Network Transport”: error control, flow control, transport, and multiplex-
ing. Even among those protocols implementing all four functions, all four are
not always deployed. Normally, in this situation, the protocol and/or network
designer is handing the function off to a lower or higher layer in the stack. This
does work in some cases, but you should always be careful about assuming it is
the correct thing to do. For instance, there is a difference between hop-by-hop
encryption and end-to-end encryption. End-to-end is good for applications and
protocols that do encrypt, but not every application does, in fact, encrypt data
being transferred, nor does every host have an encrypted transport configured.
In these cases, hop-by-hop encryption can be useful across less than secure links,
such as wireless connections.

102 Chapter 4 Lower Layer Transports

Wireless 802.11

Commonly called and marketed as WiFi, 802.11, which is widely deployed for carry-
ing data over wireless in the unlicensed (in the United States) 2.4 and 5GHz radio
spectrums. Microwave ovens, RADAR systems, Bluetooth, some amateur radio
 systems, and even baby monitors also use the 2.4GHz radio spectrums, so WiFi can
both interfere with and be interfered with by these other systems.

Multiplexing

The 802.11 specifications generally use a form of frequency multiplexing to carry a
large amount of information across a single channel, or set of frequencies. The fre-
quency of a signal is simply the rate at which the signal switches polarity within a
single second; hence a 2.4GHz signal is an electrical signal, carried across either a
wire, an optical fiber, or the air, that switches polarity, from positive to negative (or
negative to positive) 2.4 × 109 times per second.

Note

These are bare minimum descriptions; there is an entire field of radio and wave
propagation you can study if you are so inclined; the goal here is to give you
enough information to understand the basic concepts without overwhelming.

To understand the concept of wireless signaling, it is best to begin with the idea of
carrier and modulation; Figure 4-6 illustrates.

In Figure 4-6, a single center frequency is chosen; the channel will be a range of
frequencies on either side of this center frequency. Within the resulting channel, two
carrier frequencies are chosen so they are orthogonal to one another—which means

channel
center

OSF 1

0 1 10

OSF 2

modulation

modulation

Figure 4-6 Orthogonal Channels Using Frequency Modulation

103Wireless 802.11

signals carried on these two carrier frequencies will not interfere with one another.
These are marked as OSF 1 and OSF 2 in the figure. Each of these carrier frequencies
is, in turn, actually a narrower channel, allowing the actual signal of 0s and 1s to be
modulated onto the channel. Modulation, in this case, means varying the actual fre-
quency of the signal around each OSF frequency.

Note

Modulation simply means somehow modifying the carrier in a way that allows a
signal to be carried so a receiver can reliably decoded it.

Thus, the 802.11 specification uses an Orthogonal Frequency Division Multiplex-
ing (OFDM) scheme, and encodes the actual data using Frequency Modulation (FM).

Note

One of the confusing points about multiplexing is it has two meanings, rather than
one. Either it means to place multiple bits on the same medium at once, or it means
allowing multiple hosts to communicate using the same medium at once. Which of
these two meanings is intended can only be understood in a specific context. In this
section, the meaning is the first, breaking a single medium up into channels to allow
multiple bits to be transmitted at once. In most of the rest of this book, it means the
second, allowing multiple hosts to transfer data over the same medium.

The speed at which data can be transmitted on such a system (the bandwidth)
depends directly on the width of each channel and the ability of the transmitter
to select orthogonal frequencies. To increase the speed of 802.11, then, two differ-
ent techniques have been applied. The first is simply to increase the channel width,
so more carrier frequencies can be used to carry data. The second is to find more
efficient ways to pack data into a single channel by using more complex modulation
methods. For instance, 802.11b can use a 40MHz wide channel in the 2.4GHz range,
while 802.11ac can use either an 80 or 160MHz wide channel in the 5GHz range.

Spatial Multiplexing
Other forms of multiplexing to gain more bandwidth between two devices are also
used in the 802.11 specification series. The 802.11n specification introduced Multi-
ple Input Multiple Output (MIMO) antenna arrays, which allow the signal to fol-
low different paths through the single medium (air). This might seem impossible, as
there is only one “air” in a room, but wireless signals actually bounce off different
objects within a room, which causes them to take multiple paths through the space.
Figure 4-7 illustrates.

104 Chapter 4 Lower Layer Transports

In Figure 4-7, assuming the transmitter is using an antenna that will transmit
in all directions (an omnidirectional antenna), there are three paths through the
 single space, labeled 1, 2, and 3. The transmitter and receiver cannot “see” the three
 separate paths, but they can measure the strength of signal between each pair of
antennas, and try sending different signals between apparently separated pairs until
they find multiple paths over which different sets of data can be sent.

A second way multiple antennas can be used is in beamforming. Normally, a wire-
less signal transmitted from an antenna covers a circle (a ball in three dimensions, but
this is difficult to meaningfully illustrate). In beamforming, the beam is shaped using
one of various techniques to make it more oblong. Figure 4-8 illustrates these concepts.

In the unformed pattern, the signal is roughly a ball or globe around the tip of the
antenna; drawn from the top, it looks much like a simple circle extending to the far-
thest point in the ball shape. By using a reflector, the beam can be shaped, or formed,
into a more oblong shape. The space behind the reflector, and to the sides of the beam,
will receive less (or even none, for very tight beams) of the transmission power. How
can such a reflector be built? The simplest way is with a physical barrier tuned to repel
the signal’s power, much like a mirror reflects light, or a wall reflects sound. The key is
the point in the transmission’s signal the physical barrier is placed. Figure 4-9 will be
used to explain the key points in the waveform, reflection, and cancellation.

tr
an

sm
itt

er

re
ce

vi
er

path 1

path 2

path 2

Figure 4-7 Multiple Paths within a Single Room

unformed signal
pattern

formed beam

reflector

Figure 4-8 Beam Formation

105Wireless 802.11

A typical waveform follows a sine wave, which begins at zero power, increases
to its maximum positive power, then moves back to zero power, and then through
a positive negative power cycle. Each of these is a cycle; the frequency refers to the
number of times this cycle repeats per second. The entire length of the wave in
space, along a wire, or an optical fiber, is called the wavelength. The wavelength is
inversely proportional to the frequency; the higher the frequency, the shorter the
wavelength.

The key point to note in this diagram is the state of the signal at the quarter
and half wavelength points. At the quarter wave point, the signal is at its high-
est power; if an object, or another signal, interferes at this point, the signal will
either be absorbed or reflected. At the half wave point, the signal is at the mini-
mum power; if there is no offset, or constant voltage on the signal, the signal will
reach zero power. To reflect a signal, then, you can position a physical object so it
reflects the power just at the quarter wave point. The physical distance required to
do this will, of course, depends on the frequency, just as the wavelength depends
on the frequency.

Physical reflectors are easy; what if you want to be able to dynamically form the
beam without using a physical reflector? Figure 4-10 illustrates the principles you can
use here.

The light gray dotted lines in Figure 4-10 provide a phase marker; two signals are
in phase if their peaks are aligned, as shown on the left. The two signals shown in the
middle are a quarter out of phase, as the peak of one signal is aligned with the zero
point, or minimum, of the second signal. The third pair of signals, shown on the far
right, are complementary, or 180 degrees out of phase, as the positive peak of one
signal aligns with the negative peak of the second signal. The first pair of signals will
add together; the third pair of signals will cancel out. The second pair may, if cor-
rectly crafted, reflect off one another. These three effects allow a beam to be formed,
as shown in Figure 4-11.

1/4
wave

1/2
wave

wavelength

Figure 4-9 A Signal Waveform

106 Chapter 4 Lower Layer Transports

A single beamforming system may, or may not, use all of these components, but
the general idea is to restrict the beam within a physical space within the medium—
generally free air propagation. Beamforming allows the shared physical medium to
be used as several different communication channels, as shown in Figure 4-12.

In Figure 4-12, the wireless router has used its beamforming capabilities to form
three different beams, each directed at a different host. The router can now send
traffic on all three of these formed beams at a higher rate than if it treated the entire
space as a single shared medium, because the signals to A will not interfere or overlap
with the information transmitted to B or C.

multiplying signal
“draws” the

beam

reflector signal
reflects the
beam

cancellation
signal cancels
remaining beam power

original
antenna

Figure 4-11 Beamforming

add

original

multiply/
mix

cancellationmix/
reflect

Figure 4-10 Combinations of signals

107Wireless 802.11

Note

Directional methods such as beamforming only improve the traffic transmitted
in one direction. For instance, if a wireless access point is capable of beamform-
ing, and the host it is communicating with is not, the distance the two devices
will be able to communicate across will be constrained by the host, as it can-
not send a directional signal. However, the physical distance is not always the
important point in beamforming technologies. The amount of information a
wireless signal can carry is related to the power as well as other factors; the
more power received at the receiver (not transmitted, received), the more infor-
mation that can be transmitted. So if the access point can form a beam so it has
twice as much power to the host as the host has connecting back to the access
point, it will increase the speed at which the host can download data across the
wireless link. It may, then, be worthwhile to have beamforming on one end of
the wireless connection (and not the other). The answer to whether or not it is,
is, as always, “it depends”—on the application, traffic pattern, and many other
factors.

Channel Sharing
The multiplexing problem in wireless signals involves sharing a single channel, much like
in wired network systems. Two specific problems dominate the solutions designed to
share a single wireless medium: the hidden node problem and the transmission/reception
power problem (which is also sometimes called receiver swamping). Figure 4-13 illus-
trates the hidden node problem.

formed beam 1

formed beam 2

formed beam 3

A

B

C

Figure 4-12 Beamforming and Spatial Multiplexing

108 Chapter 4 Lower Layer Transports

The three circles in Figure 4-13 represent the three overlapping ranges of the wire-
less transmitters at A, B, and C. If A transmits toward B, C cannot hear the transmis-
sion. Even if C listens for a clear channel, it is possible for A and C to transmit at the
same time, causing a collision at B.

The hidden node problem is made worse because of the power of transmission
versus the power of the received signal, and the reality of air as a medium. A good
rule of thumb for radio signal strength in air is the signal loses half of its power every
wavelength of space it travels. At high frequencies, signals lose their strength very
quickly, which means the transmitter must send a signal at a power orders of a mag-
nitude larger than its receiver is capable of receiving.

It is very difficult to build a receiver able to “listen to” the local transmit signal at
full strength without destroying the receive circuitry while also being able to “hear”
the very low power signals required to extend device range. The transmitter, in other
words, swamps the receiver with enough power to destroy the receiver in many situ-
ations. This makes it impossible, in a wireless network, for a transmitter to listen to
the signal as it is being transmitted, and hence makes the collision detection mecha-
nism used in Ethernet (for instance) impossible to implement.

The mechanism used by 802.11 to share a single channel among multiple trans-
mitters must avoid the hidden channel and receiver swamping problems. 802.11 WiFi
uses Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) to negotiate
channel usage. CSMA/CA is similar to CSMA/CD:

 1. Before transmitting, the sender listens to determine if another device is
transmitting.

A B C

Figure 4-13 The Hidden Node Problem in Wireless Networks

109Wireless 802.11

 2. If another transmission is heard, the sender backs off for some random period
of time before attempting again; this random backoff is designed to prevent
several devices from hearing the same transmission, and all trying to transmit
again at the same time at some point in the future.

 3. If no other transmission is heard, the sender transmits the entire frame; it is
impossible for the sender to receive the signal it is transmitting, so there is no
way to detect a collision at this point.

 4. The receiver sends an acknowledgment for the frame on receipt; if the sender
does not receive an acknowledgment, it will assume a collision has occurred,
back off for a random amount of time, and resend the frame.

Some WiFi systems can also use a Request to Send/Clear to Send (RTS/CTS) sys-
tem. In this case:

 1. The sender transmits an RTS.

 2. When the channel is clear, and no other transmission is scheduled, the receiver
sends a CTS.

 3. On receiving the CTS, the sender transmits the data.

Which system will produce higher bandwidth depends on the number of
senders and receivers using the channel, the length of the frames, and other
factors.

Data Marshaling, Error Control, and Flow Control

Data marshaling in 802.11 is similar to Ethernet; there is a set of fixed length header
fields in each packet, followed by the transported data, and finally a four-octet Frame
Check Sequence (FCS), which contains a CRC over the contents of the packet. If the
receiver can correct an error based on the CRC information, it will do so; otherwise,
the receiver simply does not acknowledge receipt of the frame, which will lead to the
frame being retransmitted by the sender.

A sequence number is included in each frame, as well, to ensure packets are
received and processed in the order in which they were transmitted. Flow control is
provided in the RTS/CTS system by the receiver waiting to send a CTS until it has
enough clear buffer space to receive a new packet.

110 Chapter 4 Lower Layer Transports

Goodput versus Throughput

The capacity of most links is measured in bandwidth, but bandwidth is only
one determinant of the amount of data that can be pushed through a link. A
second tier of factors to consider is flow control and channel efficiency. For
instance, in Ethernet, if a collision takes place, the channel efficiency will
be decreased slightly, and hence the total amount of transmitted data will
be lower than the available theoretical bandwidth. This second measure, the
total amount of data that can actually be transmitted on a particular link
or channel, is often called the throughput. It is measured, like bandwidth,
in a number of bits per second. There is a third set of variables to consider
in actual data transmitted through a channel: the amount of throughput
any headers, including error correction codes, take up. The amount of user
data actually transmitted across a link is called the goodput, and is gener-
ally a good bit lower than the bandwidth. For instance, for a 54Gb/s 802.11
link, the actual goodput may in the 22Gb/s range. This goodput is the num-
ber you need to pay attention to when designing speeds and feeds in a net-
work; the bandwidth will give you a theoretical maximum, but if you plan
a 54Gb/s link to handle a stream containing 50Gb/s of data, you might be
disappointed in the results.

Final Thoughts on Lower Layer Transmission Protocols

Lower layer transmission protocols tend to be dominated by physical concerns,
such as how can a host know when to access the channel, and how can the channel
be most efficiently used? The four elements are still important to consider. Multi-
plexing, for instance, still requires addresses to determine which host a particular
frame is being transmitted to. In other words, multiplexing contains addressing
and other solutions designed to solve problems found only when interacting with
physical channels.

Many of the solutions in these lower layer protocols are also assumed to be a
“first line of defense,” rather than “the only line of defense.” Error control in the
physical layer tends to be simpler than mechanisms implemented in higher layers,
which means these mechanisms are faster to check, but may also allow through

111Further Reading

some number of errors that need to be detected and corrected at some higher
layer. Flow control, in these layers, is focused on controlling traffic across a single
link, and is often a side effect of channel access, rather than an explicit control
mechanism.

Overall, the physical layer is the farthest from the application, and often gains
the least amount of attention of the network designer; yet these protocols are still
important, and they still follow the same problem and solution patterns that higher
level protocols employ.

Further Reading

Correa, Colt, Charles M. Kozierok, Robert B. Boatright, Jeffrey Quesnelle, and
Bob Metcalfe. Automotive Ethernet—The Definitive Guide. Intrepid Control
 Systems, 2014.

Gast, Matthew S. 802.11 Wireless Networks: The Definitive Guide. 2nd edition.
 Beijing; Farnham: O’Reilly Media, 2005.

———. 802.11n: A Survival Guide: Wi-Fi Above 100 Mbps. 1st edition. Sebastopol,
CA: O’Reilly Media, 2012.

Geier, Jim. Designing and Deploying 802.11 Wireless Networks: A Practical Guide
to Implementing 802.11n and 802.11ac Wireless Networks for Enterprise-Based
Applications. 2nd edition. Indianapolis, IN: Cisco Press, 2015.

McLaughlin, Steven W., and David Warland. “Error Control Coding and Ethernet.”
presented at the IEEE 802.3 EFM Study Group, Portland, OR, July 10, 2017.
http://www.ieee802.org/3/efm/public/jul01/presentations/mclaughlin_1_0701.
pdf.

Metcalfe, Robert M., and David R. Boggs. “Ethernet: Distributed Packet Switching
for Local Computer Networks.” Communications of the ACM 19, no. 7 (July
1976): 395–404.

Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANs: 802.11n and
802.11ac. 2nd edition. Cambridge, UK: Cambridge University Press, 2013.

Potter, Bruce, and Bob Fleck. 802.11 Security. 1st edition. Sebastopol, CA: O’Reilly
Media, 2002.

Rouzic, Jean-Pierre Le. IEEE 802.11ac: An Analysis of the Standard. CreateSpace
Independent Publishing Platform, 2013.

http://www.ieee802.org/3/efm/public/jul01/presentations/mclaughlin_1_0701.pdf
http://www.ieee802.org/3/efm/public/jul01/presentations/mclaughlin_1_0701.pdf

112 Chapter 4 Lower Layer Transports

Spurgeon, Charles E., and Joann Zimmerman. Ethernet Switches: An Introduction
to Network Design with Switches. 1st edition. Beijing: O’Reilly Media, 2013.

———. Ethernet: The Definitive Guide: Designing and Managing Local Area
 Networks. 2nd edition. Beijing: O’Reilly Media, 2014.

Tropper, Carl. Local Computer Network Technologies. Elsevier, 2014.

Review Questions

 1. How is optical modulation different from, or similar to, the electrical modula-
tion described in the chapter?

 2. On radio waves, you would normally use different channels at different fre-
quencies to carry multiple signals over a single medium (such as the air in
wireless networks, and even over wires in some wired networks). What mech-
anism is used to “channelize” an optical transmission media, and how does
it work?

 3. The chapter states multiplexing must often be solved before other problems in
data transmission can be addressed. Why might this be?

 4. Ethernet was originally designed to operate over thin and thick coax cable
(10BASE5 and 10BASE2). Is it possible to enable full duplex operation over
coax? Why or why not?

 5. The chapter notes the pause frame is not widely deployed for Ethernet. Under
what conditions would a pause frame be needed, and why would it not be
widely deployed any longer?

 6. Given audio is also a wave passing through air, it would make sense that the
mix, multiply, and cancel interactions between signals in a different phase
might also apply to audio engineering in a similar way. Find a site that explains
the impacts of these same problems in audio design, and describe some solu-
tions audio engineers use to solve these problems.

 7. There are many ways to build directional signals. For instance, how does a
dish-type antenna shape a wireless signal? A commonly used beamforming
antenna type is the Log Periodic Dipole (LPD). How does this kind of antenna
work? Would these kinds of antennas ever be useful in wireless networking?

113Review Questions

 8. Find the goodput for some wired and wireless link types. Are they radically
different? Can you explain why?

 9. The Ethernet specifications are designed to allow every device manufactured,
worldwide, to have different MAC addresses. The chapter mentions older
versions, and equipment, that required the network operator to configure
Ethernet equipment with addresses manually. Can you describe, in terms of
state, optimization, and surfaces, the tradeoffs between these two options?
Try to find both positive and negative aspects of each possible way of solving
the problem.

 10. The chapter states an Ethernet chipset will be assigned at least one address,
implying some chipsets may be assigned more than one. Describe at least
two use cases where a single chip would need to have more than one MAC
address.

This page intentionally left blank

115

While the previous chapter considered two examples of point-to-point data trans-
port over physical media, this chapter will consider four examples of end-to-end
data transport. Figure 5-1 illustrates in terms of the Recursive Internet Architecture
(RINA).

Chapter 5

Higher Layer Data Transports

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the history and operation of the Internet Protocol (IP)

 0 Understand the purpose of IP

 0 Understand the concepts of IP addresses and aggregation

 0 Understand the structure of the IP header

 0 Understand the operation of the Transmission Control Protocol (TCP)

 0 Understand the basics of congestion control through sliding windows

 0 Understand the operation of QUIC

 0 Understand the purpose of the Internet Control Message Protocol (ICMP)

Chapter 5 Higher Layer Data Transports116

Not every transport protocol maps precisely to a single functional layer in RINA,
of course, but the mapping is close enough to be useful. The primary point to remem-
ber is—for each transport protocol, there are four questions you can ask:

 • How does the protocol provide transport, or how does it marshal data?

 • How does the protocol provide multiplexing services, or the ability to carry
multiple streams of data on a single shared resource?

 • How does the protocol provide error control, which should include not only
error detection, but also resolving errors—either through retransmission or
providing enough information to rebuild the original information?

 • How does the protocol provide for flow control?

Each of these questions can have a number of subquestions, such as discovering
the Maximum Transmission Unit (MTU), providing for replication of packets for
multicast, etc.

This chapter will consider four protocols:

 • The Internet Protocol (IP), which provides the bottom half of the second pair
of layers. The primary focuses of IP are in the addressing scheme for multiplex-
ing, and the ability to provide a single transport across many different physical
transport systems.

Ethernet/WiFi
(and others)

Ethernet/WiFi
(and others)

error/flow

error/flow

error/flow
transport/multiplex transport/multiplex

transport/multiplex

TCP/QUIC
(and others)

IP

Figure 5-1 Transport Protocol Examples, Protocol Function, and RINA

The Internet Protocol 117

 • The Transmission Control Protocol (TCP), which provides one version of the
top half of the second pair of layers. TCP provides error and flow control, as
well as a place to carry multiplexing information for applications and other
protocols that run on top of TCP.

 • Quick User Datagram Protocol Internet Connections (QUIC), which provides
another version of the top half of the second pair of layers. QUIC is much like
TCP in its function, but has some significant differences from TCP in the way
it operates.

 • The Internet Control Message Protocol (ICMP).

The Internet Protocol

The Internet Protocol (IP) was originally documented in a series of Internet Protocol
Specification documents called IENs in the middle of the 1970s, mostly written by
Jonathan B. Postel. These documents described a protocol called TCP, which, when
it was originally deployed, included the functionality contained in two protocols, IP
and TCP. Postel noted this combination of functionality in a single protocol was not
a good thing; in IEN #2, he states:

We are screwing up in our design of internet protocols by violating the principle
of layering. Specifically we are trying to use TCP to do two things: serve as a host
level end to end protocol, and serve as an internet packaging and routing proto-
col. These two things should be provided in a layered and modular way. I sug-
gest that a new distinct internetwork protocol is needed, and that TCP be used
strictly as a host level end to end protocol. I also believe that if TCP is used only
in this cleaner way it can be simplified somewhat. A third item must be specified
as well—the interface between the internet host to host protocol and the internet
hop by hop protocol.1

IEN #28, published in February of 1978, specified version 2 of this new Internet
Protocol.2 This was quickly replaced by IEN #48 in June 1978,3 and again by IEN
#54 in September of 1978.4 In January 1980, IP became an IETF protocol with the
publication of RFC760, which was also known as IEN #128,5 and was updated with

 1. Postel, “Comments on Internet Protocol and TCP,” 1.

 2. Postel, “Draft Internetwork Protocol Specification, Version 2.”

 3. Postel, “Internetwork Protocol Specification, Version 4,” June 1978.

 4. Postel, “Internetwork Protocol Specification, Version 4,” September 1978.

 5. “DoD Standard Internet Protocol.”

Chapter 5 Higher Layer Data Transports118

the current specification, RFC791, in September of 1981.6 At this point, the format
of the IP version 4 (IPv4) header still in use today was in place.

Note

IPv4 is not covered in depth in this book; while it is widely deployed, version 6 of
the IP protocol will be considered instead, as this is the protocol engineers will
likely encounter more often in the future. In this spirit, all the examples in this
book will use addresses in the version 6 format, as well. The “Further Reading”
section lists resources of interest to readers who wish to learn more about IPv4.

The IPv4 address space is a 32-bit unsigned integer, which means it can number,
or address, 232 devices—about 4.2 billion devices. This sounds like a lot, but the real-
ity is far different for several reasons:

 • Each address represents one interface, rather than one device. In fact, IP
addresses are often used to represent a service, or a virtual host (or machine),
which means a single device will often consume more than one IP address.

 • Large numbers of addresses are wasted in the process of aggregation.

In the early 1990s, it became obvious the Internet was going to run out of addresses
in the IPv4 address space; charts like the one shown in Figure 5-2 show the available
IPv4 address space over time starting in the mid-1990s.7

The easy solution to this situation would have been to extend the IPv4 address
space to encompass some larger number of devices, but experience with the IPv4
protocol in the field led the Internet Engineering Task Force (IETF) to take on a
larger task: to redesign IPv4. The work on the replacement began in 1990, with the
first drafts achieving standard status in 1998. The IPv6 address space contains 2128
addresses, or around 3.4 × 1038.

IPv6 is designed to provide services for several different protocols, such as TCP
and QUIC, which are discussed in later sections in this chapter. As such, IPv6 pro-
vides only two services of the four required to carry data through a network: trans-
port, which includes marshaling data, and multiplexing. These two functions are
discussed in greater detail in the following sections.

 6. “Internet Protocol.”

 7. Mro, IPv4 Exhaustion.

The Internet Protocol 119

Transport and Marshaling

IP provides a “base layer” on which a wide array of higher layer protocols run, on
many different kinds of physical links. To do so, IP must solve two problems:

 • Run on a lot of different physical and lower layer protocols while presenting a
consistent set of services to higher layers

 • Adapt to the wide variety of frame sizes provided by lower layers

To create a single protocol on which all upper layer protocols can run, IP must “fit
into” the frame type of many different kinds of physical layer protocols.

A series of drafts describe how to run IP on top of a particular physical layer,
including MPEG-2 networks,8 Asynchronous Transfer Mode,9 optical networks,10

 8. Fairhurst et al., A Framework for Transmission of IP Datagrams over MPEG-2 Networks.

 9. Cole, Shur, and Villamizar, IP over ATM: A Framework Document.

10. Luciani, Rajagopalan, and Awduche, IP over Optical Networks: A Framework.

Figure 5-2 IPv4 Address Space Usage over Time

Chapter 5 Higher Layer Data Transports120

Point-to-Point Protocol (PPP),11 the Vertical Blanking Interval (VBI) in television,12
Fiber Distributed Data Interface (FDDI),13 avian carriers,14 and a number of other
physical layer protocols (see the “Further Reading” section below). These drafts
largely work out how to carry an IP datagram (or packet) in the frame (or packet)
of the underlying physical layer, and how to enable interlayer discovery, such as the
Address Resolution Protocol (ARP) to work on each media type (see Chapter 6,
“Interlayer Discovery,” for more information).

IP must also specify how to carry large blocks of data across the various MTUs
available on different kinds of physical links. While the original Ethernet specifica-
tion chose an MTU of 1,500 octets to balance between large packet sizes and maxi-
mum channel utilization, many other physical layers have been designed with larger
MTUs. Further, applications do not tend to send information in neat, MTU-sized
chunks. IP manages these two problems by providing for fragmentation; Figure 5-3
illustrates.

If an application (or higher-level protocol) passes 2,000 octets of data to be trans-
mitted to IP, the IP implementation will

 • Determine the MTU along the path through which the data must be transmit-
ted; this is normally a matter of reading a configured or default value set by the
system software

11. Varada, IP Version 6 over PPP.

12. Panabaker, Wegerif, and Zigmond, The Transmission of IP Over the Vertical Blanking Interval of a
Television Signal.

13. Katz, Transmission of IP and ARP over FDDI Networks.

14. Waitzman, Standard for the Transmission of IP Datagrams on Avian Carriers.

2000 octets to be transmitted

IPv6 header

IPv6 header

fragment header

fragment header
offset: 0
more: 1

offset: 1200
more: 0

1200 octets

800 octets

Figure 5-3 Fragmentation in IPv6

The Internet Protocol 121

 • Break up the information into multiple fragments, based on the MTU minus
the projected size of the headers, including tunnel headers, etc.—the metadata
that must be transmitted along with the data

 • Send the first fragment with an IPv6 optional header (which means the frag-
ment header does not need to be included with packets that are not fragments
of a larger data block)

 • Set the offset in the more fragments header to the first octet in the original
data block this packet represents divided by 8; in the example in Figure 5-3,
the first packet has an offset of 0, while the second has an offset of 150
(1200/8).

 • Set the more fragments bit to 0 if this is the last fragment of the data block, and
1 if there are more fragments to follow.

This size of the total data block IPv6 can carry through fragments is limited by
the size of the offset field, which is 13 bits long. Hence, IPv6 can carry, at most, 214
octets of data as a series of fragments, or a data block of about 65,536 octets plus
one MTU-sized fragment. Anything larger than this would need to be broken up, in
some way, by a higher layer protocol before being passed to IPv6 for transport.

Finally, IP must provide for some way to carry packets across a network that
uses more than one type of physical layer. This is solved by rewriting the lower layer
headers at each hop in the network where multiple media types might be intercon-
nected. Devices that rewrite the lower layer headers in this way were originally called
 gateways, but are generally called routers now, because they route traffic based on
the information contained in the IP header. Packet switching is considered in more
detail in Chapter 7, “Packet Switching.”

There are some other interesting aspects of the way IPv6 carries data; Figure 5-4
illustrates an IPv6 header to work from.

In Figure 5-4:

 • The version is set to 6, for IPv6.

 • The traffic class is divided into two fields, 6 bits for carrying the type of ser-
vice (or service class), 2 bits for carrying congestion notification. Quality of
Service (QoS) is considered in more detail in Chapter 8, “Quality of Service.”

 • The flow label is designed as a hint to tell forwarding devices how to keep
packets within a single flow on the same path in an equal cost multipath
(ECMP) set of paths.

 • The payload length indicates the amount of data being carried in the packet
in octets.

Chapter 5 Higher Layer Data Transports122

 • The next header provides information about any additional headers contained
in the packet. The IPv6 header can contain information beyond what is con-
tained in the basic header; these optional headers are discussed in more detail
in a following section.

 • The hop limit is the number of times this packet can be “handled” by a net-
work device before being dropped. Any router (or other device) that rewrites
the lower layer headers should decrement this number by one in the forwarding
process; when the hop limit reaches 0 or 1, the packet should be discarded.

Note

The hop count is used to prevent a packet from looping in a network forever. Each
time the packet is forwarded by a network device, the hop count is decremented
by one. If the hop count reaches 0, the packet is discarded. If a packet is looping
within the network, the hop count (also called a Time to Live, or TTL) will even-
tually be reduced to 0, and the packet will be dropped.

The IPv6 header is a mixture of variable (Type Length Value [TLV]) and fixed
length information. The basic header is made up of fixed length fields, but the next
header field leaves open the possibility of optional (or extension) headers, some of
which are formatted as TLVs. This allows custom hardware (for instance, an Appli-
cation-Specific Integrated Circuit [ASIC]) to be built to quickly switch packets based
on the fixed length fields, while leaving open the possibility of carrying variable
length data that might only be processed in software.

version traffic class

payload length

option header

next header hop limit

source address

destination address

data

flow label

Figure 5-4 The IPv6 Header Format

The Internet Protocol 123

Multiplexing

IPv6 enables multiplexing in two different ways:

 • By providing a large address space to use in identifying hosts and networks (or,
more largely, reachable destinations)

 • By providing a space into which the upper layer protocol can place a protocol
number, which allows multiple protocols to run on top of IPv6

IPv6 Addressing
The IPv6 address is 128 bits, which means there can be up to 2128 addresses—a vast
number of addresses, enough to perhaps number every grain of dust on the Earth.
The IPv6 address is normally written as a series of hexadecimal numbers, rather than
as a series of 128 0s and 1s, as shown in Figure 5-5.

Two points on zeros are worth noting in the IPv6 address format:

 • Leading zeros in each section (set off by colons) are omitted.

 • A single long string of zeros can be replaced by a double colon once in the
address (not twice).

2001:db8:3e8:100::1

0010 0000 0000 0001

0000 1101 1011 1000

0000 0011 1110 1000

0000 0001 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0001
Figure 5-5 IPv6 Address

Chapter 5 Higher Layer Data Transports124

Note

When every address in the network begins with the same set of numbers,
 sometimes only the part that changes will be included to shorten the address, as
well. For instance, in a network with 2001:db8:3e8:100::1 and 2001:db8:3e8:101::2,
the two addresses may be referred to as 100::1 and 101::2, rather than repeating
the entire address. You will need to fill in the remainder of the address from the
context, such as a network diagram, or some earlier mention of the address, etc.

Why so many addresses? Because many addresses are never used in any address-
ing scheme.

First, many addresses are never used because addresses are aggregated. Aggrega-
tion is the use of a single prefix (or network, or reachable destination) to represent a
larger number of reachable destinations; Figure 5-6 illustrates.

In Figure 5-6:

 • Hosts A and B are given 101::1 and 101::2 as their IPv6 addresses. These two
hosts are, however, connected to a single broadcast segment (such as Ethernet),
and hence share the same interface at C. Even though C has an address on this
shared network, it actually advertises the network itself—some engineers find
it helpful to think of the wire itself—as a reachable destination: 101::/64.

 • E receives two reachable destinations, 101::/64 from C and 102::/64 from D. By
decreasing the prefix length, it can advertise a single reachable destination that
includes both of these two longer prefix reachable destinations. E advertises
100::/60.

 • G, in turn, receives 100::/60 from E, and 110:/60 from F. Again, this same
address space can be described using a single reachable destination, 100::/56,
so this is what G advertises.

2001:db8:3e8:101::1 2001:db8:3e8:101::/64

2001:db8:3e8:100::/60

2001:db8:3e8:100::/56

2001:db8:3e8:110::/60

2001:db8:3e8:102::/64

2001:db8:3e8:101::2

A

B

C

D E

F

G

Figure 5-6 Address Aggregation in IPv6

The Internet Protocol 125

How does this aggregation work in the actual address space? Figure 5-7 is used to
explain.

The prefix length, which is the number after the slash in a reachable destination,
tells you the number of bits that count in determining what is part of the prefix (and
hence also what is not). The prefix length is counted from the left to the right. Any
set of addresses with the same values in the numbers within the prefix length are con-
sidered to be part of the same reachable destination.

 • There are 128 bits in the full IPv6 address space, so a /128 represents a single
host.

2 0 0 1 : d b 8 : 3 e 8 : 1 0 1 : : 1 / 1 2 8
2 0 0 1 : d b 8 : 3 e 8 : 1 0 1 : : 2 / 1 2 8

2 0 0 1 : d b 8 : 3 e 8 : 1 0 1 : : / 6 4

these are the left 64 bits these bits can be
anything

2 0 0 1 : d b 8 : 3 e 8 : 1 0 1 : : / 6 4
2 0 0 1 : d b 8 : 3 e 8 : 1 0 2 : : / 6 4

2 0 0 1 : d b 8 : 3 e 8 : 1 0 0 : : / 6 0

these are the left 60 bits these bits can be
anything

2 0 0 1 : d b 8 : 3 e 8 : 1 0 0 : : / 6 0
2 0 0 1 : d b 8 : 3 e 8 : 1 1 0 : : / 6 0

2 0 0 1 : d b 8 : 3 e 8 : 1 0 0 : : / 5 6

these are the left 56 bits these bits can be
anything

Figure 5-7 Aggregation and Reachable Destinations in IPv6 Addressing

Chapter 5 Higher Layer Data Transports126

 • In an address with a 64-bit prefix length (/64), only the left four sections of the
IPv6 address are part of the prefix, or the reachable destination; the remainder,
the four right sections of the IPv6 address, are assumed to either be host or
subnetwork addresses that are “contained” in the prefix.

 • In an address with a 60-bit prefix length (/60), the left four sections of the IPv6
address minus one hexadecimal digit are considered part of the reachable des-
tination, or the prefix.

 • In an address with a 56-bit prefix length (/56), the left four sections of the IPv6
address minus two hexadecimal digits are considered part of the reachable des-
tination, or the prefix.

Note

So long as you always change the prefix length in increments of 4 (/4, /8, /12, /16,
etc.), the significant digits, or the digits that are part of the prefix, will always
move one to the right (as you increase the prefix length) or the left (as you decrease
the prefix length).

Aggregation sometimes seems complicated, but it is an essential part of IP.
Some of the address space is consumed in autoconfiguration. While autoconfigu-

ration is not covered in detail here, the interaction between autoconfiguration and
IPv6 address assignment is important to consider. Some amount of address space
must generally be set aside to ensure no two devices connected to the network will
end up with the same identifier. In the case of IPv6, half of the address spaces (every-
thing greater than a /64), within certain ranges of addresses, are set aside in order to
form unique per device identifiers.

Third, some addresses are set aside for special use. For instance, in IPv6, the fol-
lowing address spaces are assigned to some special use:

 • ::ffff/96 is set aside for IPv4 addresses that are “mapped into” the IPv6 address
space.

 • fc00::/7 is set aside for unique local addresses (ULAs); packets with these
addresses are not intended to be routed on the global Internet, but rather kept
within the network of a single organization.

 • fe80::/10 is set aside for link local addresses; these addresses are automatically
assigned on each interface, and are only used for communicating over a single
physical or virtual link.

The Internet Protocol 127

 • ::/0 is set aside as a default route; if a network device does not know of any
other way to reach a particular destination, it will forward traffic toward the
default route.

Fourth, devices can be assigned multiple addresses. Many engineers tend to think
of an address as if it describes a single host or system. In reality, a single address can
be used to describe many things, including

 • A single host or system

 • A single interface on a host or system; a host with multiple interfaces would
have multiple addresses

 • A set of reachable services on a host or system; for example, a virtual machine
or a particular service running on a host may be assigned an address that is dif-
ferent from any of the addresses assigned to the host’s interfaces

There is no necessary direct correlation between an address and a physical device,
or an address and a physical interface.

Multiplexing Between Processes
The second multiplexing mechanism is allowing multiple protocols to run over the
same base layer. This form of multiplexing is provided through protocol numbers;
Figure 5-8 illustrates.

The next header field either points to

 • The next header in the IPv6 packet, if there is a next header

 • A protocol number, if the next header is a transport protocol (such as TCP)

other fields

other fields

other fields

other fields

other fields

other fields

next header

next header

next header

IPv6 header

routing header

fragment header

protocol number

Figure 5-8 The Protocol Number in IPv6

Chapter 5 Higher Layer Data Transports128

These additional headers are called optional or extension headers; some of them
are fixed length, and others are TLV based; for instance:

 • Hop-by-hop options: A set of TLVs describing actions each forwarding
device should take

 • Routing: A set of fixed length route types used to indicate the path the packet
should take through the network

 • Fragment: A fixed length set of fields providing packet fragment information
(as described above)

 • Authentication header: A set of TLVs containing authentication and/or
encryption information

 • Jumbogram: An optional data length field enabling the IPv6 packet to carry
up to one byte less than 4GB of data

The next header field is 8 bits long, which means it can carry a number between
0 and 255. Each number in this range is assigned either to a specific kind of option
header or a specific higher layer protocol. For instance:

 • 0: The next header is an IPv6 hop-by-hop option.

 • 1: The packet payload is the Internet Control Message Protocol (ICMP).

 • 6: The packet payload is TCP.

 • 17: The packet payload is the User Datagram Protocol (UDP).

 • 41: The packet payload is IPv6.

 • 43: The next header is an IPv6 routing header.

 • 44: The next header is an IPv6 fragment header.

 • 50: The next header is an Encapsulated Security Header (ESH).

The protocol number is used by the receiving host to dispatch the contents of the
packet to the correct local process for processing; normally, this means stripping the
lower (physical) layer headers off the packet, placing the packet into the input queue
for the correct process (such as TCP), and then notifying the operating system the
relevant process needs to run.

Transmission Control Protocol

The primary goal of TCP is to provide what appears to be a connection-oriented
transport on top of IP. As a higher layer protocol, it relies on the addressing and

Transmission Control Protocol 129

multiplexing capabilities of IPv6 to carry information to the correct destination
host. Because of this, TCP does not require an address scheme. The focus of TCP is
on flow and error control, considered in separate sections below. A short section on
TCP port numbers rounds out this discussion of TCP.

Flow Control

TCP uses a sliding window method to control the flow of information across each
connection between two hosts; Figure 5-9 illustrates.

In Figure 5-9, assume the initial window size is set to 20. The sequence of events
is then

 • At t1, the sender transmits 10 packets or octets of data (in the case of TCP, it is
10 octets of data).

 • At t2, the receiver acknowledges these 10 octets, and the window is set to 30.
This means the sender is now allowed to send up to 30 more octets of data before
waiting for another acknowledgment; in other words, the sender can send up to
octet 40 before it must wait for an acknowledgment to send more data.

t1
1-10 sent

11-15 sent

16-35 sent

10 acknowledged

15 acknowledged

35 acknowledged

window set to 30

window set to 40

window set to 50

t2

t3

t4

t5

t6

Figure 5-9 A Sliding Window

Chapter 5 Higher Layer Data Transports130

 • At t3, the sender sends another 5 octets of data, numbers 11–15.

 • At t4, the receiver acknowledges the receipt of the octets through 15, and the
window is set to 40 octets.

 • At t5, the sender sends about 20 octets of data, numbered 16–35.

 • At t6, the receiver acknowledges 35 and the window is set to 50.

Several important points to note about this technique are as follows:

 • When the receiver acknowledges receiving a particular piece of data, it implic-
itly also acknowledges receiving everything before this piece of data.

 • If the receiver does not send an acknowledgment—say the transmitter sends
16–35 at t5, and the receiver does not send an acknowledgment—the sender
will wait some period of time and assume the data never arrived, so it will
retransmit the data.

 • If the receiver acknowledges some of the data the sender has transmitted,
but not all of it, the sender assumes some of the data is missing, and retrans-
mits from the point the receiver has acknowledged. For instance, if the sender
transmitted 16–35 at t6, and the receiver acknowledged 30, the sender should
retransmit 30 and forward.

 • The window is set at both the sender and the receiver; this is explained in more
detail in a following section.

Instead of using octet numbers, TCP assigns each transmission a sequence
 number; when the receiver acknowledges a specific sequence number, the transmit-
ter assumes the receiver has actually received all the octets of information up to the
transmission with the sequence number. For TCP, then, the sequence number acts as
a sort of “shorthand” for a set of octets. Figure 5-10 illustrates.

In Figure 5-10:

 • At t1, the sender bundles octets 1–10 and transmits them, marking them as
sequence number 1.

 • At t2, the receiver acknowledges sequence number 1, implicitly acknowledging
the receipt of octets 1–10.

 • At t3, the sender bundles octets 11–15 together and transmits them, marking
them as sequence number 2.

 • At t4, the receiver acknowledges sequence number 2, implicitly acknowledging
the octets sent through 15.

Transmission Control Protocol 131

 • At t5, assume 10 octets will fit into a single packet; in this case, the sender
would send two packets, one containing 16–25, with the sequence number 3,
and one containing octets 26–35, with sequence number 4.

 • At t6, the receiver acknowledges sequence number 4, implicitly acknowledging
all the previously transmitted data.

The sections that follow consider various questions in relation to the windowed
flow control scheme used by TCP.

What Happens If One Packet of Information Is Missed?
What if the first packet out of a flow of 100 packets is not received? Using the system
described in Figure 5-10, the receiver would simply not acknowledge this first packet
of information, forcing the sender to retransmit the data sometime later. This is inef-
ficient, however; each dropped packet of information requires a complete resend
from that packet forward. TCP implementations use two different ways to allow a
single packet to be requested by a receiver.

The first way is a triple acknowledgment. If a receiver acknowledges a packet that
is earlier than the most recently acknowledged serial number three times, the sender
assumes the receiver is asking for the packet to be retransmitted. Three repeated

t1
1-10 sent, sequence number 1

11-15 sent, sequence number 2

16-25 sent, sequence number 3; 26-35 sent, sequence number 4

sequence number 1 acknowledged

sequence number 2 acknowledged

sequence number 4 acknowledged

window set to 30

window set to 40

window set to 50

t2

t3

t4

t5

t6

Figure 5-10 Windowed Flow Control with Serial Numbers

Chapter 5 Higher Layer Data Transports132

acknowledgments are used to prevent out-of-order packet delivery, or dropped pack-
ets, from causing a false retransmit request.

The second way is to implement selective acknowledgments (SACK).15 SACK
adds a new field to the TCP acknowledgment that allows a receiver to acknowledge
the receipt of a specific set of serial numbers, rather than assuming the acknowledg-
ment of a single serial number acknowledges every lower serial number as well.

How Long Does the Transmitter Wait Before Retransmitting?
The first way in which a sender can detect a packet has been lost is through the
Retransmit Time Out (RTO), which is calculated as a function of the Round Trip
Time (RTT or rtt). The rtt is the time interval between the transmission of a packet
by a sender and the receipt of an acknowledgment from the receiver. The rtt meas-
ures the delay through the network from the transmitter to the receiver, the process-
ing time at the receiver, and the delay through the network from the receiver to the
transmitter. Note the rtt can vary depending on the path each packet takes through
the network, local conditions at the time the packet is switched, etc.

The RTO is normally calculated as a weighted average in which older rtts have less
impact than more recent measured rtts.

An alternative mechanism used in most TCP implementations is fast retransmit.
In fast retransmit, the receiver adds one to the expected sequence number in any
acknowledgment. For instance, if a sender transmits sequence 10, the receiver
acknowledges sequence 11, even though it has not yet received sequence 11. In this
case, the sequence number in the acknowledgment acknowledges the receipt of data
and indicates what sequence number it is expecting the sender to transmit next.

If the transmitter receives an acknowledgment with a sequence number that is
one larger than the last acknowledged sequence number three times in a row, it will
assume the packets following have been dropped.

There are, therefore, two types of packet loss in TCP when fast start is imple-
mented. The first is a standard timeout, which occurs when the sender transmits a
packet, and does not receive an acknowledgment before the RTO expires. This is
called an RTO failure. The second is called a fast retransmit failure. These two con-
ditions are often handled differently.

How Is the Window Size Chosen?
There are a number of different considerations in choosing a window size, but the
dominant factor is often gaining the highest possible performance while avoiding
link congestion. In fact, TCP congestion control is probably the primary form of

15. Floyd et al., TCP Selective Acknowledgment Options.

Transmission Control Protocol 133

congestion control actually deployed in the global Internet. To understand TCP con-
gestion control, it is best to begin with some definitions:

 • Receive Window (RWND): The amount of data the receiver is willing to
receive; this window is normally set based on the receiver’s buffer size, or some
other resource available at the receiver. This is the window size advertised in
the TCP header.

 • Congestion Window (CWND): The amount of data the transmitter is willing
to send before receiving an acknowledgment. This window is not advertised in
the TCP header; the receiver does not know the size of the CWND.

 • Slow Start Threshold (SST): The CWND at which the sender considers the
connection at its maximum packet rate without congestion occurring on the
network. The SST is initially set by the implementation, and changed in
the case of packet loss depending on the congestion avoidance mechanism
being used.

Most TCP implementations begin sessions with a Slow Start algorithm.16 In this
phase, the CWND starts at 1, 2, or 10. For each segment for which an acknowledg-
ment is received, the size of CWND is increased by 1. Given such acknowledgments
should take not much longer than a single rtt, slow start should cause the window
to double each rtt. The window will continue increasing at this rate until either a
packet is lost (the receiver fails to acknowledge a packet), CWND reaches RWND, or
CWND reaches SST. Once any of these three conditions occur, the sender moves to
congestion avoidance mode.

Note

How does increasing CWND by 1 for each ACL received double the window each
rtt? The thinking is this: When the window size is 1, you should receive one seg-
ment per rtt. When you increase the window size to 2, you should receive 2 seg-
ments in each rtt; to 4, you should receive 4, etc. As the receiver is acknowledging
each segment separately, and increasing the window by 1 each time it acknowl-
edges a segment, it should acknowledge 1 segment in the first rtt, and set the win-
dow to 2; 2 segments in the second rtt, adding 2 to the window, to set the window
to 4; 4 segments in the third rtt, adding 4 to the window, to set the window size
to 8, etc.

16. Blanton, Paxson, and Allman, TCP Congestion Control.

Chapter 5 Higher Layer Data Transports134

In congestion avoidance mode, CWND is increased once each rtt, which means
the size of the window stops growing exponentially and instead grows linearly.
CWND will continue growing either until the receiver fails to acknowledge a packet
(TCP assumes this means a packet has been lost or dropped), or until CWND reaches
RWND. There are two broadly deployed ways in which a TCP implementation can
respond to the loss of a packet, called Tahoe and Reno.

Note

There are actually many different variations of Tahoe and Reno; only the very
basic implementations are considered here. There are also many different meth-
ods for reacting to a packet loss while the connection is in congestion avoidance
mode; the “Further Reading” section contains information on where to find out
about some of these other methods.

If the implementation is using Tahoe, and the packet loss is discovered through a
fast retransmit, it will set SST to half of the current CWND, set CWND to its origi-
nal value, and begin slow start again. This means the sender will transmit 1, 2, or
10 sequence numbers again, increasing CWND for each sequence number acknowl-
edged. As in the beginning of the slow start process, this has the effect of doubling
CWND each rtt. Once CWND reaches SST, TCP will move back into congestion
avoidance mode.

If the implementation is using Reno, and the packet loss is discovered through a
fast retransmit, it will set SST and CWND to half the current CWND, and continue
operating in congestion avoidance mode.

In either implementation, if packet loss is discovered because the receiver does not
send an acknowledgment within the RTO, the CWND is set to 1, and slow start is
used to ramp the connection speed back up.

Error Control

TCP provides two forms of error detection and control:

 • The protocol itself, along with the windowing mechanism, ensures data is
delivered to the application in order and without any missing information.

 • The one’s complement checksum included in the TCP header is considered
weaker than a Cyclic Redundancy Check (CRC) and many other forms of error
detection. This error check serves to complement, rather than replace, the
error correction provided by protocols lower and higher in the stack.

If a receiver detects a checksum error, it can use any of the mechanisms described
here to request the sender retransmit the data—simply not acknowledging the receipt

Transmission Control Protocol 135

of the data, requesting a retransmit through SACK, actively not acknowledging the
receipt of the data through fast retransmit, or by sending a triple acknowledgment
for the specific segment containing the corrupted data.

TCP Port Numbers

TCP does not directly manage any kind of multiplexing; however, it does provide
port numbers that applications and protocols above TCP in the protocol stack can
use to multiplex. While these port numbers are carried in TCP, they are generally
opaque to TCP; TCP does not attach any meaning to these port numbers other than
using them to dispatch information to the correct application on the receiving host.

TCP port numbers are divided into two broad classes: well known and
 ephemeral. Well-known ports are defined as a part of an upper layer protocol spec-
ification; these ports are the “default” ports for these applications. For instance,
a service supporting the Simple Mail Transfer Protocol (SMTP) can generally be
found by connecting to a host using TCP on port number 25. A service support-
ing the Hypertext Transport Protocol (HTTP) can normally be found by connect-
ing to a host using TCP on port 80. These services do not necessarily need to use
these port numbers; most servers can be configured to use some port number other
than the one designated in the protocol specification. For instance, web servers not
intended for general (or public) use may use some other TCP port, such as 8080.

Ephemeral ports are significant only to the local host and normally assigned from
a pool of available port numbers on the local host. Ephemeral ports are most often
used as source ports for TCP connections; for instance, a host connecting to a service
at port 80 on a server will use an ephemeral port as its source TCP port. So long as
any particular host uses a given ephemeral port number only once for any TCP con-
nection, each TCP session on any network can be uniquely identified through the
source address, source port, destination address, destination port, and the number
of the protocol running on top of TCP.

TCP Session Setup

TCP uses a three-way handshake to set up a session:

 1. The client sends a synchronization (SYN) to the server. This packet is a normal
TCP packet, but with a SYN bit set in the TCP header, and indicates the sender
is requesting a session to be set up with the receiver. This packet is normally
sent to a well-known port number, or some prearranged port number that the
client knows a server will be listening on at a particular IP address. This packet
includes the client’s initial sequence number.

Chapter 5 Higher Layer Data Transports136

 2. The server sends an acknowledgment for the SYN, a SYN-ACK. This packet
acknowledges the sequence number provided by the client, plus one, and includes
the server’s initial sequence number as the sequence number for this packet.

 3. The client sends an acknowledgment (ACK) including the server’s initial
sequence number plus one.

This process is used to ensure two-way communication exists between the client
and the server before beginning to transfer data. The initial sequence number chosen
by the sender and receiver is randomized in most implementations to prevent a third-
party attacker from guessing what sequence number will be used and taking over the
TCP session in its initial stages of formation.17

QUIC

In 2012, Jim Roskind designed a new transport protocol with the primary intent of
increasing the speed at which data can be transferred over relatively stable high-speed
networks. Specifically:

 • Reducing the three-way handshake to a single packet startup (a zero-way
handshake)

 • Reducing the number of retransmitted packets required to transfer data

 • Reducing head-of-line blocking across multiple data streams within a single
TCP stream caused by packet loss

Each of these is considered in the sections that follow.

Reducing the Startup Handshake
The rtt cannot, generally, be changed, because it is normally bounded by the physical
distance and link speed between the sender and receiver. One of the best ways to
reduce total data transfer time, then, is to simply reduce the number of round trips
required between the sender and receiver to transfer a given stream or block of data.
QUIC’s startup is designed to reduce the number of round trips required to set up a

17. Gont and Bellovin, Defending against Sequence Number Attacks.

QUIC 137

new connection from the three-way handshake of TCP to a 0 round trip time startup
process.

To do this, QUIC uses a series of cryptographic keys and hashes (see Chapter 10,
“Transport Security,” for more information); the process is

 1. The client sends the server a hello (CHLO) containing a proof demand, which
is a list of certificate types the client will accept to verify the server’s identity; a
set of certificates the client has access to; and a hash of the certificate the client
intends to use in this connection. One specific field, the source address token
(STK) will be left blank, because no communication has occurred with this
server before.

 2. The server will use this information to create an STK based on the informa-
tion provided in the client’s initial hello and the client’s source IP address. The
server sends a reject (REJ), which contains this STK.

Once the client has the STK, it includes this in future hello packets. If the STK
matches the previously used STK from this IP address, the server will accept the
hello.

Note

This IP address/STK pair can be stolen, and hence the source IP address
can be spoofed by an attacker with access to any communication with this
pair included. This is a known problem in QUIC, addressed in the QUIC
documentation pointed to in the “Further Reading” section at the end of the
chapter.

In comparison, TCP requires at least one-and-a-half rtts to set up a new ses-
sion: the SYN, the SYN-ACK, and then the following ACK. How much time does
moving to a single rtt connection time save? It depends on the implementation
of the client and server applications, of course. However, many web pages and
mobile device apps must connect to many different servers (perhaps hundreds)
to build a single web page or application screen. If each of these connections is
reduced from one-and-a-half rtts to a single rtt, there could be a significant per-
formance impact.

Chapter 5 Higher Layer Data Transports138

Reducing Retransmissions
QUIC uses a number of different mechanisms to reduce the number of retransmitted
packets:

 • Including Forward Error Correction (FEC) in all packets; this allows the
receiver to (often) rebuild corrupted information rather than request the infor-
mation to be resent.

 • Using negative acknowledgments (NACKs) rather than SACK or the triple
ACK mechanism to request retransmission of specific sequence numbers; this
prevents ambiguity between a request for a retransmission and network condi-
tions that cause multiple acknowledgments to be sent.

 • Using fast acknowledgments, as described previously for TCP.

 • Using the CUBIC congestion avoidance window control.

The CUBIC congestion avoidance mechanism is the most interesting of these.
CUBIC attempts to perform a binary search between the last window size before
a packet drop and some lower window size calculated using a multiplicative factor.
When a packet loss is detected (either through an RTO timeout or through a NACK),
the maximum window size (WMAX) is set to the current window size, and a new
minimum window size (WMIN) is calculated.

The sender’s window is set to WMIN and then quickly increased to a window size
halfway between WMIN and WMAX. Once the window reaches this halfway point,
the window size is increased very slowly in what is called probing, until the next packet
drop is encountered. This process allows CUBIC to find the maximum transmission
rate just below the point where the network begins dropping packets fairly quickly.

Reducing Head of Line Blocking
A “single transaction” across the Internet is often not a “single transaction,” but
rather a large collection of transactions across a number of different servers. To
build a single web page, for instance, hundreds of elements, such as images, scripts,
Cascading Style Sheet (CSS) elements, and Hypertext Markup Language (HTML)
files need to be transferred from the server to the client. There are two ways these
files can be transferred: in serial or in parallel. Figure 5-11 illustrates.

In Figure 5-11, three options are illustrated to transfer multiple elements from a
server to a client:

 • In the serialized option, the elements are transferred one at a time across a sin-
gle session. This is the slowest of the three possible options, as the entire page
must be built element by element, with smaller elements waiting on larger ones
to transfer before they can be displayed.

QUIC 139

 • In the multiple streams option, each element is transferred over a separate con-
nection (such as a TCP session). This is much faster, but it requires multiple con-
nections to be built, which can negatively impact the client and server resources.

 • In the multiplexed option, each element is transferred separately across a sin-
gle connection. This allows each element to be transferred at its own rate, but
with the resource overhead of the multiple streams option.

Some form of multiplexed transfer mechanism tends to provide the fastest trans-
fer rate with the most efficient use of resources, but how should this multiplexing be
implemented? The Hypertext Transfer Protocol version 2 (HTTPv2) allows a web
server to multiplex multiple elements across a single HTTP session; since HTTP
runs on top of TCP, this means a single TCP stream can be used to transfer multiple
web page elements in parallel. However, a single dropped packet at the TCP level
means every parallel transfer within the HTTP stream must be paused while TCP
recovers (this is a form of fate sharing).

QUIC solves this problem by allowing multiple HTTPv2 streams to reside within
a single QUIC connection. This reduces the transport overhead at the client and
server, while providing optimal delivery of the web page elements.

element 1

element 1 element 1

element 1

element 3 element 2 element 1

element 1

element 1

element 1

element 2

element 2 element 2

element 2

element 2

element 2

element 2

element 3

element 3 element 3

element 1

element 2

element 3

element 3

element 3

element 3

element 3

server

server

server

client

client

client

se
ri

al
iz

ed
m

ul
tip

le
xe

d
m

ul
tip

le
st

re
am

s

Figure 5–11 Multiple Element Transfer Options

Chapter 5 Higher Layer Data Transports140

Path MTU Discovery

One of the core issues of the argument between Asynchronous Transfer
Mode (ATM) and the Internet Protocol (IP) was the fixed cell size. While IP
networks rely on variable length packets, ATM, in order to facilitate faster
switching speeds, and in order to interoperate better with the many differ-
ent Time Division Multiplexing (TDM) physical layers, specified fixed length
cells. IPv4, in particular, not only provides for a variable length packet, but
fragmentation in flight. Figure 5-12 illustrates.

In Figure 5-12, if A sends a packet toward E, what size should it make the
packet? The only link A really knows about is the link between itself and B,
which is marked having a 1,500 octet Maximum Transmission Unit (MTU)
size. If A sends a 1,500 octet packet, however, the packet will not be able to
pass through the [C,D] link. There are two ways to solve this problem.

The first is for C to fragment the packet into two smaller packets. This is
possible in IPv4; C can determine the packet will not fit on the next link over
which the packet should be forwarded, and break the packet into two smaller
packets. There are a number of problems with this solution, of course. For
instance, the process of fragmenting a packet requires a lot more work on
the part of C, possibly even moving the packet out of the hardware switching
path into the software switching path.

The second is for A to never send a packet larger than the minimum
MTU along the entire path to E. To do this, A must discover the minimum
MTU along the path, and it must be able to fragment the information sent
from upper layer protocols into multiple packets before transmission. IPv6
chooses this latter option, relying on Path MTU (PMTU) discovery to find
the minimum MTU along a path (assuming PMTU actually works, a fairly
bad assumption in large public networks), and allowing the IPv6 process at
A to fragment information from upper layer protocols into multiple packets,
which are then reassembled into the original upper layer data block at the
receiver.

This solution, however, also seems to be problematic. In recent work with
the Domain Name System (DNS), researchers have discovered that some 37%

A B C D E

1500 1500 15001000

Figure 5–12 Packet Fragmentation Example

QUIC 141

of all DNS resolvers will drop fragmented IPv6 packets.18 Why would this be
so? The easiest way to understand is to consider the structure of a fragmented
packet, and the nature of DoS and DDoS attacks.

When a packet is transmitted, a header is placed on the packet indicating
the receiving service (a socket or protocol number of some kind), as well as
information about the transmitting service. This information is important to
filtering a packet based on various security policies, particularly if the secu-
rity policy is “only allow session initiation packets into the network unless the
packet belongs to an existing session.” In other words, a typical stateful filter
protecting a server will have some basic rules it follows:

 • If the packet initiates a new session, forward it and build a new session
record.

 • If the packet is part of an existing session, forward it and reset the session
timer.

 • If the packet is not part of an existing session, drop it.

 • Every now and again, clean out old sessions.

While it is possible to forge a packet that appears to be from an existing
session, it is not very easy; various nonces and other techniques are deployed
to discourage this sort of behavior. But fragmenting a packet removes the
header from the second half of the packet, effectively meaning the second
packet in a fragmented pair can only be attached to a particular session, or
flow, by tracing down the part of the packet that has the full header.

How can a router or middlebox do such a thing? It must somehow keep
a copy of each packet fragment with a header someplace in memory, so the
packet with the header can be referenced to process any future fragments.
How long must it keep these fragments with headers? There is actually no
way to tell. Ultimately, it is easier to simply drop any fragments than to main-
tain the state required to process them.

The result? It appears even source-based fragmentation is not very useful
at the IP layer.

This should bring to mind one of the founding principles of the Inter-
net Protocol suite: the end-to-end principle. The end-to-end principle states

18. Huston, “Dealing with IPv6 Fragmentation in the DNS.”

Chapter 5 Higher Layer Data Transports142

ICMP

While the transport protocols, such as TCP and QUIC, tend to receive the most
attention among the middle tier of protocols, there are a number of other protocols
that are just as important for the operation of an IP-based network. Among these is
ICMP, which can be said to provide metadata about the network itself. ICMP is a
simple protocol that is used to request specific state information, or for network

the network should not modify traffic in flight between two end devices; or
rather the network should operate as a black box connecting two devices,
never changing the data as it is received from the end host.

Does this mean all filtering of traffic should be banned on the public Inter-
net, imposing the end-to-end rule in earnest, leaving all security to the end
hosts? This does seem to be the flavor of the original IPv6 discussions around
stateful packet filters. This does not, however, seem like the most realistic
option available; the stronger defense is not a single perfect wall, but rather
a series of less than perfect walls. Defense in depth will beat a single firewall
every time.

Another alternative is to accept another bit of reality often forgotten in
the network engineering world: abstractions leak. The end-to-end principle
describes a perfectly abstracted system capable of carrying traffic from one
host to another, and a perfectly abstracted set of hosts between which traffic
is being carried. But all nontrivial abstractions leak; the MTU and fragmenta-
tion problem is just a leakage of state from the network into the host, and a
system on the host trying to abstract that leakage into the application sending
traffic over the network. In this kind of situation, it might be best to sim-
ply admit the leakage and officially push the information up the stack so the
application can make a better decision about how to send traffic.

But this leads to another interesting question to ponder: is the stateful fil-
tering described here betraying the end-to-end principle? The answer depends
on whether you consider the upper layer protocol shipping the data to be the
end point, or the system the application is running on (hence, including the IP
stack itself), the end point. Either way, this bit of ambiguity has plagued the
Internet from the earliest of days, although the network engineering world
has not always thought seriously about the difference between the two points
of view.

Final Thoughts 143

devices to send information about why a particular packet is being dropped at some
point in the network. Specifically:

 • ICMP can be used to send an echo request or echo reply. This functionality is
used to ping a particular destination address, which can be used to determine if
the address is reachable without consuming too many resources at the receiver.

 • ICMP can be used to send a notification about a packet being dropped because
it is too large to be transmitted across a link (the packet is too big).

 • ICMP can be used to send a notification that a packet has been dropped
because its Time to Live (TTL) has reached 0 (the packet has expired
in transit).

The packet too big response can be used to find the Maximum Transmission
Unit (MTU) across a network; the sender can transmit a large packet and wait
to see if some device in the network sends a packet too big notification through
ICMP. If such a notification arrives, the sender can try progressively smaller pack-
ets to determine the largest packet that can be transmitted end-to-end across the
network.

The expired in transit response can be used to trace the route from a source to a
destination in a network (this is called trace route). A sender can transmit a packet
to a particular destination using any transport layer protocol (including TCP, UDP,
or QUIC), but with a TTL of 1. The first hop network device should decrement the
TTL and send an ICMP expired in transit notification back to the sender. Sending
a series of packets, each with a TTL one larger than the previous one, each device
along the path can be induced to transmit an ICMP expired in transit notification to
the sender, revealing the entire path of the packet.

Final Thoughts

Upper layer transport protocols manage the same problems as lower layer transport
protocols—error control, flow control, transport, and marshaling—only end to end
rather than device to device. Even so, while many of the solutions are similar or the
same, many other solutions are radically different. This chapter has considered four
different upper layer transport protocols, two of which occupy the same “space” in a
protocol stack—TCP and QUIC—and two of which occupy completely different
spaces in a protocol stack—IP and ICMP. While there are other solutions to the
problems presented, the solutions presented by these four protocols cover most of
the widely deployed solutions to these problems.

Chapter 5 Higher Layer Data Transports144

The next chapter moves you from understanding how information is transported
across a network into the realm of how the layers considered in this and the previous
chapter interact. These interlayer problems relate to the interaction surfaces consid-
ered in the State/Optimization/Surface model of network complexity you will find
useful in analyzing a large number of network problems.

Further Reading

Armitage, Grenville. “Summary of Five New TCP Congestion Control Algo-
rithms Project.” The FreeBSD Forums. Accessed July 5, 2017. https://
forums.FreeBSD.org/threads/22396/.

Blanton, Ethan, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control.
Request for Comments 5681. RFC Editor, 2009. doi:10.17487/RFC5681.

Chu, H. K. Jerry, and Vivek Kashyap. Transmission of IP over InfiniBand (IPoIB).
Request for Comments 4391. RFC Editor, 2006. doi:10.17487/RFC4391.

Cole, Robert G., Dr. David H. Shur, and Curtis Villamizar. IP over ATM: A Frame-
work Document. Request for Comments 1932. RFC Editor, 1996. doi:10.17487/
RFC1932.

Deering, Dr. Steve E., and Robert M. Hinden. “Internet Protocol, Version 6 (IPv6)
Specification.” Internet-Draft. Internet Engineering Task Force, May 2017.
https://datatracker.ietf.org/doc/html/draft-ietf-6man-rfc2460bis-13.

Desanti, Claudio, Robert Nixon, and Craig Carlson. Transmission of IPv6, IPv4,
and Address Resolution Protocol (ARP) Packets over Fibre Channel. Request
for Comments 4338. RFC Editor, 2006. doi:10.17487/RFC4338.

“DoD Standard Internet Protocol.” IETF, January 1980. https://tools.ietf.org/html/
rfc760.

Fairhurst, Gorry, Marie-Jose Montpetit, Bernhard Collini-Nocker, Hilmar Linder,
and Horst D. Clausen. A Framework for Transmission of IP Datagrams
over MPEG-2 Networks. Request for Comments 4259. RFC Editor, 2005.
doi:10.17487/RFC4259.

Floyd, Sally, Jamshid Mahdavi, Matt Mathis, and Dr. Allyn Romanow. TCP Selective
Acknowledgment Options. Request for Comments 2018. RFC Editor, 1996.
doi:10.17487/RFC2018.

Gont, Fernando, and Steven Bellovin. Defending against Sequence Number Attacks.
Request for Comments 6528. RFC Editor, 2012. doi:10.17487/RFC6528.

https://forums.FreeBSD.org/threads/22396/
https://forums.FreeBSD.org/threads/22396/
https://datatracker.ietf.org/doc/html/draft-ietf-6man-rfc2460bis-13
https://tools.ietf.org/html/rfc760
https://tools.ietf.org/html/rfc760

Further Reading 145

Gupta, Mukesh, and Alex Conta. Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification. Request for Comments
4443. RFC Editor, 2006. doi:10.17487/RFC4443.

Ha, Sangtae, Injong Rhee, and Lisong Xu. “CUBIC: A New TCP-Friendly High-
Speed TCP Variant.” ACM SIGOPS Operating System Review 42, no. 5 (July
2008): 64–74.

Huston, Geoff. “Dealing with IPv6 Fragmentation in the DNS.” APNIC Blog, August
22, 2017. https://blog.apnic.net/2017/08/22/dealing-ipv6-fragmentation-dns/.

Internet Control Message Protocol. Request for Comments 792. RFC Editor, 1981.
doi:10.17487/RFC0792.

“Internet Protocol.” IETF, September 1981. https://tools.ietf.org/html/rfc791.

IPv4 Exhaustion, June 9, 2010. https://commons.wikimedia.org/wiki/
File:Ipv4- exhaust.svg.

Jacobson, V. “Congestion Avoidance and Control.” In Symposium Proceedings on
Communications Architectures and Protocols, 314–29. SIGCOMM ’88. New
York, NY, USA: ACM, 1988. doi:10.1145/52324.52356.

Jamal, Habibullah, and Kiran Sultan. “Performance Analysis of TCP Congestion
Control Algorithms.” International Journal of Computers and Communica-
tions 2, no. 1 (2008): 30–38.

Johansson, Peter G. IPv4 over IEEE 1394. Request for Comments 2734. RFC Editor,
1999. doi:10.17487/RFC2734.

Katz, Dave. Transmission of IP and ARP over FDDI Networks. Request for Com-
ments 1390. RFC Editor, 1993. doi:10.17487/RFC1390.

Lawrence, Joe L., and David M. Piscitello. The Transmission of IP Datagrams
over the SMDS Service. Request for Comments 1209. RFC Editor, 1991.
doi:10.17487/RFC1209.

Luciani, Dr. James V., Dr. Bala Rajagopalan, and Daniel O. Awduche. IP over Opti-
cal Networks: A Framework. Request for Comments 3717. RFC Editor, 2004.
doi:10.17487/RFC3717.

Mathis, Matt, Nandita Dukkipati, and Yuchung Cheng. Proportional Rate Reduc-
tion for TCP. Request for Comments 6937. RFC Editor, 2013. doi:10.17487/
RFC6937.

Panabaker, Ruston, Simon Wegerif, and Dan Zigmond. The Transmission of IP Over
the Vertical Blanking Interval of a Television Signal. Request for Comments
2728. RFC Editor, 1999. doi:10.17487/RFC2728.

https://blog.apnic.net/2017/08/22/dealing-ipv6-fragmentation-dns/
https://tools.ietf.org/html/rfc791
https://commons.wikimedia.org/wiki/File:Ipv4-exhaust.svg
https://commons.wikimedia.org/wiki/File:Ipv4-exhaust.svg

Chapter 5 Higher Layer Data Transports146

Partridge, Dr. Craig, Mark Allman, and Sally Floyd. Increasing TCP’s Initial Win-
dow. Request for Comments 3390. RFC Editor, 2002. doi:10.17487/RFC3390.

Postel, J. “Comments on Internet Protocol and TCP,” August 15, 1977. https://
www.rfc-editor.org/ien/ien2.txt.

———. “Draft Internetwork Protocol Specification, Version 2,” February 1978.
https://www.rfc-editor.org/ien/ien28.pdf.

———. “Internetwork Protocol Specification, Version 4,” June 1978. https://
www.rfc-editor.org/ien/ien41.pdf.

———. “Internetwork Protocol Specification, Version 4,” September 1978. https://
www.rfc-editor.org/ien/ien41.pdf.

“QUIC, a Multiplexed Stream Transport over UDP—The Chromium Projects.”
Accessed July 5, 2017. https://www.chromium.org/quic.

Riegel, Max, Sangjin Jeong, and HongSeok Jeon. Transmission of IP over Ethernet
over IEEE 802.16 Networks. Request for Comments 5692. RFC Editor, 2009.
doi:10.17487/RFC5692.

Stevens, W. Richard. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. Request for Comments 2001. RFC Editor, 1997.
doi:10.17487/RFC2001.

Varada, Srihari V. IP Version 6 over PPP. Request for Comments 5072. RFC Editor,
2007. doi:10.17487/RFC5072.

Waitzman, David. Standard for the Transmission of IP Datagrams on Avian Car-
riers. Request for Comments 1149. RFC Editor, 1990. doi:10.17487/RFC1149.

Review Questions

 1. The choice of using a /64 for the host address space is often considered contro-
versial. What do you think are the positive and negative aspects of this specific
choice?

 2. The Internet has been “running out of IPv4 address space” for many years.
One of the reactions to this lack of address space has been the widespread
deployment of Network Address Translators (NATs). The following questions
relate to NATs.

 a. What is the difference between a NAT and a Port Address Translator (PAT)?

 b. Why do PATs create a problem for FTP (for instance)? How is this normally
solved?

https://www.rfc-editor.org/ien/ien2.txt
https://www.rfc-editor.org/ien/ien2.txt
https://www.rfc-editor.org/ien/ien28.pdf
https://www.rfc-editor.org/ien/ien41.pdf
https://www.rfc-editor.org/ien/ien41.pdf
https://www.rfc-editor.org/ien/ien41.pdf
https://www.rfc-editor.org/ien/ien41.pdf
https://www.chromium.org/quic

Review Questions 147

 c. Throughout the development of IPv6, there was a general movement against
the deployment of NATs and PATs; can you think of or find the reasons
engineers objected to the use of NAT and PAT on the global Internet?

 3. The fragmentation of packets by routers and other network devices was
removed from the IPv6 specification, although it was allowed in the IPv4 speci-
fications. What are the tradeoffs in removing this capability? What complexity
does fragmentation add to network devices, and what complexity does remov-
ing it from the network devices add to end hosts?

 4. How can an implementation of TCP differentiate between well-known and
ephemeral ports? Does it need to?

 5. From a security perspective, what might be the advantages and disadvantages
of allowing network devices and hosts to respond to ICMP, versus not allowing
them to?

 6. Explain the aggregation of IPv6 addresses in terms of nibbles (4 bits) rather
than in bits, as is done in the chapter.

 7. Why is the prefix length called the prefix length? What is the history behind
this term?

 8. Compare the prefix length to the older method for determining the point where
the network address stops and the host bits, or the “bits the network device does
not care about,” begin, the subnet mask. Which do you think is easier to use?

This page intentionally left blank

149

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the four ways in which a device can discover the mapping
between identifiers used in different protocols at different layers

 0 Understand port numbers

 0 Understand the basic operation of the Domain Name System (DNS)

 0 Understand the basic operation of the Dynamic Host Configuration
 Protocol (DHCP)

 0 Understand the Address Resolution Protocol (ARP)

 0 Understand Neighbor Discovery and Stateless Address Autoconfiguration

 0 Understand the default gateway

In a layered and/or modularized system, there must be some way to relate services
or entities in one layer to services and entities in another. Figure 6-1 illustrates the
problem.

Chapter 6

Interlayer Discovery

Chapter 6 Interlayer Discovery150

In Figure 6-1:

 • How can A, D, and E discover the IP address they should be using for their
interfaces?

 • How can D discover the Media Access Control (MAC), physical, or lower layer
protocol address it should use to send packets to E?

 • How can client1.example, which is running on D, discover the Internet Proto-
col (IP) address it should use to reach www.service1.example?

 • How can D and E discover what address they should send traffic to if it is not
on the same wire or segment?

Each of these problems represents a different part of interlayer discovery. While
these problems may seem unrelated, they actually represent the same set of prob-
lems, with a narrow set of available solutions, at different layers of a network or
protocol stack. This chapter will consider a range of possible solutions for these
problems, including examples of each solution.

This chapter will end with a section on the default gateway problem; while this
is not strictly an interlayer discovery problem, it is still important to understanding
how an IP network operates.

Interlayer Discovery Solutions

The main reason the interlayer discovery problem space appears to be a large set of
unrelated problems, rather than a single problem, is that it is spread across many dif-
ferent layers; each set of layers in a network protocol stack needs to be able to dis-
cover which service or entity at “this” layer relates to which service or entity at some
lower layer. Another way to describe this set of problems is the ability to map an

www.service1.example

2001:db8:3e8:100::1 A D

E

B C 2001:db8:3e8:110::10

2001:db8:3e8:110::11

2001:db8:3e8:110::1

client1.example

Figure 6-1 Interlayer Discovery Problems

http://www.service1.example?
http://www.service1.example

Interlayer Discovery Solutions 151

identifier at one layer to an identifier at another layer—identifier mapping. As there
are at least three pairs of protocols in most widely deployed protocol stacks (and
potentially, or arguably, eight), a wide variety of solutions must be deployed to solve
the same set of interlayer discovery problems in different places. Two definitions will
be helpful in understanding the range of solutions, and actual deployed protocols
and systems in this space:

 • An identifier is a set of numbers or letters (such as a string) that uniquely iden-
tify an entity.

 • A device, whether real or virtual, which appears to be a single destination from
the point of view of the network will be called an entity when considering
generic problems and solutions, and hosts or services when considering spe-
cific solutions.

There are four different ways to solve the interlayer discovery and address assign-
ment problems:

 • Using well-known and/or manually configured identifiers

 • Storing the information in a mapping database that services can access to map
between different kinds of identifiers

 • Advertising a mapping between two identifiers in a protocol

 • Calculating one kind of identifier from another

These solutions not only apply to discovery, but also identifier assignment. When
a host is connected to a network, or a service is spun up, it must somehow determine
how it should identify itself—for instance, what Internet Protocol version 6 (IPv6)
address it should use when connecting to the local network. The solutions available
for solving this problem are the same four solutions.

These four solutions will be considered in the following sections.

Well-Known and/or Manually Configured Identifiers

The solution chosen often depends on the scope of the identifiers, the sheer number
of identifiers that need to be assigned, and the rate at which the identifiers change. If

 • The identifiers are widely used, especially in protocol implementations, and
the network will simply not work without some agreement on the interlayer
mappings, and…

Chapter 6 Interlayer Discovery152

 • The number of mappings between identifiers is relatively small, and…

 • The identifiers are generally stable—in particular, they are never changed in a
way that requires existing, deployed implementations to be modified in order
to allow the network to continue functioning, then…

The easiest solution is to manually maintain a mapping table of some kind.
For instance, the Transmission Control Protocol (TCP) carries a number of higher

layer transport protocols. The problem of relating individual carried protocols to
port numbers is a global interlayer discovery problem: every implementation of TCP
deployed in a real network must be able to agree on what services are reachable on
specific port numbers for the network to “work.” The range of interlayer mappings,
however, is very small, a few thousand port numbers need to be mapped to services,
and fairly static (new protocols or services are not often added). This specific prob-
lem, then, is easy to solve through a manually managed mapping table.

The mapping table for TCP port numbers is maintained by the Internet Assigned
Numbers Authority (IANA), at the direction of the Internet Engineering Task Force
(IETF); a part of this table is shown in Figure 6-2.1

In Figure 6-2, the echo service is assigned port 7; this service is used to pro-
vide the ping functionality described at the end of Chapter 5, “Higher Layer Data
Transports.”

Mapping Database and Protocol

If the number of entries in the table becomes large enough, the number of people
involved in maintaining the table becomes large enough, or the information is
dynamic enough that it needs to be learned at the time the mapping is required,
rather than when a piece of software is deployed, it makes sense to build and distrib-
ute a database dynamically. Such a system should include protocols to synchronize
database partitions to present a consistent view to external queries, and protocols
hosts and services can use to query the database with one identifier to discover the
matching identifier from a different layer of the network.

Dynamic mapping databases may accept input through manual configuration or
automated processes (such as a discovery process that gathers information about the
state of the network and stores the resulting information in the dynamic database).
They may also either be distributed, which means copies or portions of the database

1. This chart is taken from https://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xhtml.

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Interlayer Discovery Solutions 153

are stored on a number of different hosts or servers, or centralized, which means the
database is stored on a small number of hosts or servers.

The Domain Name System (DNS) is described as an example of an identity map-
ping service based on a dynamic, distributed database. The Dynamic Host Con-
figuration Protocol (DHCP) is described as an example of a similar system used
primarily for the assignment of addresses.

Advertising Identifier Mappings in a Protocol

If the scope of the mapping problem can be contained, but the number of identity
pairs is large, or can change rapidly, then creating a single protocol that allows enti-
ties to request mapping information from a device directly can be an optimal solu-
tion. For instance, in Figure 6-1, D could ask E directly what its local MAC (or
physical) address is.

Figure 6-2 IANA TCP Port Mapping Table

Chapter 6 Interlayer Discovery154

The Internet Protocol version 4 (IPv4) Address Resolution Protocol (ARP) is a
good example of this kind of solution, as is the IPv6 Neighbor Discovery (ND) pro-
tocol. These examples are considered in more detail in later sections.

Calculating One Identifier from the Other

In some cases, it is possible to calculate an address or identifier at one layer from the
address or identifier in another layer. Few systems use this technique for mapping
addresses; most systems that use this technique do so in order to assign an address.
One example of this type of system is Stateless Address Autoconfiguration (SLAAC),
an IPv6 protocol hosts can use to determine what IPv6 address should be assigned to
an interface, which is considered in more detail as part of the IPv6 ND discussion
later in the chapter.

Another example of using a lower layer address to calculate an upper layer address
is in the formation of end-system addresses in the International Organization for
Standardization (ISO) suite of protocols, such as Intermediate System to Intermedi-
ate System (IS-IS). This example is considered in more detail in Chapter 16, “Link
State and Path Vector Control Planes.”

Interlayer Discovery Examples

Four examples of protocols providing interlayer discovery and address assignment
are considered in the following sections.

The Domain Name System

DNS maps between human-readable character strings, such as the name service1.
example used in Figure 6-1, to IP addresses. Figure 6-3 illustrates the basic operation
of the DNS system.

In Figure 6-3, assuming there are no caches of any kind (so the entire process is
illustrated):

 1. A host, A, attempts to connect to www.service1.example. The host’s operating
system examines its local configuration for the address of the DNS server it
should query to discover where this service is located, and finds the address of
the recursive server. The host operating system’s DNS application sends a DNS
query to this address.

http://www.service1.example

Interlayer Discovery Examples 155

 2. The recursive server receives this query and—given there are no caches—exam-
ines the domain name for which an address is being requested. The recursive
server notes the right-hand portion of the domain name is example, so it asks a
root server where to find information on the example domain.

 3. The root server returns the address of the server containing information about
the top-level domain (TLD) example.

 4. The recursive server now requests information about which server to contact
about service1.example. The recursive server proceeds through the domain
name one section at a time, using information discovered about the section of
the name to the right to discover which server to ask about the information to
the left. This process is called recursing through the domain name; hence the
server is called a recursive server.

 5. The TLD server returns the address of the authoritative server for service1.
example. If information about the location of a service has been cached from
a prior request, it is returned as a nonauthoritative answer; if the actual server
configured to hold the information about a domain replies, its answer is
authoritative.

www.service1.example
2001:db8:3e8:100::1

A

root
server

TLD
server

authoritative
server

recursive
server

B

1

2

3

4
56

7

8

9

Figure 6-3 An Overview of the Operation of the DNS System

Chapter 6 Interlayer Discovery156

 6. The recursive server requests information about www.service1.example from
the authoritative server.

 7. The authoritative server responds with the IP address of server B.

 8. The recursive server now responds to the host, A, with the correct information
to reach the requested service.

 9. The host, A, contacts the server on which www.service1.example is running on
the IP address 2001:db8:3e8:100::1.

This process may appear to be very drawn out; for instance, why not just keep all
the information on the root server to save a lot of steps? This would violate the basic
idea of DNS, however, which is to keep information about each domain in the con-
trol of the domain owner as much as possible. Further, this would make the building
and maintenance of the root servers very expensive, as they would need to be capable
of holding millions of records and answer hundreds of millions of queries for DNS
information each day. The separation of information allows each owner to control
his data and enables the DNS system to scale.

Normally, the information returned through a DNS query process is cached by
each server along the way, so the mapping does not need to be requested each time
the host needs to reach a new server.

How are these DNS tables maintained? Usually through the manual work of
domain- and top-level domain owners, as well as edge providers all across the world.
DNS does not automatically discover the name of each entity attached to the net-
work and what each one’s address is.

DNS pairs a manually maintained database, with the work spread out among
many different pairs of hands, with a protocol used to query the database; hence
DNS falls into the mapping database with a protocol class of solutions. How does
a host know what DNS server to query? This information is either manually config-
ured or learned through a discovery protocol such as IPv6 ND or DHCP.

DHCP

When a host (or some other device) first connects to a network, how does it know
which IPv6 address (or set of IPv6 addresses) to assign to the local interface? One
solution to this problem is for the host to send a query to some database to discover
what addresses it should use, such as DHCPv6. To understand DHCPv6, it is impor-
tant to begin with the concept of a link local address in IPv6. In the discussion on the
size of the IPv6 address space in Chapter 5, “Higher Layer Data Transports,”
fe80::/10 was called out as being reserved for link local addressing. To form a link

http://www.service1.example
http://www.service1.example

Interlayer Discovery Examples 157

local address, a device running IPv6 combines the fe80:: prefix with the MAC (or
physical) address, which is often formatted as an EUI-48 address, and sometimes as
an EUI-64 address (see Chapter 4, “Lower Layer Transports,” for information on
EUI addresses). For instance:

 • A device has an interface with the EUI-48 address 01-23-45-67-89-ab.

 • This interface is connected to an IPv6 network.

 • The device can assign fe80::123:4567:89ab as a link local address and use this
address to communicate to other devices on this segment only.

This is an example of calculating one identifier from another. Once the link local
address has been formed, DHCP6 is one method that can be used to obtain a unique
address within the network (or globally, depending on the configuration of the net-
work). DHCPv6 uses the User Datagram Protocol (UDP) for its lower layer trans-
port. Figure 6-4 illustrates.

In Figure 6-4:

 1. The host that has just connected to the network, A, sends a solicit message. This
message is sourced from the link local address and sent to the multicast address
ff02::1:2, UDP ports 547 (for the server) and 546 (for the client), so every device
connected to the same physical wire will receive the message. This message will

A

12 23

4

D

B C

Figure 6-4 DHCPv6 Operation

Chapter 6 Interlayer Discovery158

include a DHCP Unique Identifier (DUID), which the client forms,2 and the
server uses to ensure it is consistently communicating with the same device.

 2. B and C, both of which are configured to act as DHCPv6 servers, respond with
an advertise message. This message is a unicast packet directed at A itself,
using the link local address from which A sources the solicit message.

 3. Host A chooses one of the two servers from which to request an address. The
host sends a request to the multicast address ff02::1:2, asking B to provide it
with an address (or a pool of addresses), information on which DNS server to
use, etc.

 4. The server, running on B, then responds with a reply to the link local address
A initially formed; this verifies B has allocated the resources from its local pool
and allows A to start using them.

What happens if no device on the segment is configured as a DHCPv6 server?
For instance, in Figure 6-4, what if D is the only available DHCPv6 server because
DHCPv6 is not running on B or C? In this case, a router (or even some other host
or device) can act as a DHCPv6 relay. The DHCPv6 packets that A transmits will
be received by the relay, encapsulated, and transmitted to the DHCPv6 server for
processing.

Note

The process described here is called stateful DHCP and is normally triggered
when the Managed bit is set in the router advertisement. DHCPv6 can also work
with SLAAC, described later in the “IPv6 Neighbor Discovery” section, to pro-
vide information SLAAC does not provide in the stateless DHCPv6 mode. This
mode is normally used when the Other bit is set in the router advertisement. The
IETF draft DHCPv6/SLAAC Interaction Problems on Address and DNS Config-
uration describes this interaction and problems in the interaction between these
two mechanisms.3

3. Liu et al., “DHCPv6/SLAAC Interaction Problems on Address and DNS Configuration.”

In cases where the network administrator knows all IPv6 addresses will be con-
figured through DHCPv6, and only one DHCPv6 server will be available on each

2. Johnson and Narten, Definition of the UUID-Based DHCPv6 Unique Identifier (DUID-UUID).

Interlayer Discovery Examples 159

segment, the advertise and request messages can be skipped by enabling DHCPv6
rapid commit.

IPv4 Address Resolution Protocol

Although IPv6 is the focus of this book, there are some instances where IPv4 provides
a useful example of a solution; the IPv4 Address Resolution Protocol (ARP) is one
such case. ARP is a very simple protocol used to solve interlayer discovery without
relying on a server of any type. Figure 6-5 will be used to explain the operation
of ARP.

Assume A would like to send a packet to C. Knowing C’s IPv4 address,
203.0.113.12, is not enough for A to properly form a packet to place on the wire
toward C. To properly build a packet, A must also know

 • Whether or not C is on the same wire as A

 • The MAC, or physical, address of C

Without two pieces of information, A does not know how to encapsulate the
packet on the wire, so C will actually receive the packet, and B will ignore it. How
can A discover this information? The first question, whether or not C is on the same

A C

D

B

E

203.0.113.10 203.0.113.12

203.0.113.24

198.51.100.101

Figure 6-5 Address Resolution Protocol Example

Chapter 6 Interlayer Discovery160

wire as A, can be answered by considering the local interface IP address, the desti-
nation IP address, and the subnet mask. This is considered in more detail later in
this chapter.

ARP solves the second problem, matching the destination IP address to the desti-
nation MAC address, with the following process:

 1. Host A sends a broadcast packet to every device on the wire containing the
IPv4 address, but not the MAC address. This is an ARP request; it is A’s request
for the MAC address corresponding to 203.0.113.12.

 2. B and D receive this packet, but do not respond, because none of their local
interfaces have the address 203.0.113.12.

 3. Host C receives this packet and responds, again using a unicast packet, to the
request. This ARP reply contains both the IPv4 address and the matching MAC
address, giving A the information needed to build packets toward C.

When A receives this reply, it will insert the mapping between 203.0.113.12 and
the MAC address contained in the reply in a local ARP cache. This information will
be stored until it times out; the rules for timing out an ARP cache entry vary between
implementations and can often be manually configured. How long to cache an ARP
entry is a balance between not repeating the same information too often on the net-
work, in the case where the IPv4-to-MAC address mapping does not change very
often, and keeping up with any changes in the location of a device, in the case where
a particular IPv4 address may move between hosts.

Any device receiving an ARP reply can accept the packet and cache the infor-
mation it contains. For instance, B, on receiving the ARP reply from C, can insert
the mapping between 203.0.113.12 and C’s MAC address into its ARP cache. In
fact, this property of ARP is often used to speed up the discovery of devices when
they are attached to a network. There is nothing in the ARP specification that
requires a host to wait for an ARP request to send an ARP reply. When a device
connects to a network, it can simply send an ARP reply with the correct mapping
information to make the initial connection process to other hosts on the same wire
faster; this is called a gratuitous ARP.

Gratuitous ARPs are also useful for Duplicate Address Detection (DAD); if a host
receives an ARP reply with an IPv4 address it is using, it will report a duplicate IPv4
address. Some implementations will also send out a series of gratuitous ARPs in this
case, in order to prevent the address from being used, or force the other host to also
report the duplicate address.

Interlayer Discovery Examples 161

What happens if Host A requests an address using ARP that is not on the same
segment, such as 198.51.100.101 in Figure 6-5? There are two different possibilities
to this situation:

 • If D is configured to answer as a proxy ARP, it can respond to the ARP request
with the MAC address connected to the segment. A will then cache this
response, sending any traffic destined to E to the MAC address of D, which can
then forward this traffic on to E. Most widely deployed implementations do
not enable proxy ARP by default.

 • A could send the traffic to its default gateway, which is a locally connected
router that should know the path to any destination on the network.

IPv4 ARP is an example of a protocol that maps interlayer identifiers by including
both identifiers in a single protocol.

IPv6 Neighbor Discovery

IPv6 replaces the simpler ARP protocol with a series of Internet Control Message
Protocol (ICMP) v6 messages. Five kinds of ICMPv6 messages are defined:

 • Type 133, Router Solicitation

 • Type 134, Router Advertisement

 • Type 135, Neighbor Solicitation

 • Type 136, Neighbor Advertisement

 • Type 137, Redirect

Figure 6-6 is used to explain the operation of IPv6 ND.
To understand the operation of IPv6 ND, it is best to follow a single host as it is

connected to a new network. Host A in Figure 6-6 is used as an example.

 • A will begin by forming a link local address, as described previously; assume A
chooses fe80::AAAA as its link local address.

 • A now uses this link local address as a source address and sends a router solici-
tation to a link local multicast address (the all nodes multicast address); this is
an ICMPv6 message type 133.

Chapter 6 Interlayer Discovery162

 • B and D receive this router solicitation and respond with a router advertise-
ment, which is an ICMPv6 message type 134. This unicast packet is transmit-
ted to the link local address A used as the source address, fe80::AAAA.

 • The router advertisement contains information on how the newly connected
host should determine its local configuration information in the form of
several flags.

 • The M flag indicates the host should request an address through DHCPv6,
because this is a managed link.

 • The O flag indicates the host can retrieve information other than the address
it should use via DHCPv6. For instance, the DNS server the host should use
to resolve DNS names should be retrieved using DHCPv6.

 • If the O flag is set, and not the M flag, A must determine its own interface IPv6
address. To do this, it determines the set of IPv6 prefixes in use on this seg-
ment by examining the prefix information field in the router advertisement. It
chooses one of these prefixes and forms an IPv6 address using the same process
it used to form a link local address: it adds a local MAC (EUI-48 or EUI-64)
address to the indicated prefix. This process is called SLAAC.

 • The host must now make certain it has not chosen an address some other host
on the same network is using; it must perform DAD. To perform a duplicate
address detection:

 • The host sends a series of neighbor solicitation messages using the just-
formed IPv6 address and asking for the corresponding MAC (physical)
address. These are ICMPv6 type 135 messages transmitted from the link
local address already assigned to the interface.

A

C

E

DB

2001:db8:3e8:110::3

2001:db8:3e8:110::/64

2001:db8:3e8:110::120

2001:db8:3e8:110::12

Figure 6-6 IPv6 Neighbor and Router Discovery

Interlayer Discovery Examples 163

 • If the host receives a neighbor advertisement or neighbor solicitation using
the same IPv6 address, it assumes the locally formed address is a duplicate;
in this case, it will form a new address using a different local MAC address
and try again.

 • If the host does not receive a response, nor another host’s neighbor solicita-
tion using the same address, it assumes the address is unique and assigns the
newly formed address to the interface.

Resolving False Positives in Duplicate Address Detection

The DAD process, as described here, can result in false positives. Specifically,
if some other device on the wire loops the original neighbor solicitation pack-
ets back to A, it will believe these are from another host claiming the same
address, and hence will declare a duplicate and try to form a new address. If
the device constantly loops back any neighbor solicitation A sends, A will
never be able to form an address using SLAAC.

To solve this, RFC7527 outlines an enhanced DAD process. In this process,
A would calculate a nonce, or rather a randomly selected series of num-
bers, and include it in the neighbor solicitation used to check for a dupli-
cate address. This nonce is included through the Secure Neighbor Discovery
(SEND) extensions to IPv6 outlined in RFC3971.

If A receives a neighbor solicitation with the same nonce it used to send
neighbor solicitations during DAD, it will form a new nonce and try again. If
it occurs a second time, the host will assume the packets are being looped and
ignore any further neighbor solicitations with its own nonce in them. If the
received neighbor solicitations have a different nonce than the one the local
host has chosen, the host will assume there is, in fact, another host that has
chosen the same IPv6 address and will then form a new IPv6 address.

Once it has an address to transmit data from, A now needs one more piece of
information before sending information to another host on the same segment—the
MAC address of the receiving host. If A, for instance, wants to send a packet to C,
it will begin by sending a multicast neighbor solicitation message to C asking for its
MAC address; this is an ICMPv6 message type 135. When C receives this message,
it will respond with the correct MAC address to send traffic for the requested IPv6
address; this is an ICMPv6 message type 136.

Chapter 6 Interlayer Discovery164

While the preceding process describes router advertisements being sent in response
to a router solicitation, each router will send periodic router advertisements on each
attached interface. The router advertisement contains a lifetime field, indicating how
long the router advertisement is valid.

The Default Gateway Problem

How can a host know whether to try to send a packet to a host over the segment it is
connected to, or to send the packet to a router for further processing? If a host should
send packets to a router for further processing, how can it know which router (if
there is more than one) to send the traffic to? These two problems, together, make up
the default gateway problem.

For IPv4, the problem is fairly easy to solve using the prefix and prefix length.
Figure 6-7 illustrates.

IPv4 implementations assume any host within the same IPv4 subnet must be
physically connected to the same wire. How can the implementation tell the differ-
ence? The subnet mask is another form of the prefix length, which indicates where

A

C

D

E

B

198.51.100/24

203.0.113.3

203.0.113.1

203.0.100.1

198.51.100.3

198.51.100.12

192.0.2.120

Figure 6-7 IPv4 Default Gateway Usage

The Default Gateway Problem 165

the network address ends and the host address begins. In this case, assume the prefix
length is 24 bits, or the network address is a /24. The 24 tells you how many bits are
set in the subnet mask:

24 bits = 11111111.11111111.11111111.0000000

Since IPv4 uses a “dotted decimal” notation, this can also be written as
255.255.255.0. To discover whether or not C is on the same wire as A, A will

 1. Logically AND the subnet mask with the local interface address

 2. Logically AND the subnet mask with the destination address

 3. Compare the two results; if they match, the destination host is on the same
wire as the local interface

Figure 6-8 illustrates.
There are four IPv4 addresses in Figure 6-8; assume A needs to send packets to

C, D, and E. If A knows the prefix length of the local segment is 24 bits either through
manual configuration or through DHCPv4, then it can simply look at the 24 most
significant bits of each address, compare it to the 24 most significant bits of its own
address, and determine whether the destination is on segment or not. Twenty-four
bits of an IPv4 address produces a nice break between the third and fourth section of
the address (each section of an IPv4 address represents 8 bits of address space, for a
total of 32 bits of address space).

198.051.100.003
198.051.100.012

192.000.002.120
203.000.113.003

255.255.255.000

within the
24 bit prefix

Figure 6-8 Using the Prefix Length to Determine What Is On and Off Segment

Chapter 6 Interlayer Discovery166

Any two addresses with the same left three sections as A has, called the network
address, are on the same segment; any address that does not is not on segment. In
this case, the network address for A and C match, so A will believe C is on the same
segment, and hence will send packets to C directly, rather than sending them to a
router. For any destination A believes is off segment, it will send packets to the final
destination’s IPv4 address, but to the default gateway’s MAC address. This means
the router acting as the default gateway will accept the packet and switch it based on
the destination IPv4 address (packet switching is considered more fully in Chapter 7,
“Packet Switching”). How is the default gateway chosen? It is either manually config-
ured or included in a DHCPv4 option.

What about D? Because the network portions of the addresses don’t match, A
will believe D is off segment. In this case, A will send any traffic for D to its default
gateway, which is B. When B receives these packets, it will realize A and D are reach-
able through the same interface (based on its routing table—building routing tables
is considered in Part II, “The Control Plane”), so it will send an ICMP redirect to A
telling it to send traffic toward D directly, rather than through B.

IPv6 presents a more complex set of problems to solve when considering which
default gateway to use, because IPv6 assumes a single device may have many IPv6
addresses assigned to a particular interface. Figure 6-9 illustrates.

A

C F

D

EB

2001:db8:3e8:110::3
2001:db8:3e8:112::12

2001:db8:3e8:110::/64
2001:db8:3e8:111::/64
2001:db8:3e8:112::/64

2001:db8:3e8:111::120

2001:db8:3e8:113::10

2001:db8:3e8:114::10

Figure 6-9 IPv6 and On Link/Off Link Determination

Final Thoughts 167

In Figure 6-9, assume the network administrator has configured the following
policies:

 • No host may connect to A unless it has an address in the 2001:db8:3e8:110::/64
range of addresses.

 • No host may connect to D unless it has an address in the 2001:db8:3e8:112::/64
range of addresses.

Note

You would never build policies like this in the real world; this is a contrived
 situation to illustrate a problem set in a minimally sized network. A much more
real problem of this same type would involve unicast Reverse Path Forwarding
(uRPF).

To make these policies work, the administrator has assigned 110::3 and 112::12
to host C and 111::120 to host F. This might look odd, but it is perfectly legal for a
single segment to have multiple IPv6 subnets assigned in IPv6; it is also perfectly legal
to have a single device with multiple addresses. In fact, in IPv6, there are many situa-
tions where a single device may have a range of addresses assigned.

From the perspective of the prefix lengths, however, no two addresses assigned to
C or F are on the same subnet. Because of this, IPv6 does not rely on the prefix length
to determine what is on segment and what is not. Instead, IPv6 implementations
keep a table of all connected hosts, using neighbor solicitations to discover what is
on segment and what is not. When a host wants to send traffic off the local segment,
it sends the traffic to one of the routers it has learned about through router advertise-
ments. If a router receives a packet that it knows another router on the segment has
a better route to (because the routers have routing tables that tell them which path to
take to any particular destination), the router will send an ICMPv6 redirect message
telling the host to use some other first hop router to reach the destination.

Final Thoughts

This chapter has provided an overview of a very difficult problem, and a number of
complex solutions—the Domain Name System, the Dynamic Host Configuration
Protocol, the Address Resolution Protocol, and Neighbor Discovery—are far more
complex than the high-level overviews provided here. The deployment and operation

Chapter 6 Interlayer Discovery168

of DNS servers and the maintenance of the DNS system are an entire career field
within network engineering, for instance.

Even so, all of these complex solutions represent just one of four ways to solve
the difficult problems of mapping the identifiers used at one layer into the identi-
fiers used at another layer, or the discovery of identifiers in order to facilitate com-
munication. The contrast between the four basic solutions and the diverse protocols
implementing those solutions is a solid example of the premise of this book: if you
understand the problem space, and you understand the available solutions, then
it becomes possible to ask the right questions of a solution to understand how it
works.

Once the identifiers have been discovered, and the data to be transported has been
marshaled, it is time to switch packets through the network; this is the topic of the
next chapter.

Further Reading

Asati, Rajiv, Hemant Singh, Wes Beebee, Carlos Pignataro, Eli Dart, and Wesley
George. Enhanced Duplicate Address Detection. Request for Comments 7527.
RFC Editor, 2015. doi:10.17487/RFC7527.

Baker, Fred, and Brian E. Carpenter. First-Hop Router Selection by Hosts in a
Multi-Prefix Network. Request for Comments 8028. RFC Editor, 2016.
doi:10.17487/RFC8028.

Beebee, Wes, Hemant Singh, and Erik Nordmark. IPv6 Subnet Model: The Rela-
tionship between Links and Subnet Prefixes. Request for Comments 5942. RFC
Editor, 2010. doi:10.17487/RFC5942.

Droms, Ralph. DNS Configuration Options for Dynamic Host Configuration Pro-
tocol for IPv6 (DHCPv6). Request for Comments 3646. RFC Editor, 2003.
doi:10.17487/RFC3646.

———. Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6.
Request for Comments 3736. RFC Editor, 2004. doi:10.17487/RFC3736.

Gont, Fernando. Security Implications of IPv6 Fragmentation with IPv6 Neigh-
bor Discovery. Request for Comments 6980. RFC Editor, 2013. doi:10.17487/
RFC6980.

Johnson, Jarrod, and Dr. Thomas Narten. Definition of the UUID-Based DHCPv6
Unique Identifier (DUID-UUID). Request for Comments 6355. RFC Editor,
2011. doi:10.17487/RFC6355.

Review Questions 169

Kempf, James, Jari Arkko, Brian Zill, and Pekka Nikander. SEcure Neighbor Dis-
covery (SEND). Request for Comments 3971. RFC Editor, 2005. doi:10.17487/
RFC3971.

Liu, Bing, Sheng Jiang, Xiangyang Gong, Wendong Wang, and Enno Rey.
“DHCPv6/SLAAC Interaction Problems on Address and DNS Configuration.”
 Internet-Draft. Internet Engineering Task Force, August 2016. https://
datatracker.ietf.org/doc/html/draft-ietf-v6ops-dhcpv6-slaac-problem-07.

Mrugalski, Tomek, Marcin Siodelski, Bernie Volz, Andrew Yourtchenko, Michael
Richardson, Sheng Jiang, Ted Lemon, and Timothy Winters. “Dynamic
Host Configuration Protocol for IPv6 (DHCPv6) bis.” Internet-Draft. Inter-
net Engineering Task Force, June 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-dhc-rfc3315bis-09.

Narten, Dr. Thomas, Tatsuya Jinmei, and Dr. Susan Thomson. IPv6 Stateless
Address Autoconfiguration. Request for Comments 4862. RFC Editor, 2007.
doi:10.17487/RFC4862.

Nordmark, Erik, and Igor Gashinsky. Neighbor Unreachability Detection Is Too
Impatient. Request for Comments 7048. RFC Editor, 2014. doi:10.17487/
RFC7048.

Simpson, William A., Dr. Thomas Narten, Erik Nordmark, and Hesham Soliman.
Neighbor Discovery for IP Version 6 (IPv6). Request for Comments 4861. RFC
Editor, 2007. doi:10.17487/RFC4861.

Troan, Ole, and Ralph Droms. IPv6 Prefix Options for Dynamic Host Configuration
Protocol (DHCP) Version 6. Request for Comments 3633. RFC Editor, 2003.
doi:10.17487/RFC3633.

Zeng, Shengyou, John Jason Brzozowski, Kim Kinnear, and Bernie Volz. DHCPv6
Leasequery. Request for Comments 5007. RFC Editor, 2007. doi:10.17487/
RFC5007.

Review Questions

 1. Consider each of the four ways to solve the interlayer discovery and mapping
problem discussed in the chapter. Build a chart describing the state and surface
interactions for each one, and what the optimization tradeoffs might be.

 2. Describe the process the IETF uses for maintaining number registries. Does
this seem like a complex system or a simple one? Does it seem as though it
would be effective in ensuring identifier uniqueness?

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-rfc3315bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-rfc3315bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-dhcpv6-slaac-problem-07
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-dhcpv6-slaac-problem-07

Chapter 6 Interlayer Discovery170

 3. Consider that there must be millions, or perhaps hundreds of millions, of DNS
queries each day. How many DNS root servers are there? Given these two num-
bers, how do you think the DNS system is scaled to support the entire global
Internet?

 4. Is it possible to convert a globally reachable IP address to a DNS name (to map
in the opposite direction from what is described in the chapter)? Can you think
of one example where this would be useful?

 5. The “larger” DNS system also contains a mapping system from DNS names
to human-readable information about domain ownership called whois. What
protocol does it use to communicate, where is the information stored, and
what kinds of information are available through this system?

 6. Explain what DNS glue records are and what they are used for.

 7. From the perspective of state, optimization, and surface, what are the tradeoffs
between a mechanism like DHCP and one like SLAAC? Consider not only the
ease with which addresses can be assigned, but any security and control issues
that might arise with each one.

 8. Why would most implementations not enable proxy ARP by default? What is
the risk in enabling proxy ARP?

 9. How does the neighbor discovery protocol End System to Intermediate System
(ES-IS) compare to IPv6 ND?

 10. Consider how IPv6 Router Discovery works in relation to the default gateway
problem.

171

Chapter 7

Packet Switching

Learning Objectives

After reading this chapter, you should be able to understand:

 0 The four steps required to switch a packet through a network device

 0 How the receive and transmit rings are used in the process of forwarding a
packet

 0 The basic process of switching a packet, including how the forwarding
tables are built

 0 How routing is different from switching and the advantages of routing

 0 The concept of equal cost multipath

 0 The concept of link aggregation

 0 The concept of a bus and the concept of a crossbar fabric

Network devices are inserted into networks to solve a number of problems, including
connecting different kinds of media and scaling a network by only carrying packets
where they need to go. Routers and switches are, however, complex devices in their
own right; engineers can build an entire career by specializing in solving just a small
set of the problems encountered in carrying packets through a network device.
 Figure 7-1 is used to discuss an overview of the problem space.

Chapter 7 Packet Switching172

In Figure 7-1, there are four distinct steps:

 1. The packet needs to be copied off the physical media and into memory within
the device; this is sometimes called clocking the packet off the wire.

 2. The packet needs to be processed, which generally means determining the
correct outbound interface and modifying the packet in any way necessary.
For instance, in a router, the lower layer header is stripped off and replaced
with a new one; in a stateful packet filter, the packet may be dropped based
on internal state; etc.

 3. The packet needs to be copied from the inbound to the outbound interface. This
often involves a trip across an internal fabric, or bus. Some systems skip this step
by using a single memory pool for both inbound and outbound interfaces; these
are called shared memory systems (one thing about network engineering you
will notice is the names of things either tend to be too clever or too obvious).

 4. The packet needs to be copied back onto the outbound physical media; this is
sometimes called clocking the packet onto the wire.

Note

Smaller systems, particularly those focused on fast, consistent packet switching, will
often use shared memory to transfer a packet from one interface to another. The
time required to copy a packet in memory is often larger than the speed at which the
interfaces operate; shared memory systems avoid this in memory copying of packets.

physical
media

memory

memory

packet
processing

physical
media

1

2

3

4

Figure 7-1 Moving a Packet Through a Network Device

Physical Media to Memory 173

The problem space discussed in the sections that follow, then, consist of this:

How are packets which need to be forwarded by the network device carried
from the inbound to the outbound physical media, and how are packets exposed
to processing along this path?

Each of the following sections discusses one part of the solution to this problem.

Physical Media to Memory

The first step in processing a packet through a network device is to copy the packet
off the wire and into memory. Figure 7-2 is used to illustrate the process.

There are two steps in Figure 7-2:

 Step 1. The physical media chipset (the PHY chip) will copy each time (or logical)
slot from the physical media, which represents a single bit of data, into a
memory location. This memory location is actually mapped into a receive
ring, which is a set of memory locations (packet buffer) set aside for the
sole purpose of receiving packets being clocked off the wire. The receive
ring, and all packet buffer memory, is normally carved out of a single kind
of memory accessible by (shared by) all the switching components on the
receiving end of the line card or device.

time (logical) slots on physical media

memory locations

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

receive
ring

input queue

step 1

step 2

Figure 7-2 Clocking a Packet into Memory

Chapter 7 Packet Switching174

Note

A ring buffer is used based on a single pointer, which is incremented each time a
new packet is inserted into the buffer. For instance, in the ring shown in Figure 7-2,
the pointer would begin at slot 1 and increment through the slots as packets
are copied into the ring buffer. If the pointer reaches slot 7, and a new packet
arrives, the packet will be copied into slot 1—regardless of whether or not the
contents of slot 1 have been processed.

In packet switching, the most time-consuming and difficult task is
copying packets from one location to another; this is avoided as much
as possible through the use of pointers. Rather than moving a packet in
memory, a pointer to the memory location is passed from process to pro-
cess within the switching path.

 Step 2. Once the packet is clocked into memory, some local processor is inter-
rupted. During this interrupt, the local processor will remove the pointer
to the packet buffer containing a packet from the receive ring and place
a pointer to an empty packet buffer onto the receive ring. The pointer is
placed on a separate list called the input queue.

Processing the Packet

Once the packet is in the input queue, it can be processed. Processing can be seen as a
chain of events, rather than a single event; Figure 7-3 illustrates.

Some processing needs to take place before the packet is switched, such as Net-
work Address Translation, because it changes some information about the packet
used in the actual switching process. Other processing can take place after the switch.

network address
translation

post switch
processing

stateful packet
filtering

switchdeep packet
inspection

destination based
filtering

Figure 7-3 Packet Switching Process

Processing the Packet 175

Switching

Switching a packet is a somewhat simple operation:

 1. The switching process looks up the destination Media Access Control (MAC),
or physical device, address in a forwarding table (in switches this is sometimes
called the bridge learning table, or just the bridge table).

 2. The outbound interface is determined based on the information in this table.

 3. The packet is moved from the input queue to the output queue.

The packet is not modified in any way during the switching process; it is copied
from the input queue to the output queue.

Note

How is the forwarding table built? By a control plane. Part II of this book considers
control planes in some detail.

Routing

Routing is a more complex process than switching; Figure 7-4 illustrates.

packet data

packet data

forwarding
table

interlayer
table

upper layer
packet header

upper layer
packet header

lower layer
packet header

lower layer
packet header

destination
address

destination
address

destination
address

destination
address

used to determine if the router
should process this packet,
then removed

1

2

3

4

input queue

output queue

Figure 7-4 Routing a Packet

Chapter 7 Packet Switching176

In Figure 7-4, the packet begins on the input queue. The switching processor then

 1. Removes (or ignores) the lower layer header (for instance, the Ethernet fram-
ing on the packet). This information is used to determine whether or not the
router should receive the packet, but is not used during the actual switching
process.

 2. Looks up the destination address (and potentially other information) in the
forwarding table. The forwarding table relates the destination of the packet to
the next hop of the packet. The next hop can either be the next router in the
path toward the destination or the destination itself.

 3. The switching processor then examines an interlayer discovery table (such
as those considered in Chapter 6, “Interlayer Discovery”), to determine the
 correct physical address to which to send the packet to bring the packet one
hop closer to the destination.

 4. A new lower layer header is built using this new lower layer destination address
and copied onto the packet. Normally, the lower layer destination address is
cached locally, along with the entire lower layer header. The entire header is
rewritten in a process called the MAC header rewrite.

The entire packet is now moved from the input queue to the output queue.

Why Route?

Because routing is a more complex process than switching, why route? Figure 7-5
will be used to illustrate.

There are at least three specific reasons to route, rather than switch, in a network.
Using the network in Figure 7-5 as an example:

A D

E

B C

Figure 7-5 Why Route?

Processing the Packet 177

 • If the [B,C] link is a different kind of physical media than the two links con-
necting to hosts, with different encoding, headers, addressing, etc., then
routing will allow A and D to communicate without worrying about these dif-
ferences in the link types. This could be overcome in a purely switched network
through header translation, but header translation doesn’t really take any less
work than routing in the switching path, so there is little point in not rout-
ing to solve this problem. Another solution might be for every physical media
type to agree on a single addressing and packet format, but given the constant
advances in physical media, and the many different kinds of physical media,
this seems like an unlikely solution.

 • If the entire network were switched, B would need to know full reachabil-
ity information for D and E; specifically, D and E would need to know the
physical or lower layer addresses for each device connected to the host seg-
ment beyond C. This might not be a big problem in a smaller network, but in
larger networks, with hundreds of thousands of nodes, or the global Internet,
this will not scale—there is simply too much state to manage. It is possible to
aggregate reachability information with lower layer addressing, but it is more
difficult than using a higher layer address assigned based on the device’s topo-
logical attachment point, rather than an address assigned at the factory that
uniquely identifies the interface chipset.

 • If D sends a broadcast to “all devices on segment,” A will receive the broad-
cast if B and C are switches, but not if B and C are routers. Broadcast packets
cannot be eliminated, as they are an essential part of just about every trans-
port protocol, but in purely switched networks, broadcasts present a very
hard-to-solve scaling problem. Broadcasts are blocked (or rather consumed)
at a router.

Note

In the commercial networking world, the terms routing and switching are often used
interchangeably. The reason for this is primarily marketing history; routing always
originally meant “switched in software,” while switching always meant “switched
in hardware.” As packet switching engines capable of rewriting a MAC header in
hardware became available, they were called “Layer 3 switches,” which was eventu-
ally shortened to just switch. Most data center “switches,” for instance, are actually
routers, as they do perform a MAC header rewrite on forwarded packets. If someone
calls a piece of equipment a switch, then it is best to clarify whether it is a Layer 3
switch (properly a router) or a Layer 2 switch (properly a switch).

Chapter 7 Packet Switching178

Note

The terms link and connection are used interchangeably here; a link is a physical
or virtual wired or wireless connection between two devices.

Equal Cost Multipath

In some network designs, engineers will introduce parallel links between two net-
work nodes. If you assume these parallel links are equal in bandwidth, latency, and
so on, they are said to be equal cost. In this scenario, the links are said to be equal
cost multipath (ECMP).

In networking, there are two variants seen frequently on production networks.
They behave similarly but are different in how the links are grouped and managed by
the network operating system.

Link Aggregation
Link aggregation schemes take multiple physical links and bundle them into a sin-
gle virtual link. For purposes of routing protocols and loop prevention algorithms
such as spanning tree, a virtual link is treated as if it were a single physical link.

Link aggregation is used to increase bandwidth between network nodes without
having to replace slower physical links with faster ones. For instance, two 10Gbps
links could be aggregated into a single 20Gbps link, thus doubling the potential
bandwidth between the two nodes, as shown in Figure 7-6. The word potential was
chosen carefully, as aggregated links do not, in practice, scale linearly.

The problem link aggregation faces is determining which packets should be sent
down which member of the bundle. Intuitively, this might not seem like a problem.
After all, it would seem to make sense to use the link bundle in a round-robin fash-
ion. The initial frame would be sent down the first member of the bundle, the second
frame down the second member, and so on, eventually wrapping back around to the
first link bundle member. In this way, the link should be used perfectly evenly, and
bandwidth should scale linearly.

A B

10g

20g single logical link

10g

Figure 7-6 Link Aggregation

Processing the Packet 179

There are a very few real-life implementations where aggregated links are used
on a round-robin basis like this because they run the risk of delivering out-of-order
packets. Assume Ethernet frame one is sent down link member one, and frame two
is sent down link member two immediately after. For whatever reason, frame two
gets to the other end before frame one. The packets that these frames contain will be
delivered to the receiving hosts out of order—packet two before packet one. This is
a problem because a computational burden is now placed on the host to reorder the
packets so the entire datagram can be properly reassembled.

Therefore, most vendors implement flow hashing to ensure the entirety of a traf-
fic flow uses the same bundle member. In this way, there is no risk of a host receiving
packets out of order, as they will be sent sequentially across the same link member.

Hash Algorithms

A hash is a simple concept that is actually quite difficult to implement in a
useful way: a hash takes a string of numbers of any size and returns a fixed
length number, or hash, that (more or less) uniquely represents the original
string. The simple-to-implement part is this: one rather naïve hash is to sim-
ply add the numbers in a set of numbers until you reach a single digit, calling
the result the hash. For instance:

23523

2 + 3 + 5 + 2 + 3 == 15

1 + 5 == 6

Hence, the number 23523 can be represented as 6. One curious property
of the hash is there is no way to determine, from the hash, what the original
number was—this is one of the essential observations of many uses for the
hash. If I share a number with some third party, and that party then shares it
with you, you can ask me for the hash of the number (without telling me what
the actual number is!), and you can verify the number is the same by verifying
the hash I give you matches the one you calculate.

The hash here is naïve because it is too easy to obtain a collision. In other
words, there are many different sets of numbers that will result in a hash of
6 given the same process, such as 222, 33, 111111, and (probably) an almost
infinite number of others. In some situations, collisions are extremely undesir-
able. For instance, if you are trying to store pairs of numbers, where you look
up the first number to find the second (an indexing problem), then you want to
minimize collisions. Once you have computed the hash of the number you are

Chapter 7 Packet Switching180

using as the index, you do not want to have the result point to a hash bucket
with a lot of entries, as each entry in the bucket needs to be searched to find
the index. In the extreme case, every number will index into a single hash
bucket, resulting in the hash being completely ineffective as a sorting tool.

In other cases, such as the load-sharing example given here, it is more impor-
tant to make certain the hash spreads entries out among the available buckets
as evenly as possible. You want to make certain each bucket contains about the
same number of entries, as each bucket represents a single link, and you want
the links to each receive the traffic of about the same number of destinations.

Flow hashing works by performing a mathematical operation on two or more
static components of a flow, such as source and destination MAC addresses, source
and destination Internet Protocol (IP) addresses, or Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP) port numbers to compute a link member
the flow will use. Because the characteristics of the flow are static, the hashing algo-
rithm results in an identical computation for each frame or packet in a traffic flow,
guaranteeing the same link will be used for the life of the flow.

While flow hashing solves the out-of-order packet problem, it introduces a new
problem. Not all flows are the same size. Some flows use a high amount of band-
width, such as those used for file transfers, backups, or storage; these are sometimes
called elephant flows. Other flows are quite small, such as those used to load a web
page or communicate using voice over IP; these are sometimes called mouse flows.
Because flows are different sizes, some link members might be running at capacity,
while others are underutilized.

This mismatch in utilization brings us back around to the point about linear
scaling. If frames were load-balanced across an aggregated link bundle perfectly
evenly, then adding new links to the bundle would evenly multiply capacity. How-
ever, hashing algorithms combined with the unpredictable volume of traffic flows
mean bundled links will not be evenly loaded.

The job of the network engineer is to understand the type of traffic flowing
through the aggregated bundle and choose an available hashing algorithm that will
result in the most even load distribution. For instance, some considerations might be

 • Are many hosts in the same broadcast domain communicating with one
another across the aggregated link? Hashing against the MAC addresses found
in the Ethernet frame header is a possible solution, because the MAC addresses
will be varied.

Processing the Packet 181

 • Are a small number of hosts communicating to a single server across the aggre-
gated link? There might not be enough variety of either MAC addresses or IP
addresses in this scenario. Instead, hashing against TCP or UDP port numbers
might result in the greatest variety and subsequent traffic distribution across
the aggregated links.

Link Aggregation Control Protocol
When bundling links together, you must consider the network devices on either
end of the link and take special care to allow the link bundle to be formed while
maintaining a loop-free topology. The most common way of addressing this issue is
by using industry standard Link Aggregation Control Protocol (LACP), codified as
Institute of Electrical and Electronic Engineers (IEEE) standard 802.3ad.

On links designated by a network engineer, LACP advertises its intent to form an
aggregated link to the other side. The other side, also running LACP, accepts this
advertisement if the announced parameters are valid, and forms the link. Once the
link bundle has been formed, the aggregated link is placed into a forwarding state.
Network operators can then query LACP for status on the aggregated link and the
state of link members.

LACP is also aware when a member of the link bundle goes down, as control
packets no longer flow across the failed link. This capability is useful, as it allows the
LACP process to notify the network operating system to recalculate its flow hashes.
Without LACP, it might take the network operating system a longer time to become
aware of the failed link, causing traffic to be hashed to a link member that is no
longer a valid path.

Other link aggregation control protocols exist. It is also possible in some scenar-
ios to create link bundles manually without the protection of a control protocol;
however, LACP dominates as the standard in use by networking vendors as well as
host operating systems and hypervisor vendors for link aggregation.

Multichassis Link Aggregation
Multichassis Link Aggregation (MLAG) is a feature offered by some network vendors
allowing a single aggregated link bundle to span two or more network switches. To
facilitate this, a vendor’s special control protocol will run between the MLAG member
switches, making multiple network switches act as if they are one switch as far as
LACP, Spanning Tree Protocol (STP), and any other protocols are concerned.

The usual justification for MLAG is physical redundancy, where a network engi-
neer requires a lower layer (such as Ethernet) adjacency between network devices
(instead of a routed connection), and also requires the link bundle to remain up if

Chapter 7 Packet Switching182

the remote side of the link fails. Spreading the link bundle between two or more
switches allows this requirement to be met. Figure 7-7 illustrates.

While many networks operate some flavor of MLAG in production, many oth-
ers have shied away from the technology, at least partially because MLAG is propri-
etary; there is no such thing as multivendor MLAG. Better network design trends
away from widely dispersed switched domains, a scenario that benefits from MLAG.
Instead, network design is trending toward constrained switched domains inter-
connected through routing, obviating the need for MLAG technologies.

Routed Parallel Links
Routed control planes, called routing protocols (see the chapters in Part II of this
book for more information on routing and loop-free path calculation), sometimes
compute a set of multiple paths through a network with equal costs. In the case of
routing, multiple links with the same cost may not even connect a single pair of
devices; Figure 7-8 illustrates.

In Figure 7-8, there are three paths:

 • [A,B,D] with a total cost of 10

 • [A,D] with a total cost of 10

 • [A,C,D] with a total cost of 10

switch switch

switch

aggregated
link

multi-chassis switch

MLAG
control

protocol

Figure 7-7 Multichassis Link Aggregation

Processing the Packet 183

Because these three paths have the same cost, they may all three be installed in the
local forwarding table at A and D. Router A, for instance, may forward traffic over
any one of these three links toward D. When a router has multiple options to reach
the same destination, how does it decide which physical path to take?

As with lower layer ECMP, the answer is hashing. Routed ECMP hashing can
be performed on a variety of fields. Common fields to hash against include source
or destination IP addresses and source or destination port numbers. The hashing
results in a consistent path being selected for the duration of an L3 flow. Only in
the case of a link failure would the flow need to be rehashed and a new forwarding
link chosen.

Packet Processing Engines

The steps involved in routing a single packet may seem very simple—look up the
destination in a table, build (or retrieve) a MAC header rewrite, rewrite the MAC
header, and then place the packet on the correct queue for an outbound interface.
As simple as this might be, it still takes time to process a single packet. Figure 7-9
illustrates three different paths through which a packet may be switched in a
 network device.

A

B

C

D

cost 5

cost 5 cost 5

cost 5

cost 10

Figure 7-8 Routed ECMP

Chapter 7 Packet Switching184

Figure 7-9 illustrates three different switching paths through a device; these are
not the only possible switching paths, but they are the most common ones. The first
path processes packets through a software application running on a general-purpose
processor (GPP), and consists of three steps:

 1. The packet is copied off the physical media into main memory, as described in
the sections above.

 2. The physical signal processor, the PHY chip, sends a signal to the GPP (probably,
but not necessarily, the main processor in the network device), called an interrupt.

a. The interrupt causes the processor to stop other tasks (this is why it is
called an interrupt) and run a small piece of code that will schedule another
 process, the switching application, to run later.

switching
application

interrupt

input
process

output
process

GPP

ASIC
memory

main
memory

ASIC

bus

bus

1

2

3

5

6

7

8

9

4

Figure 7-9 Switching Paths

Processing the Packet 185

b. When the switching application runs, it will do the appropriate lookups and
make the appropriate modifications to the packet.

 3. Once the packet has been switched, it is copied out of main memory by the
outbound processor, as described in the following sections.

Switching a packet through a process in this way is often called process switching
(for obvious reasons), or sometimes the slow path. No matter how fast the GPP is, to
reach full line rate switching on higher-speed interfaces requires a lot of tuning—to
the point of being almost impossible. The second switching path shown in Figure 7-9
was designed to process packets more quickly:

 4. The packet is copied off the physical media into main memory, as described in
the previous sections.

 5. The PHY chip interrupts the GPP; the interrupt handler code, rather than call-
ing another process, actually processes the packet.

 6. Once the packet has been switched, the packet is copied from main memory
into the output process, as described in the text that follows.

This process is often called interrupt context switching, for obvious reasons;
many processors can support switching packets fast enough to carry packets
between low and moderate rate interfaces in this mode. The switching code
itself must be highly optimized, of course, because switching the packet causes
the processor to stop executing any other tasks (such as processing a routing
 protocol update). This was originally—and is still sometimes—called the fast
switching path.

For truly high-speed applications, the process of switching packets must be
offloaded from the main processor, or any kind of GPP, and onto a specialized
processor designed for the specific task of processing packets. Sometimes these
processors are called Network Processing Units (NPUs), much like a proces-
sor designed to handle just graphics is called a Graphics Processing Unit (GPU).
These specialized processors are a subset of a broader class of processors called
 Application-Specific Integrated Circuits (ASICs), and are often just called ASICs
by engineers. Switching a packet through an ASIC is shown as steps 7 through 9 in
Figure 7-9:

 7. The packet is copied off the physical media into the ASIC’s memory, as
described in the previous sections.

Chapter 7 Packet Switching186

 8. The PHY chip interrupts the ASIC; the ASIC handles the interrupt by switching
the packet.

 9. Once the packet has been switched, the packet is copied from the ASIC’s
 memory into the output process, as described next.

Many specialized packet processing ASICs have a number of interesting features,
including

 • Internal memory structures (registers) configured specifically to handle the
various kinds of addresses used in networks

 • Specialized instruction sets designed to handle various packet processing
requirements, such as examining the inner headers being carried in a packet,
and rewriting the MAC header

 • Specialized memory structures and instruction sets designed to store and look
up destination addresses to speed packet processing

 • The ability to recycle a packet through the packet pipeline in order to perform
operations that cannot be supported in a single pass, such as deep packet
inspection or specialized filtering tasks

Across the Bus

In smaller network devices with just one network process (the ASIC or NPU, as
described previously), moving a packet from the input queue to the output queue is
simple. The input and output interfaces both share a common pool of packet
 memory, so a pointer to the packet can be moved from one queue to the other.

To reach higher port counts and larger-scale devices—particularly chassis devices—
there must be an internal bus, or fabric, that connects the input and output packet
processing engines. One common type of fabric used to interconnect packet processing
engines within a network device is a crossbar fabric; Figure 7-10 illustrates.

The size and structure of the crossbar fabric are dependent on the number of
ports connected. If there are more ports in the switch than feasible to connect via a
single crossbar fabric, then the switch will use multiple crossbar fabrics. A common
topology for this kind of fabric is a multistage Clos connecting the ingress and egress
crossbar fabrics together. You might think of this as a crossbar of crossbars.

Across the Bus 187

Note

Spine and leaf fabrics, which are a form of Clos, are considered in Chapter 25,
“Disaggregation, Hyperconvergence, and the Changing Network.”

A crossbar fabric requires a sense of time (or rather a fixed time slot) and a sched-
uler to work. At each interval of time, one output (send) port is connected to one
input (receive) port, so that during this time period the sender can transmit a packet,
frame, or set of packets to the receiver. The scheduler “connects” the correct cross

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

K

LC1

LC1

LC2

LC2

LC3

LC3

LC4

LC4

LC5

LC5

LC6

LC6

LC7

LC7

LC8

LC8

LC9

LC9

se
nd

receive

Figure 7-10 A Crossbar Fabric

Chapter 7 Packet Switching188

points on the crossbar fabric for transmissions to take place during the correct time
period. For instance:

 • Line card 1 (LC1) would like to send a packet to LC3.

 • LC3 would like to send a packet to LC5.

During the next time cycle, the scheduler can connect row A to column 1 (“make”
the connection at A3) and connect row C to column 5 (“make” the connection at C5)
so a communication channel is set up between these pairs of line cards.

Crossbars and Contention

What happens if two transmitters want to send a packet to a single receiver? For
instance, if during one period of time both LC1 and LC2 want to send a packet to
LC9 across the crossbar fabric? This is called contention, and is a situation that must
be handled by the fabric scheduler. Which of the two ingress ports should be allowed
to send their traffic to the egress port? And where are the ingress traffic queues in the
meantime?

One option is for the packets to be stored in an input queue; switches that use
this technique are called input-queued switches. These kinds of switches suffer from
head-of-line (HOL) blocking. HOL blocking is what happens when the packet at the
head of the line, waiting to be forwarded across the fabric, blocks the other packets
queued up behind it.

Another option is for the switch to leverage multiple virtual output queues
(VOQs) per input port.

VOQs give a crossbar fabric multiple places to stash ingress packets while they
are waiting to be delivered to their egress ports. In many switch designs, one VOQ
exists per output port for which input traffic is destined. Therefore, an input port
can have several packets queued in several different VOQs, assuming several differ-
ent egress ports.

Each of these VOQs is eligible to be serviced during a single clock cycle. This
means HOL blocking is eliminated, because several different packets from the same
input queue can be passed through the crossbar fabric at the same time. Rather than
a single queue existing for an input port, there are several different queues. Think of
it as additional checkout lines being opened at the grocery store.

Even with VOQs, the potential remains for contention across the crossbar fabric.
The most common example is where two or more ingress packets need to leave the

Across the Bus 189

switch via the same egress port at the same time, or more precisely, on the same clock
cycle. An egress port can only send one packet per clock cycle.

Determining which ingress queue will get to deliver traffic to the egress port
first is an algorithm determined by the switch manufacturer to make the maximum
use of the hardware. iSLIP is one scheduling algorithm used by switches to solve
this problem.

An Overview of the iSLIP Algorithm
The iSLIP algorithm arbitrates crossbar fabric contention, scheduling traffic so the
network device achieves nonblocking throughput. For the purposes of this discus-
sion, it is helpful to scrutinize iSLIP in its simplest form by reviewing what happens
when the iSLIP algorithm executes once.

There are three crucial events that take place during an iSLIP execution:

 1. Request. All input points (ingress) on the crossbar fabric with queued traffic
ask their output points (egress) if they can send.

 2. Grant. Each output point that received a request must determine which input
point will be allowed to send. If there is a single request, then a grant is awarded
with no further deliberation. However, if there are multiple requests, the out-
put point must determine which input point can send. This is done via round-
robin, where one request is awarded a grant, a subsequent request is awarded a
grant during the next execution of iSLIP, and so on in a circular fashion. When
the decision has been made for this particular execution of iSLIP, each output
point sends its grant message, effectively signaling permission to send, to the
appropriate input point.

 3. Accept. An input point considers the grant messages it has received from
output points, choosing a grant in round-robin fashion. Upon selection, the
input notifies the output that the grant has been accepted. If and only if the
output point is notified the grant was accepted will the output point move on
to the next request. If there is no accept message received, then the output
point will attempt to service the previous request during the next execution
of iSLIP.

Understanding the request, grant, and accept process gives us insight into how
packets can be delivered simultaneously through a crossbar fabric without colliding.
However, if you ponder a complex set of inputs, VOQs, and outputs, you might

Chapter 7 Packet Switching190

realize a single iSLIP run doesn’t schedule as many packets for delivery as it could
have after only a single execution.

Certainly, some inputs were granted outputs and some packets can be forwarded,
but it is possible some outputs were never matched with a waiting input. In other
words, if you limit iSLIP to a single execution per clock cycle, we’d be leaving avail-
able egress bandwidth unused.

Therefore, the normal practice is to run iSLIP through multiple iterations.
The result is the number of input-to-output matches is maximized. More pack-
ets can be sent across the crossbar fabric at a time. How many times does iSLIP
need to run to maximize the number of packets that can be switched through
the crossbar fabric in a clock cycle? Research suggests that for the traffic pat-
terns prevalent on most networks, running iSLIP four times matches inputs and
outputs across the crossbar fabric the best. Executing iSLIP more than four times
does not result in a meaningfully larger number of matches. In other words,
there is nothing to be gained running iSLIP five, six, or ten times in most network
environments.

Moving Beyond iSLIP
This discussion has assumed, so far, that the traffic flowing through the crossbar
fabric was all of equal importance. However, in modern data centers, certain traffic
classes are prioritized over the other. For instance, Fibre Channel over Ethernet
(FCoE) storage frames need to traverse the fabric in a lossless manner, while a TCP
session falling into a scavenger QoS class does not.

Does iSLIP handle traffic with different priorities, granting some requests before
others? Yes, but in a modified form of the algorithm we’ve looked at. Variants to
iSLIP include Prioritized, Threshold, and Weighted iSLIP.

Beyond iSLIP, used here merely as a convenient example of contention manage-
ment, vendors will write their own algorithms to suit their own crossbar fabric’s
hardware capabilities. For example, this section only considered an input-queued
crossbar fabric, but many crossbar fabrics offer output-queuing on the egress side of
the crossbar as well.

Memory to Physical Media

Once the packet is carried across the bus to the outbound line card, or the pointer on
the packet buffer is moved from the input queue to the output queue, there is still
work for the network device to do. Figure 7-11 illustrates.

Memory to Physical Media 191

Note the ring shown in Figure 7-11 is the transmit ring, rather than the receive
ring. There are four steps in Figure 7-11:

 Step 1. The packet is passed to the transmit side of the router for forwarding. There
may be post switch processing that needs to be done here, depending on the
platform and specific features; these are not shown in this illustration. An
attempt will first be made to place the packet directly on the transmit ring,
where it can be transmitted. If the ring already has a packet on it, or if the
ring is full (depending on the implementation), the packet will not be placed
on the transmit ring. If the packet is placed on the transmit ring, step 2 is
skipped (which means the packet will not be processed using any outbound
Quality of Service [QoS] rules). Otherwise, the packet is placed on the out-
put queue, where it will await being transferred to the transmit ring.

 Step 2. If the packet cannot be placed on the transmit ring, it will be placed on the
output queue for holding for some later time.

 Step 3. Periodically, the transmit code will move packets from the output queue to the
transmit ring. The order in which packets are taken from the output queue
will depend on the QoS configuration; see Chapter 8, “Quality of Service,”
for more information on how QoS is applied to queues in various situations.

 Step 4. At some point after the packet has been moved to the transmit ring, the
transmit PHY chip, which reads each bit from the packet buffer, encodes it
into the proper format for the outbound physical media type and copies the
packet onto the wire.

time (logical) slots on physical media

memory locations

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
transmit

ring

output queue

step 1

step 2

step 3
step 4packet to

transmit

Figure 7-11 Clocking a Packet Back onto the Wire

Chapter 7 Packet Switching192

Final Thoughts on Packet Switching

The details of packet switching might seem mired in minutiae. After all, does it
 matter exactly how a packet or frame moves between two devices? Is it really all that
critical to comprehend serialization and deserialization, equal cost multipath,
 crossbar fabric contention, transmit rings, and the like?

In a certain sense, these details don’t matter to the average network engineer.
When a network device is doing its job moving data through it, the actual processes
followed by the switch to get that job done are trivialities. “It just works.”

However, switching internals often factor greatly into network design. For
 example, consider port-to-port latency. In some high-traffic networks, the amount
of time it takes for a switch to move a frame from ingress port to egress port makes
a difference in overall application performance. In modern switches, port-to-port
latency is measured in single microseconds or hundreds of nanoseconds. If one switch
gets the job done in 1 microsecond, while another can do it in 400 nanoseconds, that
can impact a hardware choice.

Another consideration is troubleshooting. What happens when a network device
does not appear to be forwarding all of the packets it receives, i.e. there is more
ingress than egress? Small amounts of packet loss in a network fabric are trouble-
some to track down. Understanding a network device’s internal packet switching
process shines a great deal of light on where the breakdown might be happening.

Therefore, don’t dismiss packet switching as “too close to the wires” to be rel-
evant to the aspiring networker. Rather, embrace a knowledge of packet switching
for the deep insights into overall network performance that it supplies.

Further Reading

“1.5. Basics of How Operating Systems Work.” Operating Systems Study Guide.
Accessed April 22, 2017. http://faculty.salina.k-state.edu/tim/ossg/ Introduction/
OSworking.html.

Bollapragada, Vijay, Russ White, and Curtis Murphy. Inside Cisco IOS Software
Architecture. Indianapolis, IN: Cisco Press, 2000.

BSTJ 18: 1. January 1939: Crossbar Dial Telephone Switching System. (Scudder, F. J.;
Reynolds, J. N.), 1939. http://archive.org/details/bstj18-1-76.

“Cisco Nexus 5548P Switch Architecture.” Cisco. Accessed July 29, 2017. http://
www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/
white_paper_c11-622479.html.

http://archive.org/details/bstj18-1-76
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
http://faculty.salina.k-state.edu/tim/ossg/Introduction/OSworking.html
http://faculty.salina.k-state.edu/tim/ossg/Introduction/OSworking.html

Review Questions 193

“Fast Ethernet | Integrating 100mbps into Existing 10mbps Networks.” Savvius.
Accessed April 22, 2017. https://www.savvius.com/resources/compendium/
fast_ethernet/overview.

Heineman, George T., Gary Pollice, and Stanley Selkow. Algorithms in a Nutshell:
A Practical Guide. 2nd edition. O’Reilly Media, 2016.

Inniss, Daryl, and Roy Rubenstein. Silicon Photonics: Fueling the Next Information
Revolution. 1st edition. Morgan Kaufmann, 2016.

“Intel Ethernet Switch Family Hash Efficiency.” Intel, April 2009. https://
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
ethernet-switch-hash-efficiency-paper.pdf.

“Interrupt.” Wikipedia, Accessed February 3, 2017. https://en.wikipedia.org/w/
index.php?title=Interrupt&oldid=763436239.

Kloth, Axel K. Advanced Router Architectures. Boca Raton, FL: CRC Press, 2005.

Konheim, Alan G. Hashing in Computer Science: Fifty Years of Slicing and Dicing.
1st edition. Wiley-Interscience, 2011.

Lekkas, Panos. Network Processors: Architectures, Protocols and Platforms. 1st edi-
tion. New York: McGraw-Hill Education, 2003.

Meiners, Chad R., Alex X. Liu, and Eric Torng. Hardware Based Packet Classifica-
tion for High Speed Internet Routers. 2010 edition. New York: Springer, 2010.

Noubir, Guevara. “Signal Encoding Techniques.” Accessed April 22, 2017. http://
www.ccs.neu.edu/home/noubir/Courses/CS6710/S12/slides/signals-encoding.pdf.

Stringfield, Nakia, Russ White, and Stacia McKee. Cisco Express Forwarding. 1st
edition. Indianapolis, IN: Cisco Press, 2007.

Thakur, Dinesh. “Encoding Techniques and Codec.” Computer Notes. Accessed
April 22, 2017. http://ecomputernotes.com/computernetworkingnotes/
communication-networks/encoding-techniques-and-codec.

“Understanding IEEE 802.3ad Link Aggregation—Technical Documentation—
Support—Juniper Networks,” March 26, 2013. https://www.juniper.net/
documentation/en_US/junose14.2/topics/concept/802.3ad-link-aggregation-
understanding.html.

Review Questions

 1. What happens if one end of a link is configured as a bundle and the other end
is not? Specifically, what happens if one device thinks STP is running and the
other does not?

https://www.savvius.com/resources/compendium/fast_ethernet/overview
https://www.savvius.com/resources/compendium/fast_ethernet/overview
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-hash-efficiency-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-hash-efficiency-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-hash-efficiency-paper.pdf
https://en.wikipedia.org/w/index.php?title=Interrupt&oldid=763436239
https://en.wikipedia.org/w/index.php?title=Interrupt&oldid=763436239
http://www.ccs.neu.edu/home/noubir/Courses/CS6710/S12/slides/signals-encoding.pdf
http://www.ccs.neu.edu/home/noubir/Courses/CS6710/S12/slides/signals-encoding.pdf
http://ecomputernotes.com/computernetworkingnotes/communication-networks/encoding-techniques-and-codec
http://ecomputernotes.com/computernetworkingnotes/communication-networks/encoding-techniques-and-codec
https://www.juniper.net/documentation/en_US/junose14.2/topics/concept/802.3ad-link-aggregation-understanding.html
https://www.juniper.net/documentation/en_US/junose14.2/topics/concept/802.3ad-link-aggregation-understanding.html
https://www.juniper.net/documentation/en_US/junose14.2/topics/concept/802.3ad-link-aggregation-understanding.html

Chapter 7 Packet Switching194

 2. Why is flow hashing typically used as opposed to round-robin as a forwarding
algorithm in ECMP?

 3. What is the purpose of a multistage fabric? Provide an example.

 4. Briefly summarize techniques found in crossbar fabrics to mitigate contention.

 5. The iSLIP algorithm has steps of Request, Grant, and Accept. In a single sen-
tence for each, explain what happens in each step.

 6. How many times does iSLIP need to run before it is no longer effective in
improving input-to-output matches?

 7. How many packets can be placed on the transmit ring at a time?

 8. Why not make the transmit and receive rings large enough to prevent any
packet from ever being overwritten because the packets being held in the ring
buffer are not processed quickly enough? What are the tradeoffs in terms of
switching speed through the switch, memory utilization, and other factors?

 9. Research and describe the impact of a broadcast storm in a network. How
does routing prevent broadcast storms?

 10. What are some advantages of using MLAG to build very large, flat networks
without routing? What are some disadvantages?

195

Chapter 8

Quality of Service

Learning Objectives

After reading this chapter, you should understand:

 0 Why Quality of Service is necessary in a network, even if the network has
plenty of bandwidth

 0 How traffic is classified and why classification is normally done as few
times as possible

 0 The relationship between Quality of Service, Class of Service, and Type of
Service

 0 How ToS markings are carried in a packet

 0 What a QoS trust boundary is

 0 ToS markings, and the translation of these markings at network
boundaries

 0 Jitter and its impact on applications

 0 Fairness in queueing

On an ordinary day, the highway was wide enough to accommodate travelers. There
were enough lanes. The speed limit was set to move traffic through the area quickly.
The volume of cars was not excessive. Vehicles on this highway moved along effec-
tively, moving down the road without having to jostle for position, stand on the
brakes, weave in between lanes, or otherwise negotiate excessive traffic. That is, on
an ordinary day.

Chapter 8 Quality of Service196

This was not an ordinary day. On this day, the president was coming to town. The
president was making a speech, and many people wanted to hear this speech. As the
hour got closer to the president’s speech, the ordinarily effective highway saw an
increase in traffic. At first, this was not a concern. The highway rarely ran at capacity,
and so an increase in traffic was manageable. Granted, there were more vehicles on
the road, and they were running closer together. But this didn’t cause any problems.

As the day wore on, and the time for the president’s speech became quite close,
the traffic had increased yet again. Now, there were problems. The highway was no
longer able to carry the volume of traffic trying to run across it. Vehicles merging
onto the highway found themselves stuck in lines at the on-ramp. Other vehicles were
trapped on the highway, moving, albeit very slowly. Some vehicles gave up on using
the highway, turning around and heading back home, hoping to catch the president’s
speech on television or via live stream.

The president’s cavalcade of vehicles drove from the regional airport to the site of
the speech. Their vehicles, too, were impacted by the congested highway. However,
the presidential parade had more of something than any other vehicles on the road
had—importance. To indicate their importance, they put on their emergency lights.
Police escort vehicles, presidential protection detail, limousines, and threat response
trucks all lit up in flashing red and blue.

The struggling highway traffic moved aside as the president’s vehicles surged for-
ward, heading down a priority lane to the site of the speech. Not everyone was going
to make it to the speech, but the president couldn’t be victimized by the traffic. No
matter how overloaded the highway was, the president had to get through. The presi-
dent was the one making the speech.

Defining the Problem Space

Network engineers frequently face the problem of too much traffic for too small of a
link. In particular, in almost every path through a network, one link restricts the
entire path, much as one intersection or one road restricts the flow of traffic.
 Figure 8-1 illustrates.

In Figure 8-1, A is communicating with G, and B is communicating with E. If
each of these pairs of devices are using close to the available bandwidth on their local
links ([A,C], [B,C], [F,G], and D,E]), assuming all the links are the same speed, the
[C,D] link will be overwhelmed with traffic, becoming a choke point in the network.

When a link is congested, such as the [C,D] link in Figure 8-1, there is more traffic
to be sent down the link than the link has capacity to carry. During times of con-
gestion, a network device such as a router or switch must determine which traffic
should be forwarded, which should be dropped, and in what order packets should

Defining the Problem Space 197

be forwarded. Various prioritization schemes have been constructed to address this
challenge.

Managing link congestion by prioritizing some traffic classes over others comes
under the broad heading of Quality of Service (QoS). The perception of QoS among
network engineers is troubled for many reasons. For instance, many implementa-
tions, even recent ones, tend to be not as well thought out as they could be, especially
in the way they are configured and maintained. Further, early schemes did not always
work well, and QoS can often add to the problems in a network, rather than relieve
them, and tends to be very difficult to troubleshoot.

For these reasons, and because the configuration required to implement prior-
itization schemes tends toward the arcane, QoS is often considered a dark art. To
successfully implement a QoS strategy, you must classify traffic, define a queueing
strategy for various traffic classes, and install the strategy consistently across all net-
work devices that might experience link congestion.

While it is possible to become buried in the many different features and functions
of QoS schemes and implementations, the result should always be the same. The
president must deliver a timely speech.

Why Not Just Size Links Large Enough?

After thinking through the value proposition of QoS, an obvious reaction is to won-
der why network engineers don’t simply size links large enough to avoid conges-
tion. After all, if links were large enough, congestion would disappear. If congestion
disappeared, then the need to prioritize one traffic type over another would disap-
pear. All traffic would be delivered, and all of these pesky problems rooted in insuf-
ficient bandwidth would be obviated. Indeed, overprovisioning is perhaps the best
QoS of all.

A

B

C D F G

E

Figure 8-1 Congestion Choke Point in Network Paths

Chapter 8 Quality of Service198

Sadly, the overprovisioning strategy is not always an available option. Even if it
were, the very largest links available can’t overcome certain traffic patterns. Some
applications will use as much bandwidth as available when transferring data, creating
a point of congestion for other applications sharing the link. Others will transmit in
micro-bursts, overwhelming network resources for a short time, and some transport
mechanisms—such as the Transmission Control Protocol (TCP)—will intentionally
congest a path occasionally in order to determine the best rate at which to send data.
While a larger link can reduce the amount of time a congestion condition exists, in cer-
tain scenarios, there is no such thing as having enough bandwidth to meet all demands.

Most networks are built on a model of oversubscription, where some larger
amount of aggregated bandwidth is shared at certain bottlenecks. For example, a
Top of Rack (ToR) switch in a busy data center might have 48x10GbE ports facing
hosts, but only have 4x40GbE ports facing the rest of the data center. This results in
an oversubscription ratio of 480:160, which reduces to 3:1. Implicitly, the 160Gbps of
data center facing bandwidth is a potential bottleneck—a congestion point—for the
480Gbps of host facing bandwidth. And yet, a 3:1 oversubscription ratio is common
in data center switching designs. Why?

The ultimate answer is often money. It is often possible to design a network in
which the edge ports match the available bandwidth. For instance, in the data center
fabric given above, it is almost certainly possible to add enough link capacity to pro-
vide 480Gbps from the ToR into the fabric, but the cost may well be prohibitive. The
network engineer needs to consider not only the costs of the port and fiber optics,
but also the cost of additional power, and the cost of the additional cooling required
to control the environment once the necessary additional devices have been added,
and even the costs of additional rack space and floor weight.

Spending money to provide a higher fabric bandwidth may also be hard to justify
if the network or fabric is rarely congested. Some congestion events are not frequent
enough to justify an expensive network upgrade. Would a city spend millions or bil-
lions of dollars in transportation infrastructure improvements to ease traffic once a
year when a politician comes to visit? No. Instead, other adjustments are made to
handle the traffic problem.

For example, companies might most keenly experience this constraint in wide
area networking, where links are leased from service providers (SPs). SPs make their
money, in part, by connecting disparate geographies together for organizations that
cannot afford to build out and operate long-distance fiber-optic cables on their own.
These long-haul links normally offer much lower bandwidth than the shorter, local,
links on a single campus, or even within a single building. A high-speed link within a
campus or data center can easily overwhelm slower long-haul links.

Organizations will size long-haul (such as intersite, or even intercontinental)
links as large as reasonably possible, but again, the key to keep in mind is money.

Classification 199

Long-haul links provided by SPs to other organizations are a costly, usually signifi-
cant and oft scrutinized budget item. The more bandwidth being leased, the higher
the costs tend to be. The result is a massive oversubscription, where WAN links are
greatly bandwidth constrained when compared to the speeds available on a campus
or inside a data center.

In a world of oversubscription and consequent congestion points, as well as tem-
porary traffic patterns that need careful management, QoS traffic prioritization
schemes will always be required.

Classification

QoS prioritization schemes act on different traffic classes, but what is a traffic class,
and how is it defined?

Traffic classes represent aggregated groups of traffic. Data streams from applica-
tions requiring similar handling or presenting similar traffic patterns to the network
are placed into groups and managed by a QoS policy (or Class of Service, CoS). This
grouping is crucial, as it would be ponderous to define unique QoS policies for a
potentially infinite number of applications. As a matter of practicality, network engi-
neers will typically group traffic into four classes. More classes are certainly possible,
and such schemes do exist in production networks. However, the management of the
classification system and policy actions becomes increasingly tedious as the number
of classes grows beyond four.

It is possible for each packet to be assigned to a particular CoS based on the
source address, destination address, source port, destination port, size of the packet,
and other factors. Assuming each application has its own profile, or set of charac-
teristics, each application can be placed into a specific CoS, and acted on local QoS
policy. The problem with this method of traffic classification is the classification is
only locally significant—the classification action is relevant only to the device per-
forming the classification.

Classifying packets in this way requires a lot of time, and processing each packet
will take a lot of processing power. Because of this, it is still best not to repeat this
processing at every device through which the packet passes. Instead, it is better to
classify the traffic once, mark the packet at this single point, and act on this marking
at every subsequent hop in the network.

Note

Even though packets and frames are distinct in networking, the term packets will
be used in this chapter.

Chapter 8 Quality of Service200

Various marking schemes have been designed and standardized, such as the 8-bit
Type of Service (ToS) field included in the Internet Protocol version 4 (IPv4) header.
Version 6 of this same protocol (IPv6) includes an 8-bit Traffic Class field serving a
similar purpose. Ethernet frames use a 3-bit field as part of the 802.1p specification.
Figure 8-2 illustrates the IPv4 ToS field.

In networking best practice, traffic classification should result in one action and
one action only—marking. When a packet has been marked, the assigned value can
be preserved and acted upon throughout the packet’s entire journey through the
network path. Classification and subsequent marking should be a “one-and-done”
event in the life of a packet.

QoS best practice is to mark traffic as closely to the source as possible. Ideally,
traffic will be marked at the point of ingress to the network. For example, traffic
flowing into a network switch from a personal computer, phone, server, IoT device,
etc. will be marked, and the mark will serve as the traffic classifier on the packet’s
journey through the network.

An alternate scheme to the ingress network device classifying and marking traffic
is for the application itself to mark its own traffic. In other words, the packet is sent
out with the ToS byte already populated. This brings up the problem of trust. Should
an application be allowed to rank its own importance? In the worst-case scenario,
all applications would selfishly mark their packets with values indicating the highest
possible importance. If every packet is marked as being highly important, then in
actuality, no packet is highly important. For one packet to be more important than
any other, there must be differentiation. Traffic classes must have distinct levels of
importance for QoS prioritization schemes to have any meaning.

0 1 2 3 4 5 6 7

DSCP
6 bits, 64 possible values

IP Type of Service (ToS) field

IP Precedence
3 bits, 8 possible values

Explicit Congestion
Notification

Figure 8-2 Ethernet DSCP and IP ToS Fields

Classification 201

To maintain control over traffic classification, all networks implementing QoS
have trust boundaries. Trust boundaries allow the network to avoid a situation where
all applications have marked themselves as important. Imagine what would happen
on a congested road if every vehicle had flashing emergency lights—the truly impor-
tant vehicles would not stand out.

In networking, some applications and devices are trusted to mark their own traf-
fic. For example, IP phones are typically trusted to mark their streaming voice and
control protocol traffic appropriately, meaning the marks that IP phones apply to
their traffic are accepted by the ingress network device. Other endpoints or applica-
tions might be untrusted, meaning the packet’s ToS byte is erased or rewritten on
ingress. By default, most network switches erase the marks sent to them unless con-
figured to trust specific devices. For instance, makers placed in a packet by a server
are often trusted, while markings set by an end host are not. Figure 8-3 illustrates a
trust boundary.

In Figure 8-3, packets being transmitted by B are marked with AF41. As these
packets are originating from a host within the QoS trust domain, the markings
remain as they pass through D. Packets originating from A are marked with EF; how-
ever, since A is outside the QoS trust domain, this marking is stripped at D. Packets
within the trust domain originating at A are seen as unmarked from a QoS per-
spective. The physical layer and upper layer protocol markings may, or may not, be
related. For instance, the upper layer markings may be copied into the lower layer
markings, or the lower layer markings may be carried through the network, or the
lower layer markings may be stripped. There are many different possible implemen-
tations, so you should be careful to understand the way the markings are being han-
dled across layers, as well as at each hop.

A

B

C D E F

AF41 marked packets

trusteduntrusted

EF marked packets unmarked packets

Figure 8-3 QoS Trust Boundary

Chapter 8 Quality of Service202

Although network operators can use any values they choose in the ToS byte to
create distinct traffic classes, it is often best to stick with some standard, such as the
values defined by IETF RFC standards. These standards were defined to give network
engineers a logical scheme to appropriately distinguish many different traffic classes.

Two of these “Per Hop Behavior” schemes appear in RFC2597, Assured Forward-
ing (AF), and RFC3246, Expedited Forwarding (EF), with various other RFCs updat-
ing or clarifying the content of these foundational documents. Both of these RFCs
define traffic marking schemes, including the exact bit values that should populate
the ToS byte or Traffic Class byte of an IP header to indicate a specific type of traffic.
These are known as Differentiated Service Code Points, or DSCP values.

For example, RFC2597’s assured forwarding scheme defines 12 values in a bit-
wise hierarchical scheme to populate the eight bits found in the ToS byte field. The
first three bits are used to identify a class while the second three bits identify a drop
precedence. The final two bits are unused. Table 8-1 illustrates the code markings for
several AF classes.

Table 8-1 Assured Forwarding Class of Service Quality of Service Markings

Class 1 (001) Class 2 (010) Class 3 (011) Class 4 (100)

Low
Drop

001 010 AF11 010 010 AF21 011 010 AF31 100 010 AF41

Medium
Drop

001 100 AF12 010 100 AF22 011 100 AF32 100 100 AF42

High
Drop

001 110 AF13 010 110 AF23 011 110 AF33 100 110 AF43

Table 8-1 shows the DSCP bit value for AF11, traffic of Class 1 with a low drop prec-
edence, is 001 010, where “001” indicates Class 1, and “010” indicates the drop prec-
edence. Examining the table more deeply reveals the binary pattern selected by the RFC
authors. All Class 1 traffic is marked with 001 in the first three bits, all Class 2 with 010
in the first three bits, etc. All Low Drop Precedence traffic is marked with 010 in the sec-
ond three bits, all Medium Drop Precedence traffic with 100 in the second three bits, etc.

The Assured Forwarding scheme is shown in Table 8-2 to illustrate. It is not meant
to be a definitive list of code points used in QoS traffic classification. For example,
the Class Selector scheme described in RFC2474 exists for backward compatibility
with the IP Precedence marking scheme. IP Precedence used only the first three bits
of the ToS byte, for a total of eight possible classes. The Class Selector uses eight
values as well, populating the first three bits of the six-bit DSCP field with significant
values (matching the legacy IP Precedence scheme), and the last three bits with zeros.
Table 8-2 shows these class selectors.

Classification 203

Table 8-2 Class Selectors from RFC2474

CS0 000 000

CS1 001 000

CS2 010 000

CS3 011 000

CS4 100 000

CS5 101 000

CS6 110 000

CS7 111 000

RFC3246 defines the latency, loss, and jitter requirements of traffic that must be
forwarded expeditiously, along with a single new code point—EF, which is assigned
binary value 101 110 (decimal 46).

The quantity and variety of formally defined DSCP values might seem over-
whelming. The combined definitions of AF, CS, and EF alone result in formal defini-
tions for 21 different classes out of a possible 64 using the six bits of the DSCP field.
Are network engineers expected to use all of these values in their QoS prioritization
schemes? Should traffic be broken down with such fine granularity for effective QoS?

In practice, most QoS schemes limit themselves to between four and eight traffic
classes. The different classes allow for each group to be treated uniquely during times
of congestion. For example, one traffic class might be shaped to meet a specific band-
width threshold. Another traffic class might be prioritized above all other traffic. Yet
another might be defined as business-critical, or traffic that is more important than
most but less important than some. Network protocol traffic critical for infrastructure
stability could be treated as very high priority. A scavenger traffic class might be near
the bottom of the priority list, receiving slightly more attention than unmarked traffic.

A scheme incorporating these values is likely to be a mix of code points defined
in the various RFCs and could vary somewhat from organization to organization.
Generally accepted values include EF for critical traffic with a timeliness require-
ment such as VoIP, and CS6 for network control traffic such as routing and first hop
redundancy protocols. Unmarked traffic (i.e., a DSCP value of 0) is delivered on a
best-effort basis, with no guarantee of service level made (this would generally be
considered the scavenger class, as above).

Preserving Classification

An interesting problem mentioned in both RFC2597 and RFC3246 is the issue of
mark preservation when a marked packet is tunneled. When a packet is tunneled, the

Chapter 8 Quality of Service204

original packet is wrapped—or encapsulated—inside of a new IP packet. The ToS
byte value is inside the IP header of the now-encapsulated packet. Uh oh. What just
happened to the carefully crafted traffic classification scheme? The answer is net-
work devices engage in ToS reflection when tunneling. Figure 8-4 shows the reflec-
tion process.

When a packet is tunneled, the ToS byte value in the encapsulated packet is copied
(or reflected) in the IP header of the tunnel packet. This preserves the traffic classifi-
cation of the tunneled application.

A similar challenge comes when sending marked traffic from a network domain
you control into one you do not. The most common example is sending marked traf-
fic from your local area network into the network of your service provider, traversing
its wide area network. Service providers, as a part of the contract to provide con-
nectivity, often provide differentiated levels of service as well. However, for them to
be able to provide differentiated service, traffic must be marked in a way they can
recognize. Their marking scheme is unlikely to be the same as your marking scheme,
considering the sheer number of possible marking schemes possible.

A couple of solutions to this dilemma present themselves:

 • DSCP mutation: In this scenario, the network device on the border between
the LAN and the WAN translates the mark from the original value assigned on
the LAN into a new value the SP will honor. The translation is performed in
accordance with a table configured by a network engineer.

 • DSCP translation: It is not uncommon for SPs to observe only the first three
bits of the ToS byte, hearkening back to the days of IP Precedence defined all
the way back in RFC791.

In the second solution, the network engineer is faced with creating a modern
DSCP marking scheme using six bits, even though the SP will pay attention to just

DSCP Field

DSCP FieldDSCP Field

IP Header

IP HeaderTunnel Header

Payload

Payload

before tunnel header imposition

after tunnel header imposition

DSCP bits reflected into
the tunnel header

Figure 8-4 DSCP Bit Reflection between the Inner and Outer Header

Classification 205

the first three. The challenge is to maintain differentiation. For example, consider the
scheme illustrated in Table 8-3; this scheme will not resolve the issue.

Table 8-3 Translating DSCP to IP Precedence

DSCP (LAN, 6 bits) PRECEDENCE (SP WAN, 3 bits)

EF / 101 110 101

CS5 / 101 000 101

AF23 / 010 110 010

AF13 / 001 110 001

AF12 / 001 100 001

AF11 / 001 010 001

In this table, six unique DSCP values have been defined for use on the local area
network. However, these six unique values are reduced to only three unique values if
only the first three bits are honored by the service provider. This means some traffic
that might have enjoyed differentiated treatment before entering the provider’s net-
work will now be lumped into the same bucket. In the example, EF and CS5, formerly
unique, fall into the same class when they leave the border router, as the initial three
bits of EF and CS5 are both 101. The same goes for AF11, AF12, and AF13—three
formerly distinct traffic classes that will now be treated identically while traversing
the SP WAN, as they all share the same initial 001 value in the initial three bits.

A way to solve this problem is to create a DSCP marking scheme that will main-
tain uniqueness in the first three bits as demonstrated in Table 8-4. This might
require a reduction in the overall number of traffic classes, however. Limiting the
scheme to the first three bits to define classes will reduce the total number of classes
to maximum of six.

Table 8-4 Translating DSCP to IP Precedence

DSCP (LAN, 6 bits) PRECEDENCE (SP WAN, 3 bits)

EF / 101 110 101

AF41 / 100 010 100

AF31 / 011 010 011

AF21 / 010 010 010

AF11 / 001 010 001

CS0 / 000 000 000

Table 8-4 shows a marking scheme using a mix of EF, AF, and Class Selector val-
ues especially chosen to preserve uniqueness in the first three bits.

Chapter 8 Quality of Service206

The Unmarked Internet

So far, this discussion assumes network devices will honor the marks found in an IP
packet. Certainly, this is true in privately owned networks and on leased networks
where the terms of trust have been negotiated with a service provider. But what hap-
pens on the global Internet? Do network devices servicing public Internet traffic
observe and honor DSCP values, and prioritize some traffic over other traffic during
times of congestion? From the perspective of Internet consumers, the answer is no.
The public Internet is a best effort transport. There are no guarantees of even traffic
delivery, let alone traffic prioritization.

Even so, the global Internet is increasingly being used as a wide area transport for
traffic carried between private facilities. Cheap broadband Internet service some-
times offers more bandwidth at a lower cost than private WAN circuits leased from
a service provider. The tradeoff for this lower cost is a lower level of service, often
substantially lower. Cheap Internet circuits are cheap because they do not offer ser-
vice level guarantees, at least not ones meaningful enough to inspire confidence in
the timely delivery of traffic (if at all). While it is possible to mark traffic destined
for the Internet, the ISP will not pay attention to the marks. When the Internet is
being used as a WAN transport, how then can a QoS policy be effectively applied
to traffic?

Creating a Quality of Service over the public Internet requires a rethinking of
QoS prioritization schemes. To the private network operator, the public Internet is
a black box. The private operator has no control over the public routers between the
edges of the private WAN. It is not possible for the private operator to prioritize cer-
tain traffic over other traffic on a congested public Internet link without control over
the intermediate, public Internet router.

The solution to providing Quality of Service over the public Internet is
multipartite:

 • Control over traffic happens at the private network edge, before the traffic
enters the public Internet’s black box. This is the last point at which the private
network operator has device control.

 • QoS policy is enforced primarily through path selection and secondarily via
congestion management.

Note

See Chapter 17, “Policy in the Control Plane,” for more information on using traf-
fic engineering to manage QoS problems.

Congestion Management 207

Implicit in the notion of path selection is the existence of more than one path
to select from. In the emerging Software-Defined Wide Area Network (SD-WAN)
model, two or more WAN circuits are treated as a bandwidth pool. In the pool, the
individual circuit used to carry traffic at any given time is decided on a moment-by-
moment basis as the network devices at the edge of the pool perform quality tests
along each available circuit or path. Depending on a path’s characteristics at any
point in time, traffic may be sent down one path or another.

Which traffic is sent down which path? SD-WAN offers granular traffic classi-
fication capabilities beyond the human-manageable four to eight classes defined
by DSCP marks imposed on the ToS byte. SD-WAN path selection policy can be
defined on an application-by-application basis, with nuanced forwarding decisions
made. This is distinct from the idea of marking as close to the source as possible,
and then making forwarding decisions during congestion times based on the mark.
Rather, SD-WAN compares real-time path characteristics with the policy-defined
needs of applications classified in real time, and then makes a real-time path selec-
tion decision.

The result should be an application user experience similar to a wholly owned
private WAN with a QoS prioritization scheme managing congestion. The mecha-
nisms used to achieve this similar result are substantially different, however. The
functionality of SD-WAN hinges on the ability to detect and quickly reroute traf-
fic flows around a problem, as opposed to managing a congestion problem once it
has happened. SD-WAN technologies do not replace QoS; rather they provide an
“over the top” option for situations where QoS is not supported on the underlying
network.

Congestion Management

Classification, by itself, does not result in a specific forwarding posture on the part
of a network device. Rather, classifying traffic is the first necessary step in creating a
framework for differentiated forwarding behavior. In other words, the packets have
been classified and differentiated, but that is all. Pointing out differences is not the
same as taking differentiated actions on those classes.

Our discussion of QoS now moves into the realm of policy. How are con-
gested interfaces managed? When packets are waiting for delivery, how does a
network device decide which packets are sent first? The decision points are based
primarily around how well the user experience can tolerate packet jitter, latency,
and loss. A variety of problems and QoS tools present themselves to address
these issues.

Chapter 8 Quality of Service208

Timeliness: Low-Latency Queueing

Network interfaces forward packets as quickly as possible. When traffic is flowing at
less than or equal to the bandwidth of the egress interface, traffic is delivered, one
packet at a time, without drama. When an interface can keep up with the demands
being placed on it, there is no congestion. Without congestion, there is no concern
about differentiated traffic types. The marks on the individual packets might be
observed for statistical purposes, but there is no QoS policy that needs to be applied.
Traffic arrives at the egress interface and is delivered.

As described in the description of the switching path through a router in
 Chapter 7, “Packet Switching,” packets are delivered to a transmit ring after being
switched. The outbound interface’s physical processor removes packets from this
ring and clocked onto the physical network medium. What happens if there are more
packets to be transmitted than the link can support? In this case, the packets are
placed in a queue, the output queue, rather than on the transmit ring. The QoS poli-
cies configured on the router are actually implemented in the process of removing
packets from the output queue onto the transmit ring for transmission. When pack-
ets are being placed on the output queue, rather than the transmit ring, the interface
is said to be congested.

By default, congested network interfaces deliver packets on a first-in, first-out
(FIFO) basis. FIFO does not make a policy decision based on differentiated traf-
fic classes; rather FIFO simply services buffered packets in order, as quickly as the
egress interface will allow. For many applications, FIFO is not a bad way to go
about dequeueing packets. For instance, there might be little real-world impact if
a Hypertext Transfer Protocol (HTTP, the protocol used to carry World Wide Web
information) packet from one web server is transmitted before one from a different
web server.

For other traffic classes, there is a great deal of concern about timeliness. As
opposed to FIFO, some packets should be moved to the head of the queue and sent
as quickly as possible to avoid delay and an impact to the end user experience. One
impact is in the form of a packet arriving too late to be useful. Another impact is
in the form of a packet not arriving at all. It is worth considering each of these sce-
narios and then some helpful QoS tools for each.

Voice over IP (VoIP) traffic must be both delivered and delivered on time. When
considering voice traffic, think of any real-time voice chatting performed over the
Internet using an application such as Skype. Most of the time, the call quality is
decent. You can hear the other person. That person can hear you. The conversation
flows normally. You might as well be in the same room with the other person, even if
he is across the country.

Congestion Management 209

On occasion, VoIP call quality might drop. You might hear a series of subsec-
ond stutters in the person’s voice, where the speed of vocal delivery is irregular.
In this case, you are experiencing jitter, which means packets are not arriving
consistently in time. Overly long interpacket gaps result in an audible stutter-
ing effect. While no packets were lost, they weren’t delivered along the network
path in a timely fashion. Somewhere along the path, the packets were delayed
long enough to introduce audible artifacts. Figure 8-5 illustrates jitter in packet
transmission.

VoIP call quality can also suffer from packet loss, where packets in the network
path were dropped along the way. While there are many potential reasons for packet
loss in network paths, the scenario considered here is tail drop, where so much traf-
fic has arrived beyond the egress interface’s capability to keep up that there is no
room left in the buffer to queue up additional excess. The latest traffic arrivals are
discarded as a result; this drop is called tail drop.

When VoIP traffic is being tail dropped, the listener hears the result of the loss.
There are gaps where the speaker’s voice is completely missing. Dropped packets
could come through as silence, as the last bit of received sound being looped as a way
to fill the gap, an extended hiss, or other digital noise. Figure 8-6 illustrates dropped
packets across a router or switch.

0

0

1

1

2

2

3

3

4

4

5

5

units of time

queueing in the network
device causes jitter

Figure 8-5 Jitter in Packet Delivery in a Network

Chapter 8 Quality of Service210

To deliver consistent call quality, even in the face of a congested network path, a
QoS prioritization scheme must be applied. This scheme must meet the following
criteria.

 • VoIP traffic must be delivered: Lost VoIP packets result in an audible drop in
the conversation.

 • VoIP traffic must be delivered on time: Delayed or jittery VoIP packets result
in audible stutters.

 • VoIP traffic must not starve other traffic classes of bandwidth: As impor-
tant as VoIP is, well-written QoS policies will balance timely delivery of voice
packets with the need for other traffic classes to also use the link.

A common scheme deployed to prioritize traffic sensitive to loss and jitter is low-
latency queueing (LLQ). No IETF RFC defines LLQ; rather, network equipment
vendors invented LLQ as a tool in the QoS policy toolbox to prioritize traffic requir-
ing low delay, jitter, and loss—such as voice.

There are two key elements to LLQ.

 • Traffic serviced by LLQ is transmitted as quickly as possible to avoid delay,
minimizing jitter.

0

0 1 2

2

3

3

4 5

5

units of time

the network device drops
some packets...

Figure 8-6 Dropped Packets across a Router or Switch

Congestion Management 211

 • Traffic serviced by LLQ is not allowed to exceed a specified amount of band-
width (generally recommended to be no more than 30% of the available
bandwidth). Traffic exceeding the bandwidth limit is dropped rather than
transmitted. This technique avoids starving other traffic classes.

Implied in this scheme is a compromise for traffic classes services by the LLQ. The
traffic will be serviced as quickly as possible, effectively moving it to the head of the
queue as soon as it shows up at a congested interface. The catch is that there is a limit
on just how much traffic in this class will be treated in this way. That limit is imposed
by a network engineer composing the QoS policy.

By way of illustration, assume a WAN link with 1,024Kbps of available band-
width. This link connects the headquarters office to the service provider WAN cloud,
which also connects several remote offices back to HQ. This is a busy WAN link,
carrying VoIP traffic between offices, as well as web application traffic and backup
 traffic from time to time. Furthermore, assume the VoIP system is encoding voice
traffic with a codec requiring 64Kbps per conversation.

In theory, this 1,024Kbps link could accommodate 16 × 64Kbps simultaneous
VoIP conversations. However, this would leave no room for the other traffic types
that are present. This is a busy WAN link! In the writing of the QoS policy, a deci-
sion must be made. Just how many voice conversations will be allowed by the LLQ to
avoid starving the remaining traffic of bandwidth? A choice could be made to limit
the LLQ to only 512Kbps of bandwidth, which would be adequate to handle eight
simultaneous conversations, leaving the rest of the WAN link for other traffic classes.

Assuming the link is congested, the situation the link must be in for the QoS
 policy to be effective, what would happen to the ninth VoIP conversation? This ques-
tion is actually a naive one, because it assumes each conversation is being handled
 separately by the QoS policy. In fact, the QoS policy treats all traffic being serviced by
the LLQ as one large group of packets. Once the ninth VoIP conversation joins, there
will be 576Kbps’ worth of traffic to be serviced by an LLQ that only has 512Kbps
allocated. To find the amount of dropped traffic, subtract the total traffic set aside
for the LLQ from the total traffic offered: 576Kbps – 512Kbps = 64Kbps’ worth of
LLQ traffic will be dropped to conform to the bandwidth cap. The dropped 64Kbps
will come from the LLQ traffic class as a whole, impacting all of the VoIP conversa-
tions. If a tenth, eleventh, and twelfth VoIP conversation were to join the LLQ, the
problem would become more severe. In this case, 64Kbps × 4 = 256Kbps’ worth of
nonconforming traffic that would discarded from the LLQ, causing even more loss
from all of the VoIP conversations.

As this example shows, managing congestion requires knowledge of the applica-
tion mix, peak load times, bandwidth demands, and network architecture options
available. Only when all points are considered can a solution meeting business

Chapter 8 Quality of Service212

objectives be put in place. For instance, assume 1,024Kbps is the largest you can
make the long-haul link due to cost constraints. You could raise the LLQ bandwidth
limitation to 768Kbps to accommodate 12 conversations at 64Kbps each. However,
this would leave only 256Kbps for other traffic, which perhaps is not enough to meet
your business needs for other applications.

In this case, it might be possible to coordinate with the voice system admin-
istrator to use a voice codec requiring less bandwidth. If a new codec requiring
only 16Kbps of bandwidth per call is deployed instead of the original 64Kbps,
32 VoIP conversations could be forwarded without loss through an LLQ allocated
512Kbps of bandwidth. The compromise? Voice quality. The human voice encoded
at 64Kbps will sound more clear and natural when compared to one encoded at
16Kbps. It may also be better to encode at 16Kbps so fewer packets are dropped,
and hence the overall quality is better. Which solution to apply will depend on the
specific situation.

It is possible for more traffic than specified by the LLQ bandwidth cap to pass
through the interface. If the bandwidth cap for traffic serviced by the LLQ is set at
a maximum of 512Kbps, it is possible for more than 512Kbps’ worth of traffic in the
class to pass through the interface. This programmed behavior exhibits itself only if
the interface is uncongested. In the original example, where a 64Kbps codec is being
used, transmitting 10 conversations at 64Kbps over the link will result in 640Kbps’
worth of voice traffic traversing the 1,024Kbps capacity link (1,024Kbps – 640Kbps =
384Kbps left). As long as all other traffic classes stay below 384Kbps total bandwidth
utilization, then the link will remain congestion-free. If the link is not congested, then
QoS policies do not take effect. If the QoS policy is not in effect, then the LLQ band-
width cap of 512Kbps does not impact the 640Kbps of aggregated voice traffic.

In this discussion of LLQ, the context has been that of voice traffic, but be aware
that LLQ can be applied to any sort of traffic desired. However, in networks where
VoIP is present, VoIP tends to be the only traffic serviced by LLQ. For networks where
VoIP traffic is not present, LLQ becomes an interesting tool to guarantee timely, low
delay and jitter delivery of other sorts of application traffic. However, LLQ is not the
only tool available to the QoS policy writer. Several other tools are also useful.

Fairness: Class-Based Weighted Fair Queueing

When timing is of less concern than actual delivery, traffic can often be managed by
the technique of class-based weighted fair queueing (CBWFQ). In CBWFQ, partici-
pating traffic classes are serviced in accordance with the policy assigned to them. For
example, traffic marked as AF41 might be guaranteed a minimum amount of band-
width. Traffic marked as AF21 might also be guaranteed a minimum amount of
bandwidth, perhaps less than the amount given to AF41 traffic. Unmarked traffic
might get whatever bandwidth is left over.

Congestion Management 213

CBWFQ has the notion of fairness, where various traffic classes have a chance to
be delivered across the congested link. CBWFQ ensures the packets in the queue are
being serviced in a fair manner, in accordance with the QoS policy. All traffic classes
with bandwidth assigned to them will have packets sent along.

For example, assume a link of 1,024Kbps in capacity. Traffic class AF41 has been
guaranteed a minimum of 256Kbps. Class AF31 has been guaranteed a minimum
of 128Kbps. Class AF21 has been guaranteed a minimum of 128Kbps. This gives us
a ratio of 2:1:1 among those three classes. The remaining 512Kbps is unallocated,
meaning it is available for use by other traffic. Including the unallocated amount, the
full ratio is 256:128:128:512, which reduces to 2:1:1:4.

To decide which packet is sent next, the queue is serviced in accordance with the
CBWFQ policy. This example carves up the 1,024Kbps of bandwidth into four por-
tions, with a ratio of 2:1:1:4. For simplicity’s sake, assume the congested interface
will service the packets in the queue in eight clock cycles:

 1. Clock cycle 1. An AF41 packet will be sent.

 2. Clock cycle 2. Another AF41 packet will be sent.

 3. Clock cycle 3. An AF31 packet will be sent.

 4. Clock cycle 4. An AF21 packet will be sent.

 5. Clock cycles 5–8. Packets with other classifications as well as unclassified
packets will be sent.

This example assumes there are packets representing each of the four classes sit-
ting in the buffer, queued to be sent. However, the situation is not always so straight-
forward. What happens when there are no packets from a particular traffic class to be
sent, even though there is room in the guaranteed minimum bandwidth allocation?

Guaranteed bandwidth minimums are not reservations. If the traffic class
assigned the guaranteed minimum does not require the full allocation, other traffic
classes could use the bandwidth. Neither are guaranteed bandwidth minimums hard
limits. If the amount of traffic for a specific class exceeds the guaranteed minimum
and bandwidth is available, traffic for the class will flow at a faster rate.

Thus, what happens could look more like this:

 1. Clock cycle 1. An AF41 packet is sent.

 2. Clock cycle 2. There is no AF41 packet to be sent, so an AF31 packet is sent
instead.

 3. Clock cycle 3. Another AF31 packet is sent.

 4. Clock cycle 4. There is no AF21 packet to be sent, so an unclassified packet is sent.

Chapter 8 Quality of Service214

 5. Clock cycles 5–7. Packets with other classifications as well as unclassified
packets are sent.

 6. Clock cycle 8. There are no more otherwise classified or unclassified packets
to be sent, so yet another AF31 packet is sent.

As a result, unused bandwidth is divided up among the classes with excess traffic.

Overcongestion

CBWFQ does not increase throughput of a congested link. Rather, the algorithm is
about carefully controlled sharing of the overstressed link in a way reflecting the rela-
tive importance of various traffic classes. The result of CBWFQ sharing is traffic
being delivered via the congested link, but at a reduced rate when compared to the
same link at an uncongested time.

The distinction between “sharing an overstressed link” and “creating band-
width from nothing” cannot be overstated. A common misconception about QoS is,
despite points of congestion in a network path, user experience will remain identical.
This just is not the case. QoS tools like CBWFQ are, for the most part, about making
the best of a bad situation. In picking which traffic is forwarded when, QoS is also
choosing which traffic to drop; there are “winners” and “losers” among the flows
transmitted across the network.

LLQ is a notable exception because traffic serviced by an LLQ is assumed to be so
absolutely critical that it will be serviced to the exclusion of other traffic, up to the
bandwidth limitation assigned. LLQ seeks to preserve user experience.

Other QoS Congestion Management Tools

Traffic shaping is a way to gracefully cap traffic classes to a specific rate. For exam-
ple, traffic marked as AF21 might be shaped to 512Kbps. Shaping is graceful; it
allows for nominal bursts above the defined limit before dropping packets. This
allows TCP to adjust more easily to the required rate. When the throughput of a
shaped traffic class is graphed, the result shows a ramp-up to the speed limit, and
then a flat, consistent transfer speed for the duration of the flow. Traffic shaping is
most often applied to traffic classes populated by elephant flows.

Elephant flows are long-lived traffic flows used to move large amounts of data
between two endpoints as quickly as possible. Elephant flows have the ability to fill
network bottlenecks with their own traffic, squashing smaller flows. A common QoS
strategy is to shape the traffic rate of elephant flows so it will leave the bottleneck
link with enough bandwidth to effectively service other traffic classes.

Queue Management 215

Policing is similar to traffic shaping but treats excess (nonconforming) traffic
more harshly. Rather than allowing a small burst above the defined bandwidth cap
like shaping does before dropping, policing drops excess traffic immediately. When
facing a policer, impacted traffic ramps up to the bandwidth limit, exceeds, and is
dropped. This drop behavior causes TCP to start the ramp-up process over again.
The resulting graph looks like a sawtooth. Policing can be used to accomplish other
tasks, such as re-marking nonconforming traffic to a lower priority DSCP value,
rather than dropping.

Queue Management

Buffering packets to deal with a congested interface seems like a lovely idea. Indeed,
buffers are necessary to handle traffic arriving too fast due to bursts or interface speed
mismatches—moving from a high-speed LAN to lower-speed WAN, for instance.
Thus far, this discussion of QoS has been focused on classifying, prioritizing, and
then forwarding packets queued in those buffers in accordance with a policy. Sizing
buffers as large as possible might seem like a good thing. In theory, if a buffer is large
enough to queue up packets overwhelming a link, all packets will eventually be deliv-
ered. However, both large buffers and full buffers introduce problems to be dealt with.

When packets are in a buffer, they are being delayed. Some number of microsec-
onds or even milliseconds are being added to the packet’s journey between source
and destination while they sit in a buffer waiting to be delivered. Delayed travel is
troublesome for some network conversations, as the algorithms employed by TCP
assume a predictable, and ideally low, amount of delay between sender and receiver.

Under the category of active queue management, you will find different methods
for managing the contents of the queue. Some methods go after the problem of a full
queue, dropping enough packets to leave a little room for new arrivals. Other meth-
ods go after the challenge of delay, maintaining shallow queue depths, minimizing
the amount of time a packet spends in a buffer. This keeps buffered delay reasonable,
allowing TCP to adjust traffic speed to a rate appropriate for the congested interface.

Managing a Full Buffer: Weighted Random Early Detection

Random early detection (RED) helps us deal with the problem of a full queue. Buff-
ers are not infinite in size; there is only so much memory allocated to each one. When
the buffer is filled with packets, then the new arrivals are tail dropped. This does not
bode well for critical traffic like VoIP, which cannot be dropped without impacting
the user experience. The way to handle this problem is to ensure the buffer is never

Chapter 8 Quality of Service216

entirely full. If the buffer is never completely full, then there is always room to accept
additional traffic.

To prevent a full buffer, RED uses a scheme of proactively dropping selected
inbound traffic, keeping spaces open. The more full the buffer gets, the more likely
an incoming packet is to be dropped. RED is the predecessor to modern variations
such as Weighted Random Early Detection (WRED). WRED takes into considera-
tion the priority of the incoming traffic based on its mark. Higher priority traffic is
less likely to be dropped. Lower priority traffic is more likely to be dropped. If the
traffic is using some form of windowed transport, such as TCP, these drops will be
interpreted as congestion, signaling the transmitter to slow down.

RED and variations also manage the problem of TCP synchronization. With-
out RED, all inbound packets are tail dropped in the presence of a full buffer. For
TCP traffic, the packet loss resulting from the tail drop causes transmission speed to
throttle back and the lost packets to be retransmitted. Once packets are being deliv-
ered again, TCP will attempt to ramp back up to a faster rate. If this cycle happens
across many different conversations at the same time, as happens in a RED-free tail-
drop scenario, the interface can experience bandwidth utilization oscillations where
the link goes from congested (and tail dropping) to uncongested and underutilized as
all of the throttled-back TCP conversations start to speed back up. When the now-
synchronized TCP conversations are talking quickly enough again, the link is again
congested, and the cycle repeats.

RED addresses the TCP synchronization issue by leveraging randomness when
selecting which packets to drop. Not all TCP conversations will have packets
dropped. Only certain conversations will, randomly selected by RED. The TCP con-
versations flowing through the congested link never end up synchronized, and the
oscillation is avoided. Link utilization is more steady.

Managing Buffer Delay, Bufferbloat, and CoDel

An obvious question might arise at this point. If packet loss is a bad thing, why not
make the buffers big enough to handle congestion? If the buffers are bigger, more
packets can be queued up, and maybe you can avoid this pesky problem of packet
loss. In fact, this strategy of sizable buffers has found its way into various network
devices and some network engineering schemes. However, when link congestion
causes buffers to fill and stay filled, the large buffer is said to be bloated. This phe-
nomenon is so well known in the networking industry, it has a name: bufferbloat.

Bufferbloat has a negative connotation because it is an example of too much of a
good thing. Buffers are good. Buffers provide a bit of leeway to give a burst of pack-
ets somewhere to stay while an egress interface catches up. To handle small bursts of
traffic, buffers are necessary, with the critical tradeoff of introducing delay; however,

Queue Management 217

oversizing buffers does not make up for undersizing a link. A link has a specific
amount of carrying capacity. If the link is chronically asked to transmit more data
than it is able to carry, then it is ill suited to the task required of it. No amount of
buffering can overcome a fundamental network capacity issue.

Increasing the depth of a buffer ever larger does not improve link throughput. In
fact, a constantly filled buffer puts a congested interface under an even greater strain.
Consider a couple of examples, contrasting Unacknowledged Datagram Protocol
(UDP) and Transmission Control Protocol (TCP).

 1. In the case of VoIP traffic, buffered packets arrive late. Dead air is enormously
disruptive to a real-time voice conversation. VoIP is an example of traffic trans-
ported via UDP over IP. UDP traffic is unacknowledged. The sender sends the
UDP packets along with no concern about whether they make it to their desti-
nation. There is no retransmission of packets if the destination host does not
receive a UDP packet. In the case of VoIP, the packet arrives on time, or it does
not. If it does not, then there is no point in retransmitting it, because it is far
too late to matter. The humans doing the talking have moved on.

 LLQ might come to your mind as the answer to this problem, but part of the
issue is the oversized buffer. A large buffer will take time to service causing delay
in the VoIP traffic delivery, even if LLQ is servicing the VoIP traffic. It would be
better to drop VoIP traffic sitting in the queue too long than send it too late.

 2. In the case of most application traffic, the traffic is transported via TCP over
IP, rather than UDP. TCP is acknowledged. A TCP traffic sender waits for the
receiver to acknowledge receipt before more traffic is sent. In a bufferbloat sit-
uation, a packet sits in the full, oversized buffer of a congested interface for
an overly long time, delaying the delivery of the packet to the receiver. The
receiver gets the packet and sends an acknowledgment. The acknowledgment
was slow in arriving at the sender, but it did arrive. TCP does not care how long
it takes for the packet to arrive, so long as it gets there. And thus, the sender
keeps sending traffic at the same speed through the congested interface, which
keeps the oversized buffer full and the delay times long.

 In extreme cases, the sender might even retransmit the packet, while the origi-
nal packet is still sitting in the buffer. The congested interface finally sends the
original buffered packet to the receiver, with a second copy of the same packet
now in flight, putting even more strain on an already congested interface!

These scenarios illustrate inappropriately sized buffers are, in fact, not good. A
buffer must be appropriately sized both for the speed of the interface it services and
the nature of the application traffic likely to pass through it.

Chapter 8 Quality of Service218

One attempt on the part of the networking industry to cope with the oversized
buffers found along certain network paths is controlled delay, or CoDel. CoDel
assumes an oversized buffer but manages packet delay by monitoring how long a
packet has been in the queue. This is known as the sojourn time. When the packet
sojourn time has exceeded the computed ideal, the packet is dropped. This means
packets at the head of the line—those that have waited the longest—are going to be
dropped before packets currently at the tail end of the queue.

CoDel’s aggressive stance toward dropping packets allows TCP flow control
mechanisms to work as intended. Rather than packets suffering from high delay
while still being delivered, they are dropped before the delay gets too long. The drop
forces a TCP sender to retransmit the packet and slow down the transmission, a
strongly desirable result for a congested interface. The aggregate result is a more
even distribution of bandwidth to traffic flows contending for the interface.

In early implementations, CoDel has been shipping in consumer-edge devices
parameterless. Certain defaults about the Internet are assumed. Assumptions include
a 100ms or less roundtrip time between senders and receivers, and a 5ms delay is the
maximum allowed for a buffered packet. This parameterless configuration makes it
easier for vendors of consumer-grade network gear to include. Consumer networks
are an important target for CoDel, as the mismatch of high-speed home networks
and lower-speed broadband networks causes a natural congestion point. In addition,
consumer-grade network gear often suffers from oversized buffers.

Final Thoughts on Quality of Service

Quality of Service is a deep topic; a lot of research has been done in understanding
how flows react to specific network conditions, and how network devices should
handle queueing and packet processing to ensure the minimal amount of traffic is
dropped, and delay and jitter are minimized, under even the worst of network con-
ditions. There are several broad areas of QoS you need to understand in order to be
an effective network engineer, including packet classification, packet marking,
translation of packet marking across different networks, and queue processing.
Each of these interacts with the transport protocols in ways that are not always
obvious.

The next chapter will dive into a topic from a completely different realm of net-
work engineering—virtualization. Working through the problem set considered in
the early chapters of this book, virtualization plays a role in multiplexing multiple
virtual topologies across a single physical topology.

Further Reading 219

Further Reading

Baker, Fred, David L. Black, Dr. Kathleen M. Nichols, and Steven L. Blake.
 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers. Request for Comments 2474. RFC Editor, 1998. doi:10.17487/
RFC2474.

Baker, Fred, and Gorry Fairhurst. IETF Recommendations Regarding Active Queue
Management. Request for Comments 7567. RFC Editor, 2015. doi:10.17487/
RFC7567.

Bennett, Jon, Shahram Davari, Dimitrios Stiliadis, William Courtney, Kent Benson,
Jean-Yves Le Boudec, Victor Firoiu, Dr. Bruce S. Davie, and Anna Charny. An
Expedited Forwarding PHB (Per-Hop Behavior). Request for Comments 3246.
RFC Editor, 2002. doi:10.17487/RFC3246.

Bollapragada, Vijay, Russ White, and Curtis Murphy. Inside Cisco IOS Software
Architecture. Indianapolis, IN: Cisco Press, 2000.

Floyd, S., and V. Jacobson. “Random Early Detection Gateways for Congestion
Avoidance.” IEEE/ACM Transactions on Networking 1, no. 4 (August 1993):
397–413. doi:10.1109/90.251892.

Gettys, Jim, and Kathleen Nichols. “Bufferbloat: Dark Buffers in the Internet.”
ACM Queue, November 2011. http://queue.acm.org/detail.cfm?id=2071893.

“History Of Networking—Fred Baker—QoS & DS Bit.” Network Collective,
August 2, 2017. http://thenetworkcollective.com/2017/08/hon-fred-baker-qos/.

Nichols, Kathleen. “Controlling Queue Delay.” ACM Queue, May 2012.
http://queue.acm.org/detail.cfm?id=2209336.

Postel, J., ed. Internet Protocol. Request for Comments 791. RFC Editor, 1981.
doi:10.17487/rfc791.

“RED in a Different Light.” Jg’s Ramblings, December 17, 2010. https://
gettys.wordpress.com/2010/12/17/red-in-a-different-light/.

Srikant, Rayadurgam. The Mathematics of Internet Congestion Control. 2004 edi-
tion. Boston, MA: Birkhäuser, 2003.

Stringfield, Nakia, Russ White, and Stacia McKee. Cisco Express Forwarding. 1st
edition. Indianapolis, IN: Cisco Press, 2007.

Weiss, Walter, Dr. Juha Heinanen, Fred Baker, and John T. Wroclawski. Assured
Forwarding PHB Group. Request for Comments 2597. RFC Editor, 1999.
doi:10.17487/rfc2597.

http://queue.acm.org/detail.cfm?id=2071893
http://thenetworkcollective.com/2017/08/hon-fred-baker-qos/
http://queue.acm.org/detail.cfm?id=2209336
https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/
https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/

Chapter 8 Quality of Service220

Review Questions

 1. QoS is sometimes deployed to counter the impact of running a File Transfer
Protocol, such as FTP or a backup program, and a real-time streaming appli-
cation, such as voice over IP, over the same link. Why do these two kinds of
application interact poorly in a single queue? A hint: packet sizes matter.

 2. The chapter notes that TCP sends traffic until it encounters congestion and
then backs off. What mechanism in TCP causes this effect? What happens if a
large number of TCP sessions with packets in a single queue all have a single
packet dropped at the same time?

 3. How does WRED try to mitigate the effect of dropping packets across a set of
TCP flows at the same time?

 4. Trace the way in which the ToS bits in an IPv6 header are translated into an
MPLS header and then from an MPLS header to an Ethernet header. In what
places is information lost in these translations?

 5. Some vendors have recommended the same DSCP values be used in different
parts of the network to express different classes or types of service. Would you
agree with this recommendation? What complexities does it add, and where
does it make things simpler?

 6. What kinds of traffic might you place into a high-priority class, and why?
What kinds in a scavenger class, and why?

 7. According to the State/Optimization/Surface three-way tradeoff, adding state
should increase optimization while also increasing complexity, etc. Consider
the case of adding more classes of service in a network. Describe the tradeoffs
between additional state, increased optimization, and where the interaction sur-
faces between the different layers of protocols in the network might be impacted.

 8. Traffic engineering is a completely different way to implement Quality of
Service in a network. Can you use traffic engineering to resolve all Quality of
Service problems in all networks? Describe a network engineering situation or
topology in which it seems like traffic engineering would be able to solve most
QoS requirements and one where it would not.

 9. What percentage of traffic is generally recommended to be placed in the
low-latency queue in an LLQ system? Explain why.

 10. How does SD-WAN take the complexity of managing QoS Class and Type of
Service “out of the hands of humans”? What are the advantages and disadvan-
tages of such an approach?

221

Chapter 9

Network Virtualization

Learning Objectives

After reading this chapter, you should understand:

 0 What problems network virtualization is used to solve

 0 How a tunneled packet is switched through a network

 0 What two problems every network virtualization solution must solve

 0 The general concepts of a tunnel, overlay, underlay, and over-the-top
service

 0 The concept of the inner and outer header, and how each is used in a
 virtual topology

 0 The basic operation of segment routing

 0 The basic concept of Software-Defined Wide Area Networks

 0 A basic understanding of at least some tradeoffs in building and operating
virtual topologies

 0 The concepts of shared fate and shared link risk groups

Network virtualization is, in the simplest terms possible, the creation of logical
topologies built on top of a physical topology. These logical topologies are often
called virtual topologies—hence the concept of network virtualization. These topol-
ogies may consist of a single virtual link across a larger network, called a tunnel, or a
collection of virtual links that appear to be a complete network on top of the physical
network, called an overlay.

Chapter 9 Network Virtualization222

This chapter will begin with a discussion about why virtual topologies are created
and used, illustrated by two use cases. The second section of this chapter will con-
sider the problems any virtualization solution must solve, and the third section will
consider complexity and network virtualization. Following this, two examples of
virtualization technologies will be considered: segment routing (SR) and Software-
Defined Wide Area Networks (SD-WAN).

Understanding Virtual Networks

Virtualization adds complexity in protocol design, network design, and trouble-
shooting, so why virtualize? The reasons tend to reduce to separating multiple traf-
fic flows across a single physical network. This might sound suspiciously like
another form of multiplexing because it is another form of multiplexing. The pri-
mary differences between the forms of multiplexing considered to this point and
virtualization are

 • Allowing multiple control planes to operate with different sets of reachability
information across a single physical topology

 • Allowing multiple sets of reachable destinations to operate across a single
physical topology without interacting with one another

The multiplexing techniques considered to this point have focused on allowing
multiple devices to use a single physical network (or set of wires), allowing every
device to talk to every other device (so long as they know about one another from a
reachability perspective). Virtualization focuses on breaking up the single physical
network into multiple reachability domains, where every device within a reachabil-
ity domain can communicate with every other device within the same reachability
domain, but devices cannot communicate across reachability domains (unless there
is some connection point between the reachability domains).

Figure 9-1 illustrates a network with a virtual topology laid on top of the physical
topology.

In Figure 9-1, a virtual topology has been created on top of the physical net-
work, with the virtual link [C,H] created to carry traffic across the network. In
order to create the virtual topology, C and H must have some sort of local for-
warding information separating the physical topology from the virtual topology,
which would normally pass through either E or D. This would normally take the
form of either a special set of virtual interface entries in the local routing table, or
a Virtual Routing and Forwarding (VRF) table containing only information about
the virtual topology.

Understanding Virtual Networks 223

Considering the packet flow through the virtual topology can be helpful in under-
standing the concepts. What would the packet flow look like if C and H had virtual
interfaces? Figure 9-2 illustrates.

In Figure 9-2, the forwarding process follows these steps:

 1. A transmits a packet toward M.

 2. C receives this packet, and, examining its local routing table, finds the short-
est path to the destination is through a virtual interface toward H. This vir-
tual interface is normally called a tunnel interface; it appears, from the routing
table’s perspective, like any other interface on the router.

 3. The virtual interface through which the packet needs to be transmitted has
rewrite instructions that include adding a new header, the tunnel header, or outer
header, onto the packet, and forwarding the resulting packet. The original packet
header is now called the inner header. C adds the outer header and processes the
new packet for forwarding.

A

B

C

D

E

F

H

K

A

B

C

D

E

F

H

K

M

M

ph
ys

ic
al

 n
et

w
or

k
vi

rt
ua

l n
et

w
or

k

Figure 9-1 A Physical and a Virtual Topology

Chapter 9 Network Virtualization224

 4. C now examines the new destination, which is H (remember the original des-
tination was M). H is not directly connected, so C needs to look up how to
reach H. This is called a recursive lookup, as C is looking for the path to
an intermediate destination to take the packet toward, but not to, the final
destination.

 5. C will now place the correct information onto the packet, in a link local header,
to forward the traffic to E.

 6. When E receives this packet, it will strip the outer forwarding information, the
link local header, and forward the traffic based on the first header C placed on
the packet, during the initial lookup. This outer header tells E to forward the
packet to H; E does not see or switch on the original inner header placed on the
packet by A.

 7. E will add a new link local header so the packet will be correctly forwarded to
H, and transmit the packet on the correct interface.

A

B

C

D

E

F

H

K

M

1: Packet transmitted
by A towards M

2 & 3: Look up
destination, find H
as next hop, place
outer header on
packet

4 & 5: Look up H as destination,
find E, place link local
header on packet,
forward 6 & 7: Look up H as destination,

place link local header
on packet, forward

8 & 9: strip outer header, look
up M as destination, place
link local header on packet,
forward

Figure 9-2 Forwarding a Packet across a Virtual Link

Understanding Virtual Networks 225

 8. When H receives the packet, it will strip the link local header and discover the
outer header. The outer header says the packet is destined for H itself, so H will
strip this header, and discover the original packet header or the inner header.

 9. H will now look up M in its local routing table and discover M is locally con-
nected. H will place the correct link local header on the packet and transmit it
through the correct interface so the packet reaches M.

If C and H are using VRFs rather than tunnel interfaces, the process in the pre-
ceding list changes at steps 2 and 8. At step 2, C will look up M as a destination in
the VRF associated with the [A,C] link. When C finds that traffic toward M should
be forwarded through a virtual topology via H, it will place an outer header on the
packet and process the packet again, based on this outer header, through the base VRF,
or rather the routing table representing the physical topology. When H receives the
packet, it will strip off the outer header and process the packet again using the VRF to
which M is connected to look up the information needed to forward the traffic to its
final destination. The tunnel interface, in this case, is replaced with a separate forward-
ing table; rather than processing the packet through the same table twice using two
different destinations, the packet is processed through two different forwarding tables.

The term tunnel has many different definitions; for this book, a tunnel will be
used to describe a virtual link where an outer header is used to encapsulate an inner
header, and

 • The inner header is at the same layer, or a lower layer, than the outer header
(for instance, an Ethernet header carried inside an IPv6 header; normally IPv6
is carried inside Ethernet).

 • At least some network devices in the path, whether virtual or physical, forward
the packet based on the outer header alone.

Moving from virtual interfaces to VRFs is conceptually different enough to engen-
der different descriptive terms. The underlay is the physical (or potentially logical!)
topology through which traffic is tunneled. The overlay is the set of tunnels making
up the virtual topology. Most of the time, the terms underlay and overlay are not
used with single tunnels, or in the case of a service running over the public Internet.
A service that builds a virtual topology across the public Internet is often called an
over-the-top service.

Again, these terms are used somewhat interchangeably, and even in a very sloppy
way, in the larger network engineering world. With this background, it is time to turn
to use cases, in order to inform the problem set virtualization solutions need to solve.

Chapter 9 Network Virtualization226

Providing Ethernet Services over an IP Network

Although applications should not be built with Ethernet connectivity as an underly-
ing assumption, many are. For instance:

 • Some storage and database vendors build their devices with the assumption
that Ethernet connectivity means short distance and short delay, or they design
systems on top of proprietary transport protocols directly on top of Ethernet
frames, rather than on top of Internet Protocol (IP) packets.

 • Some virtualization products embed assumptions about connectivity into their
operation, such as the reliability of the Ethernet to IP address cache for the
default gateway and other reachable destinations.

These kinds of applications require what appears to be an Ethernet link between the
devices (whether physical or virtual) running different nodes or copies of the applica-
tion. Beyond this, some network operators believe running a large flat Ethernet domain
is simpler than running a large-scale IP domain, so they would prefer to build the larg-
est Ethernet domains they can (“switch where you can, route where you must” was a
common saying in the days when switching was performed in hardware, while routing
was performed in software, so switching packets was much faster than routing them).
Some campuses are also built with the underlying idea of never asking a device to
switch their IP address once they are connected. As users may be connected to different
Ethernet segments based on their security domain, so each Ethernet segment must be
available at every wireless access point and often at each Ethernet port in the campus.

Given a network based on IP, which anticipates Ethernet as one of the many trans-
ports on top of which IP will run, how can you provide Ethernet connectivity to
devices interconnected over an IP network? Figure 9-3 illustrates the problems to be
solved.

In Figure 9-3, a process running on A, with the IP address 2001:db8:3e8:100::1
needs to be able to communicate with a service running on B with the IP address
2001:db8:3e8:100::2 as if they are on the same Ethernet segment (the two services
need to see one another in neighbor discovery, etc.). To make the problem more com-
plex, the service at A also needs to be able to move to K without changing its local
neighbor discovery cache or default router. The network itself, which is shown as a
small section of a spine and leaf fabric, is a routed network running IPv6.

What would be required to allow the requirements to be met?
There must be a way to carry Ethernet frames over the IP network separat-

ing the servers. This would normally be some form of tunneling encapsulation, as
described at the beginning of this section. Tunneling would allow Ethernet frames to

Understanding Virtual Networks 227

be received at C, for instance, encapsulated in some sort of outer header so they can
be transported across the routed network. When the packet containing the Ethernet
frame reaches D, this outer header can be stripped off and the Ethernet frame for-
warded locally. From the perspective of D, the frame is locally originated.

There must be a way to learn about the destinations reachable via the tunnel
and draw traffic into the tunnel. These are actually two separate, but related, prob-
lems. Drawing traffic into the tunnel might involve running a second control plane
with its own VRFs, or adding additional information into an existing control plane
about the Ethernet Media Access Control (MAC) addresses reachable at each edge
router.

There may be a requirement to transfer Quality of Service (QoS) markings
from the inner header to the outer header, so traffic is handled correctly when it is
forwarded. See Chapter 8, “Quality of Service,” for more information on carrying
QoS markings between the two headers in a tunnel.

Virtual Private Access to a Corporate Network

Almost every organization has remote workers of some sort, either full time, or just
people who travel, and most organizations have remote offices of some kind, where a
small group of people work away from the main office to interact with a local com-
munity in some way, such as retail or sales. All of these people still need access to

A

B

C

D

E

F

G

H

K

M

Routed IP domain

2001:db8:3e8:100::1 2001:db8:3e8:100::1

2001:db8:3e8:100::2

these two processes
need to appear to be
on the same Ethernet

segment

this process needs
to be able to move between
these two physical servers

Figure 9-3 Ethernet over IP Problem Example

Chapter 9 Network Virtualization228

network resources, such as email, travel systems, files, etc. These services cannot be
exposed to the public Internet, of course, so some other access mechanism must be
provided. Figure 9-4 illustrates the problem space.

There are two primary concerns in this use case:

 • How can the traffic between the individual host—B—and the three hosts in the
small office—C, D, and E—be protected from being intercepted and read by
an attacker? How can the destination addresses themselves be protected from
exposure into the public network? These problems involve some sort of secu-
rity, which, in turn, implies some form of packet encapsulation.

 • How can the quality of the user’s experience in these remote locations be man-
aged to support voice over IP and other real-time applications? Because pro-
viders on the Internet do not support quality of service, some other form of
quality assurance must be provided.

The problem set to solve here, then, includes two more general issues.

 • There must be a way to encapsulate the traffic being carried across the
public network without exposing the original header information and with-
out exposing the information carried in the packet to inspection. The easiest
solution for these problems is to tunnel (often in an encrypted tunnel) the traf-
fic from A and F to the edge router in the organization’s network, G, where the
encapsulation can be removed and the packets forwarded to A.

A

B

C

D

E

F

G

2001:db8:3e8:100::1

public
Internet

Figure 9-4 Virtual Private Networks over a Public Network

Understanding Virtual Networks 229

 • There must be a way to advertise the reachable destinations from G toward
the remote users, and the existence of (or reachability of) the remote users to
G, and the network behind G. This reachability information must be used to
draw traffic into the tunnels. The control plane, in this case, may need to redi-
rect traffic among the various entry and exit points to the public network, and
try to control the path of the traffic through the network, in order to ensure the
remote users receive a good quality of experience.

A Summary of Virtualization Problems and Solutions

The two use cases in the preceding sections expose the two questions every network
virtualization solution must solve:

How is traffic encapsulated within the tunnel so the packets and control plane
information can be separated from the underlying network?

The solution for this problem is generally some form of encapsulation into
which the original packet is placed as it is carried through the network. The primary
consideration for the encapsulation is hardware switching support in the underlay
network, to allow the efficient forwarding of encapsulated packets. A secondary
consideration is the size of the encapsulating packet format; each octet of addi-
tional encapsulation header reduces the amount of payload the tunnel can carry
(unless there is a differential between the Maximum Transmission Unit, or MTU,
in the network designed to account for the additional header information tunneling
imposes).

Note

Path MTU Detection (PMTUD) often does a poor job of detecting the MTU of
encapsulated packets; because of this, manual tuning of MTU at the point where
the tunnel header is imposed is often required.

How are the destinations reachable through the tunnel advertised through
the network?

In more general tunneled solutions, the tunnel becomes “just another link” in the
overall network topology. The destinations reachable through the tunnel, and the
additional virtual link, are simply included as a part of the control plane, like any

Chapter 9 Network Virtualization230

other destinations and links. In these solutions, there is one routing or forwarding
table in each device, and a recursive lookup is used to process the packet through
forwarding at the point where traffic enters the tunnel, or the tunnel headend. Traffic
is drawn into the tunnel by modifying the metrics so the tunnel is a more desirable
path through the network for those destinations the network operator would like to
be reached through the tunnel. This generally means largely manual solutions to the
problem of drawing traffic into the tunnel, such as setting the tunnel metric lower
than the path over which the tunnel runs, and then filtering the destinations adver-
tised through the tunnel to prevent the advertisement of destinations that should be
unreachable through the tunnel. In fact, if the destinations reachable through the
tunnel include the tunnel termination point (the tunnel tailend), a permanent routing
loop can form, or the tunnel will cycle between forwarding traffic correctly and not
forwarding traffic at all.

In overlay and over-the-top solutions, a separate control plane is deployed (or
a separate database of reachability information is carried for the destinations
reachable in the underlay and overlay in a single control plane). Destinations
reachable through the underlay and overlay are placed into separate routing tables
(VRFs) at the tunnel headend, and the table used to forward traffic is based on
some form of classification system. For instance, all the packets received on a
particular interface may be placed into an overlay tunnel automatically, or all the
packets with a specific class of service set in their packet headers, or all traffic
destined to a specific set of destinations. Full overlay and over-the-top virtualiza-
tion mechanisms do not generally rely on metrics to draw traffic into the tunnel
at the headend.

One other optional requirement is to provide for quality of service, either by
copying the QoS information from the inner header to the outer header, or by
using some form of traffic engineering to carry traffic along the best available
path.

Segment Routing

Segment routing (SR) may, or may not, be considered a tunneled solution, based on
the specific implementation, and how strongly you want to adhere to the definition
of tunnels presented in the “Understanding Virtual Networks” section earlier in this
chapter. This section will consider the basic concept of segment routing and two
possible implementation schemes—one using IPv6 flow labels and one using Multi-
protocol Label Switching (MPLS) labels.

Segment Routing 231

Each device in an SR-enabled network is given a unique label. A label stack
describing the path in terms of these unique labels can be attached to any packet,
causing it to take the specific path indicated. Figure 9-5 illustrates.

Each router in Figure 9-5 advertises an IP address as an identifier along with a label
attached to this IP address. In SR, the label attached to the router identifier is called a
node segment identifier (node SID). As each router in the network is assigned a unique
label, a path can be described through the network using just these labels. For instance:

 • If you wanted to forward traffic from A to K along the path [B,E,F,H], you
could describe this path using the labels [101,104,105,107].

 • If you wanted to forward traffic from A to K along the path [B,D,G,H], you
could describe this path using the labels [101,103,106,107].

The set of labels used to describe a path is called the label stack. There are two
links between D and H; how can this be described? There are several options avail-
able in SR, including:

 • The label stack may include just the node SIDs describing the path through
the network in terms of the routers, as previously shown. In this case, if the
label stack included the pair [103,107], D would simply forward to H normally,
based on local routing information, so it would use whatever local process it
would use in forwarding any other packet, such as load sharing across the two
links, to forward the SR-labeled traffic, as well.

2001:db8:3e8:100::1
label 101

2001:db8:3e8:100::2
label 102

2001:db8:3e8:100::3
label 103

2001:db8:3e8:100::4
label 104

2001:db8:3e8:100::5
label 105

2001:db8:3e8:100::6
label 106

2001:db8:3e8:100::7
label 107

B

C

D

E

F

G

H
A K

Figure 9-5 Segment Routing

Chapter 9 Network Virtualization232

 • The label stack could include an explicit label to load share over any available
set of paths available at this point in the network.

 • H could assign a label per inbound interface, as well as a node SID tied to its
local router identifier. These labels would be advertised just like the node SID,
but as they describe an adjacency, they are called an adjacency SID. The adja-
cency SID is locally unique; it is unique to the router advertising the adjacency
SID itself.

A third kind of SID, the prefix SID, describes a specific reachable destination
(a prefix) within the network. A node SID can be implemented as a prefix SID tied to
a loopback address on each router in the network.

The entire path does not need to be described by the label stack. For instance, the
label stack [101,103] would direct traffic to B, then to D, but would then allow D to use
any available path to reach the destination IP address at K. The label stack [105] would
ensure traffic passing through the network toward K would pass through F; it does not
matter how the traffic reached that point in the network, nor how it was forwarded
after it reaches F, so long as it passes through F while being forwarded toward K.

Each label in the stack represents a segment; packets are carried from label to
label across each segment in the network to be transported from the headend of the
path to the tailend of the path.

Segment Routing with Multiprotocol Label Switching

MPLS was invented as a way to blend the advantages of Asynchronous Transfer
Mode (ATM), which is no longer widely deployed, with IP switching. In the ear-
lier days of network engineering, the chipsets used for switching packets were
more constrained in their capabilities than they are now; many of the chipsets
being used were Field Programmable Gate Arrays (FPGAs) rather than Applica-
tion-Specific Integrated Circuits (ASICs), so the length of the field on which the
packet was switched was directly correlated to the speed at which the packet could
be switched. It was often easier to recycle a packet, or to process it twice, than it
was to include a lot of complex information in the header so the packet can be
processed once.

Note

Packet recycling is still often used in many chipsets to support inner and outer
headers, or even to process different parts of a longer, more complex, packet
header.

Segment Routing 233

MPLS encapsulates the original packet into an MPLS header, which is then used
to switch the packet through the network. Figure 9-6 shows the MPLS header.

The entire header is 32 bits; the label is 20 bits. Three operations can be carried
out by an MPLS forwarding device:

 • The current label in the MPLS header can be swapped with another label
(SWAP).

 • A new label can be pushed onto the packet (PUSH).

 • The current label can be popped, and the label under the current label pro-
cessed (POP).

The PUSH and POP operations are carried directly into SR; the SWAP operation
is implemented in SR as a CONTINUE, which means the current label is swapped
with the same label (i.e., a header with the label 100 will be replaced with a label of
100), and the processing of this current segment will continue. The easiest way to
understand the processing is through an example; Figure 9-7 illustrates.

In Figure 9-7, each router has a globally unique label assigned from the Segment
Routing Global Block (SRGB); these are advertised through a routing protocol or
some other control plane. When A receives a packet destined for N, it will choose a
path through the network using some local mechanism. At this point:

 • To begin the process, A will PUSH a series of MPLS headers on the packet
that describe the path through the network, [101,103,104,202,105,106,109,
110]. When A switches the packet toward B, it will POP the first label in the
stack, as there is no need to send B its own label in a header. The label stack
on the [A,B] link will be [103,104,202,105,106,109,110].

 • When B receives the packet, it examines the next label on the stack. Finding the
label to be 103, it will POP this label and forward the packet to D. The SR label

Figure 9-6 The MPLS Header

Chapter 9 Network Virtualization234

stack, in this case, has picked out one of two possible equal cost paths through
the network, so this is an example of SR choosing a specific path. The label
stack on the [B,D] link will be [104,202,105,106,109,110].

 • When D receives the packet, the top label on the stack will be 104; D will POP
this label and send the packet to E. The label stack on the [D,E] link will be
[202,105,106,109,110].

 • When E receives this packet, the top label on the stack is 202. This is an
 adjacency selector, so it selects for a specific interface rather than a specific
neighbor. E will select the correct interface, the lower of the two interfaces in
the illustration, and POP this label. The top label is now the node SID for F,
which can be removed, since the packet is being transmitted to F; E will recycle
the packet and POP this label as well. The label stack on the [E,F] link will be
[106,109,110].

 • When the packet reaches F, the next label in the stack is 106. This label indi-
cates the packet should be transmitted to G. F will POP the label and transmit
it to G. The label stack on the [F,G] link will be [109,110].

A

101

102

103

104 105

201

202

B C

D
E

F

107

108

109

110

106

G
H

K
L

M N

[103,104,202,105,106,109,110]

[101,103,104,202,105,106,109,110]

[106,109,110]

[110] [110]

[104,202,105,106,109,110]

[109,110]

[202,105,106,109,110]

Figure 9-7 Switching a Packet through a Series of Segments

Segment Routing 235

 • When the packet reaches G, the next label on the stack is 109, which indicates
the packet should be forwarded toward L. As G is not directly connected to L,
it can use a local, loop-free (generally the shortest) path toward L. In this case,
there are two equal cost paths toward L, so G will POP the 109 label and for-
ward over one of these two paths toward L. On the [G,L] segment, the label
stack is [110].

 • Assume G chooses to send the packet via K. When K receives the packet, it
will have a label stack containing [110], which is not the local label, nor it is an
adjacent node. In this case, the label needs to remain the same, or the segment
needs to CONTINUE. To implement this, K will SWAP the current label, 110,
for another copy of the same label, so the K will forward the traffic with the
same label. On the [K,L] link, the label stack will be [110].

 • When L receives the packet, the only remaining label will be 110, which indi-
cates the packet should be forwarded to M. L will POP the 109 label, effectively
removing all the MPLS encapsulation, and forward the packet to M.

 • When M receives the packet, it will forward the packet using normal IP to N,
the final destination.

The stack of labels concept in MPLS is implemented as a series of MPLS head-
ers stacked on top of one another. Popping the label means to remove the topmost
label, pushing a label means adding a new MPLS header onto the packet, and con-
tinuing means swapping the label with an identical label. When you are working
with a stack of labels, the concepts of inner and outer are often confusing, particu-
larly as many people use the idea of a label and a header interchangeably. Perhaps
the best way to reduce confusion is to use the term header to refer to the entire
label stack and the original header being carried inside MPLS, while referring to the
labels as individual labels in the stack. The inner header would then be the original
packet header, while the outer header would be the stack of labels; the inner label
would be the next label on the stack at any point in the packet’s travels through the
network, while the outer label would be the label on which the packet is actually
being switched.

Although the example given here uses IP packets inside MPLS, the MPLS protocol
is designed to carry just about any protocol, including Ethernet. SR MPLS is not,
therefore, limited to being used to carry a single type of traffic, but can also be used
to carry Ethernet frames over an IP/MPLS-based network. This means SR can be
used to support the first use case discussed in this chapter, providing Ethernet ser-
vices over an IP network.

Chapter 9 Network Virtualization236

Is MPLS a Tunnel?

Many bits, in the form of the written and spoken words, have been spilled
on the question of whether or not MPLS is a tunneling protocol. The way
tunneling is defined here is that it is an action, rather than a protocol; this is
an intentional attempt to separate the idea of the tunneling protocol from
the concept of tunneling as an action taken in carrying traffic through the
network. In the case of MPLS, this means it may, or may not, be a tunneling
protocol, depending on how it is being used—just like any other protocol.
For instance, if you have a stack of labels placed on top of a packet with an
IP header, the outer label, the one on which the packet is being switched, is
not (technically) a tunnel. This outer header, in an MPLS network, is actually
local to the segment, so it is either popped or pushed at every router. This is
analogous to an Ethernet header on a per link basis. The inner header, how-
ever, is being carried within the MPLS packet, and hence is technically being
tunneled. The inner label is not used at the current device for switching the
packet; it is simply carried as part of the packet.

This definition is not perfect—few definitions in the real world are. For
instance, in the case of an MPLS SWAP or SR CONTINUE, is the label
being used to switch the packet or not? Also, unlike the Ethernet header on
a packet, the MPLS header is actually used in making a forwarding decision.
The Ethernet header, in contrast, is simply used to reach the next hop and
then discarded. The more appropriate comparison would perhaps be: The
MPLS header is like the Ethernet header used to reach the hop beyond the
device that the router is currently transmitting to.

Regardless of these limitations, this definition will generally suffice
to mentally manage the difference between tunneling and not tunneling in
MPLS, as well as most other protocols.

Segment Routing with IPv6

The operation of SR on MPLS and SR on IPv6 is similar in all respects except how
the label stack is carried and processed. SR headers in IPv6 are carried in the flow
label field, shown in Figure 9-8.

In the IPv6 SR implementation, the SR label stack is carried in the routing header
of the IPv6 packet header. The information in this header is designed specifically
to provide information about the nodes through which “this packet” should pass
when being routed through the network, so it serves the same purpose as the SR label

Segment Routing 237

stack. In the case of IPv6 implementations of SR, each label is 128 bits, so some local
IPv6 address can be used as an SID.

The one interesting point is the IPv6 specifications indicate the IPv6 header must
not be changed by a router when processing the packet (see RFC8200 for further
details). Instead of popping, pushing, and swapping labels, then, SR IPv6 relies on each
node along the path having a pointer to the current label in the stack being processed.

Signaling Segment Routing Labels

SR is technically a source routing mechanism, because the source chooses the path
through the network—although the source routing in SR can be much looser than
traditional source routing. For each label on the stack, there are two possible ways a
node along the path can process the packet:

 • The label provides explicit instructions about how the packet should be han-
dled at this device; POP or CONTINUE the segment (label) and process the
packet accordingly.

Figure 9-8 The SR IPv6 Header Extension

Chapter 9 Network Virtualization238

 • The label does not provide explicit instructions about how the packet should
be handled at this device; use local routing information to forward the packet
and CONTINUE the segment.

In neither case does the processing node need to know about the entire path to
switch the packet; it either simply follows the label path as specified, or it processes
the packet based on purely local information. Because of this paradigm, signaling SR
is simple. Two types of signaling need to occur.

The local node, prefix, and adjacency SIDs assigned to a node in the net-
work need to be advertised by each node in the network. This signaling is
primarily carried in routing protocols; for instance, the Intermediate System to
Intermediate System (IS-IS) protocol is extended by the draft IS-IS Extensions for
Segment Routing1 to carry prefix SIDs using a sub Type Length Value (sub-TLV),
as shown in Figure 9-9.

Extensions to other routing and control plane protocols are proposed for stand-
ardization, as well; see the “Further Reading” section at the end of the chapter for
a list of these extension proposals. Because path calculation in SR is source based,
there is no need to carry a path in a distributed routing protocol. The only real need
is to provide each node in the network with the information needed to carry SR node,
prefix, and adjacency information.

In the case where SR paths are calculated by a centralized device or controller,
there needs to be a way to advertise a label path to use in order to reach a par-
ticular destination. Extensions have been proposed to the Border Gateway Protocol
(BGP) in Advertising Segment Routing Policies in BGP,2 and in the Path Computa-
tion Element Protocol (PCEP) in PCEP Extensions for Segment Routing.3 These two
kinds of advertisements are separate from one another, as the only node in the net-
work that needs to either calculate or impose the segment list is the tunnel headend
or the point where traffic enters the segment path.

1. Previdi et al., “IS-IS Extensions for Segment Routing.”

2. Previdi et al., “Advertising Segment Routing Policies in BGP.”

3. Sivabalan et al., “PCEP Extensions for Segment Routing.”

Figure 9-9 The IS-IS Sub-TLV for Carrying a Prefix SID

Software-Defined Wide Area Networks 239

Software-Defined Wide Area Networks

Many organizations need to provision and support large numbers of remote offices.
For instance:

 • Retail chains may have hundreds or even thousands of stores and locations
worldwide.

 • A regional bank may have hundreds of branch offices and thousands of cash
machine locations.

When fixed location private line services were all service providers offered at any
scale, these kinds of problems were solved using large-scale hub-and-spoke net-
works. Figure 9-10 illustrates a hub-and-spoke network.

The network shown in Figure 9-10 is actually rather small; the three dots in the
center of the remote sites may represent hundreds or thousands of additional sites.
In many implementations (especially older ones), the links between the two hub
routers, A and B, and the remotes, such as C and N, are point-to-point links. This
means the hub router must have an interface configured for each remote router,

corporate
network

A B

C

D

E
F

G
H

K

L

M
N

Figure 9-10 A Hub-and-Spoke Network

Chapter 9 Network Virtualization240

routing filters, packet filters, and any Quality of Service configurations. Not only
is this a major problem from a configuration perspective, but it is also difficult to
maintain thousands of individual neighbors in terms of processor and memory
utilization.

To reduce the amount of processing power required in maintaining such a net-
work, protocols were modified to prevent treating the remote sites as if they were
part of the tree. Instead, these modifications allowed these remote sites to be treated
as if they were leaves, or stub networks. Another step toward making these kinds
of networks easier to create and manage was using a point-to-multipoint interface
(with the appropriate underlying technology, such as Frame Relay), at the hub rout-
ers. When the connections to the remote sites are configured as point-to-multipoint,
the hub routers, A and B, treat all the spokes as if they are on a single broadcast seg-
ment (like an Ethernet segment, in effect). Each spoke router, however, still treats
its connection to the hub routers as a point-to-point link. Even with these modifi-
cations, building and maintaining such large networks is still very difficult. Links
must be purchased, and managed to each remote site, remote equipment must be
configured and managed, the configuration of the hub routers must be managed,
etc.

Software-Defined Wide Area Network (SD-WAN) solutions were originally
developed to solve this specific problem set. Originating in Cisco’s Dynamic Multi-
point Virtual Private Network (DMVPN), the idea behind the DMVPN was to use
a tunneled overlay, or over-the-top, network running on top of the public Internet.
This allowed the remote sites to use locally available Internet connectivity, rather
than purchasing a circuit per site, and reduced configuration and maintenance time
through autoconfiguration and other tools.

SD-WAN takes the concept of an over-the-top network one step further. An SD-
WAN solution is normally built using several components:

 • A specialized appliance or virtualized service to replace the routers normally
placed at the hub and spoke locations

 • A modified version of a standard routing protocol to provide reachability (and
potentially one measure of circuit liveness) and to pass policies through the
network

 • An implementation of either IP Security (IPsec) or Transport Layer Security
(TLS) to provide secure tunneled transport between the hub-and-spoke devices

 • A controller to monitor the state of each virtual link, the applications using
the link, and the amount of goodput versus the amount of traffic, and to make
dynamic adjustments to traffic flow and QoS settings to optimize application
operation across the over-the-top virtual network

Complexity and Virtualization 241

There are many different ways in which SD-WANs can be implemented; for
instance:

 • The SD-WAN can replace the “last mile”; rather than installing a circuit to
each remote site, you can use SD-WAN solutions to reach an exchange or
colocation point, and then carry the traffic through a more traditional service
through a provider back to the hub routers (this is a form of backhaul).

 • The SD-WAN can replace the entire path from the organization’s network to
the remote sites.

 • The SD-WAN can be used to draw traffic into a cloud service, where some pre-
liminary processing might take place, or some applications might be deployed,
with just traffic that must be carried into the organization’s network carried
the rest of the way into the hub routers.

There are tradeoffs with SD-WAN and other over-the-top solutions, as there are
with any other networking technology. For instance, pushing corporate remote site
traffic over a “plain” public Internet connection (or pair of services, or some other
Ethernet-terminated service) may be “good enough” in some situations, but provid-
ers tend to treat traffic in higher-priced services better (naturally enough), particu-
larly in outages.

Complexity and Virtualization

Virtualization is often undertaken to find a simpler way to solve some of the prob-
lems noted in the initial sections of this chapter, such as traffic separation. There are,
as with all things in the network engineering world, tradeoffs. In fact, if you have not
found the tradeoff, you have not looked hard enough. This section will consider
some (though certainly not all) of the various complexity tradeoffs in the realm of
network virtualization. The basis of this discussion will be the complexity tradeoff
triad considered in Chapter 1, “Fundamental Concepts”:

 • State: The amount of state and the speed at which state in the network changes
(particularly the control plane)

 • Optimization: The optimal use of network resources, including such things as
traffic following the shortest path through the network

 • Surface: The number of layers, the depth of their interaction, and the breadth
of their interaction

Chapter 9 Network Virtualization242

Interaction Surfaces and Shared Risk Link Groups

Every virtualization system ever conceived, implemented, and deployed creates
shared risk of some sort. For instance, consider a single link that is carrying several
virtual links, each of which is carrying traffic. It should be obvious (in fact trivial) to
observe that if the single physical link fails, all of the virtual links will fail. Of course,
you can simply reroute the virtual links onto another physical link. Right? Maybe or
maybe not. Figure 9-11 illustrates.

From the perspective of A and D, there are two links available through B and C,
each one providing independent connectivity between the host and the server. The
reality is, however, both provider 1 and provider 2 have purchased virtual links
through a single link from provider 3. When the single link in provider 3’s network
fails, the traffic might be redirected from the path through provider 1 to the path
through provider 2, but as both links share the same physical infrastructure, neither
link will be able to carry the traffic.

A

A

B

B

C

C

D

D

provider 1 provider 3

provider
 1

provider 2

provider
 2

Figure 9-11 Shared Risk Link Groups

Complexity and Virtualization 243

The two links in this situation are said to share fate, because they are part of a
Shared Risk Link Group (SRLG). It is possible to find and work around SRLGs,
or shared fate situations, but doing so adds complexity to the control plane and/
or network management. For instance, there is no way to discover these shared fate
situations without either manually testing different failure situations at the physical
level or examining network maps to find places where multiple virtual links pass over
the same physical link. In the situation described in Figure 9-11, finding the shared
fate situation would be almost impossible, as neither provider is likely to tell you it is
using a link from a second provider, shown as provider 3 in the illustration, in order
to provide service.

Once these shared fate situations are discovered, some action must be taken to
avoid a single failure from causing a major network outage. This normally requires
either injecting information into the design process, adding complexity to the design,
or injecting information into the control plane (see RFC8001 as an example of the
type of signaling required to manage SRLGs in a traffic-engineered control plane).

Essentially, the problem comes down to this set of statements:

 • Virtualization is a form of abstraction.

 • Abstraction removes information about the network state in order to reduce
complexity or provide services through the implementation of policy.

 • Any nontrivial reduction of information about the network state will reduce
the optimal use of resources in some way.

The only counter to the final state of these three is to leak information through
the abstraction, so optimal use of resources can be restored—in this case, the failure
of a single link not causing a complete failure of traffic flow through the network.
The only solution, then, is to make the abstraction a leaky abstraction, reducing the
effectiveness of the abstraction at controlling the scope of state and the implementa-
tion of policy.

Interaction Surfaces and Overlaid Control Planes

It is common, in network engineering, to overlay two routing protocols, or two con-
trol planes, on top of one another. While this is not often considered a form of virtu-
alization, it is, in fact, just that—splitting state between two different control planes
to control the amount of state, and the rate at which state changes, to reduce the
complexity of both control planes. This is also common when running virtual over-
lays in a network, as there will be an underlay control plane providing reachability
between the tunnel headend and tailend, and an overlay control plane providing

Chapter 9 Network Virtualization244

reachability within the virtual topology. Two overlaid control planes will interact in
sometimes unexpected ways. Figure 9-12 is used to illustrate.

In Figure 9-12:

 • Every router in the network, including B, C, D, and E, is running two control
planes (or, if it is simpler, routing protocols, hence protocol 1 and protocol 2 in
the illustration).

 • Protocol 1, the overlay, depends on protocol 2, the underlay, to provide reach-
ability between the routers running protocol 1.

 • Protocol 2 does not have any information about connected devices, such as
A and F; this information is all carried in protocol 1.

 • Protocol 1 requires much longer to converge than protocol 2.

 • The lower-cost path from B to E is through C, rather than through D.

Given this set of protocols, assume C, in Figure 9-12, is removed from the net-
work, the two control planes are allowed to converge, and then C is reconnected to
the network. What will be the result? The following will occur:

 • After C is removed, the network will reconverge with two paths in the local
routing table at B:

 • F is reachable through E.

 • E is reachable through D.

A B

C

D

E
F

protocol 1: the next hop to F is E
protocol 2: the next hop to E is C

Figure 9-12 Overlaid Control Planes, Virtualization, and Interaction Surfaces

Final Thoughts on Network Virtualization 245

 • Once C is reconnected to the network, protocol 2 will converge quickly.

 • Once protocol 2 is reconverged, the best path toward E, from the perspective of
B, will be through C.

 • Therefore, B will now have two routes in the local routing table:

 • F is reachable through E.

 • E is reachable through C.

 • B will shift to the new routing information, and hence will send traffic toward
F through C before protocol 1 converges, and hence before C has learned about
the best path to F.

 • From the time when B starts forwarding traffic destined to F to C, and the time
when protocol 1 convergences, traffic destined to F will be dropped.

This is a rather simple example of overlaid protocols interacting in an unexpected
way. To solve the problem, you need to inject information about the state of the con-
vergence of protocol 1 into protocol 2, or you must somehow force the two protocols
to converge at the same time. In either case, you are essentially adding state back into
the two protocols to account for their difference in convergence time, as well as cre-
ating an interaction surface between the protocols.

Note

This example describes the actual convergence interaction between IS-IS and BGP,
or the Open Shortest Path First (OSPF) protocol and BGP. To solve this problem,
the faster protocol is configured to wait until BGP has converged before installing
any routes in the local routing table.

Final Thoughts on Network Virtualization

Network virtualization is an important tool in the hands of the engineer to simplify
designs and solve otherwise unsolvable problems. All virtualization solutions require
at least two elements to solve the problems virtualization poses:

 • Some way to tunnel traffic through a network so traffic can be separated out
into a virtual topology

 • Some way to discover and advertise reachability across the virtual topology,
and some way to draw traffic into the virtual topology

Chapter 9 Network Virtualization246

There are a number of interesting, and often unexpected, interaction points
between complexity and virtualization that network engineers need to be aware of.
All technologies involve tradeoffs of one kind or another, so engineers should be
aware of, and intentionally seek out, these tradeoffs when working with virtualiza-
tion technologies.

The number of virtualization technologies available in the network world almost
seems to be without limit sometimes. As network engineers sometimes say: “Please,
take my tunneling protocols; there are always plenty to go around.”

Further Reading

Boutros, Sami, Ali Sajassi, Samer Salam, John Drake, and Jorge Rabadan. Virtual
Private Wire Service Support in Ethernet VPN. Request for Comments 8214.
RFC Editor, 2017. doi:10.17487/RFC8214.

Deering, Dr. Steve E., and Robert M. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Request for Comments 8200. RFC Editor, 2017. doi:10.17487/
RFC8200.

Drake, John, Wim Henderickx, Ali Sajassi, Rahul Aggarwal, Dr. Nabil N. Bitar,
Aldrin Isaac, and Jim Uttaro. BGP MPLS-Based Ethernet VPN. Request for
Comments 7432. RFC Editor, 2015. doi:10.17487/RFC7432.

Farrel, Adrian, Olufemi Komolafe, and Seisho Yasukawa. An Analysis of Scaling
Issues in MPLS-TE Core Networks. Request for Comments 5439. RFC Editor,
2009. doi:10.17487/RFC5439.

Filsfils, Clarence, Kris Michielsen, and Ketan Talaulikar. Segment Routing Part I. 1st
edition. CreateSpace Independent Publishing Platform, 2017.

Filsfils, Clarence, Stefano Previdi, Ahmed Bashandy, Bruno Decraene, Stephane
 Litkowski, and Rob Shakir. “Segment Routing with MPLS Data Plane.” Inter-
net-Draft. Internet Engineering Task Force, June 2017. https://datatracker.ietf.org/
doc/html/draft-ietf-spring-segment-routing-mpls-10.

Filsfils, Clarence, Stefano Previdi, Bruno Decraene, Stephane Litkowski, and
Rob Shakir. “Segment Routing Architecture.” Internet-Draft. Internet
Engineering Task Force, June 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-spring-segment-routing-12.

Filsfils, Clarence, Stefano Previdi, Bruno Decraene, and Rob Shakir. “Resiliency Use
Cases in SPRING Networks.” Internet-Draft. Internet Engineering Task Force, May
2017. https://datatracker.ietf.org/doc/html/draft-ietf-spring-resiliency-use-cases-11.

https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-mpls-10
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-mpls-10
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-12
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-12
https://datatracker.ietf.org/doc/html/draft-ietf-spring-resiliency-use-cases-11

Further Reading 247

Ghein, Luc De. MPLS Fundamentals. 1st edition. Indianapolis, IN: Cisco Press,
2006.

Monge, Antonio Sanchez, and Krzysztof Grzegorz Szarkowicz. MPLS in the SDN
Era: Interoperable Scenarios to Make Networks Scale to New Services. 1st edi-
tion. Beijing: O’Reilly Media, 2016.

O’Connor, Darren. Day One: MPLS for Enterprise Engineers. Juniper Networks
Books, 2014.

O’Dell, Michael D., Joseph Malcolm, Jim McManus, Daniel O. Awduche, and John-
son Agogbua. Requirements for Traffic Engineering Over MPLS. Request for
Comments 2702. RFC Editor, 1999. doi:10.17487/RFC2702.

Previdi, Stefano, Clarence Filsfils, Ahmed Bashandy, Hannes Gredler, Stephane Lit-
kowski, Bruno Decraene, and Jeff Tantsura. “IS-IS Extensions for Segment
Routing.” Internet-Draft. Internet Engineering Task Force, June 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-isis-segment-routing-extensions-13.

Previdi, Stefano, Clarence Filsfils, Paul Mattes, Eric C. Rosen, and Steven Lin.
“Advertising Segment Routing Policies in BGP.” Internet-Draft. Internet
Engineering Task Force, July 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-idr-segment-routing-te-policy-00.

Previdi, Stefano, Clarence Filsfils, Kamran Raza, John Leddy, Brian Field, Daniel Voyer,
Daniel Bernier, et al. “IPv6 Segment Routing Header (SRH).” Internet-Draft.
Internet Engineering Task Force, July 2017. https://datatracker.ietf.org/
doc/html/draft-ietf-6man-segment-routing-header-07.

Psenak, Peter, Shraddha Hegde, Clarence Filsfils, and Arkadiy Gulko. “ISIS
Segment Routing Flexible Algorithm.” Internet-Draft. Internet Engi-
neering Task Force, July 2017. https://datatracker.ietf.org/doc/html/
draft-hegdeppsenak-isis-sr-flex-algo-00.

Psenak, Peter, Stefano Previdi, Clarence Filsfils, Hannes Gredler, Rob Shakir,
Wim Henderickx, and Jeff Tantsura. “OSPF Extensions for Segment Rout-
ing.” Internet-Draft. Internet Engineering Task Force, August 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-ospf-segment-routing-extensions-19.

———. “OSPFv3 Extensions for Segment Routing.” Internet-Draft. Internet
Engineering Task Force, March 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-ospf-ospfv3-segment-routing-extensions-09.

Sajassi, Ali, John Drake, Nabil Bitar, Ravi Shekhar, Jim Uttaro, and Wim Henderickx.
“A Network Virtualization Overlay Solution Using EVPN.” Internet-Draft.
Internet Engineering Task Force, March 2017. https://datatracker.ietf.org/
doc/html/draft-ietf-bess-evpn-overlay-08.

https://datatracker.ietf.org/doc/html/draft-ietf-isis-segment-routing-extensions-13
https://datatracker.ietf.org/doc/html/draft-ietf-isis-segment-routing-extensions-13
https://datatracker.ietf.org/doc/html/draft-ietf-idr-segment-routing-te-policy-00
https://datatracker.ietf.org/doc/html/draft-ietf-idr-segment-routing-te-policy-00
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-07
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-07
https://datatracker.ietf.org/doc/html/draft-hegdeppsenak-isis-sr-flex-algo-00
https://datatracker.ietf.org/doc/html/draft-hegdeppsenak-isis-sr-flex-algo-00
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-segment-routing-extensions-19
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-segment-routing-extensions-19
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-ospfv3-segment-routing-extensions-09
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-ospfv3-segment-routing-extensions-09
https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-overlay-08
https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-overlay-08

Chapter 9 Network Virtualization248

Sivabalan, Siva, Clarence Filsfils, Jeff Tantsura, Wim Henderickx, and Jonathan
Hardwick. “PCEP Extensions for Segment Routing.” Internet-Draft. Internet
Engineering Task Force, April 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-pce-segment-routing-09.

Tappan, Dan, Yakov Rekhter, Alex Conta, Guy Fedorkow, Eric C. Rosen, Dino
 Farinacci, and Dr. Tony Li. MPLS Label Stack Encoding. Request for
 Comments 3032. RFC Editor, 2001. doi:10.17487/RFC3032.

Viswanathan, Arun, Eric C. Rosen, and Ross Callon. Multiprotocol Label Switch-
ing Architecture. Request for Comments 3031. RFC Editor, 2001. doi:10.17487/
RFC3031.

Zhang, Fatai, Oscar Gonzalez de Dios, Matt Hartley, Zafar Ali, and Cyril Margaria.
RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Informa-
tion. Request for Comments 8001. RFC Editor, 2017. doi:10.17487/RFC8001.

Review Questions

 1. How is virtualization different from mutliplexing?

 2. What is the difference between virtual interface and VRF forwarding in a net-
work device (such as a router)?

 3. Some overlay control planes include the reachable destinations from both the
underlay and the overlay in a single protocol. An example of this would be Eth-
ernet VPNs (eVPNs), in which both the IP reachability of the underlay and the
Ethernet reachability of the overlay are carried in a single protocol, the Border
Gateway Protocol. How are the overlay and underlay reachability separated?

 4. Draw a network where the interaction of the underlay and overlay control
planes create a loop.

 5. Under what situation would you need to have adjacency SIDs, rather than just
node SIDs?

 6. Describe another situation where an SRLG in an overlay over an Ethernet net-
work would be impossible to detect but would cause multiple virtual links to
fail when a single link fails.

 7. Research virtual circuits in Frame Relay. Would you consider this a tunneling
mechanism or not? Explain.

https://datatracker.ietf.org/doc/html/draft-ietf-pce-segment-routing-09
https://datatracker.ietf.org/doc/html/draft-ietf-pce-segment-routing-09

249

Chapter 10

Transport Security

Learning Objectives

After reading this chapter, you should be able to:

 0 Understand the concept of data exhaust and how it can be used by an
attacker

 0 Understand the basic operation of encryption systems, including asymmet-
ric and symmetric encryption

 0 Understand the concept of a web of trust

 0 Understand the basic principles of how keys can be exchanged

 0 Understand the basic techniques used to hide user information

 0 Understand the man-in-the-middle attack

 0 Understand the basic operation of Transport Layer Security

When you log in to a financial or medical website and sign in, you should expect that
the information you retrieve cannot be intercepted and read by anyone along the
path between your computer and the server. A less obvious, but just as important,
problem is the information you send to the site should not be open to change while it
is being transported by the network.

But how can these things be ensured? These are two of the areas transport secu-
rity can be used to address. This chapter will consider the transport security problem
space, followed by an investigation of several kinds of solutions, including encryption.
Finally, this chapter will look at the Transport Layer Security (TLS) specification as an
example of transport layer encryption.

Chapter 10 Transport Security250

The Problem Space

Security generally resolves to one of four problems: proving the data has not been
changed in transmission, preventing anyone other than the intended recipient from
accessing the information, protecting the privacy of the humans using the network,
and proving information has been delivered (or work has been done). The second and
third problems, preventing unauthorized access to data as it crosses the network and
protecting user privacy, are related problems but will be treated separately in the fol-
lowing sections. The final problem noted, the proof of traversal problem (which is
similar to the proof of work problem faced in other information technology contexts),
is not considered here, as it is an area of active research with few deployed systems.

Validating Data

If you log in to your bank’s website and transfer $100 from one account to another,
you would likely be upset if the amount actually transferred was $1,000 instead, or if
the account numbers were changed so the $100 ended up in someone else’s account.
There are a number of other situations where making certain the data transmitted is
the same as the data received, such as

 • If you purchase a pair of blue shoes, you do not want a set of red ones delivered
instead.

 • If your doctor gives you a prescription for medicine to help your heartburn
(probably resulting from the stress of working as a network engineer), you do
not want medicine for arthritis (probably from typing so many documents and
books) to be delivered.

There are a lot of situations where the data received must match the data trans-
mitted, and the originator and/or receiver must be verifiable.

Protecting Data from Being Examined

The data protection examples given previously can be taken one step further: you do
not want someone to see your account number, prescription, or other information as
it is being transported across the network. Account numbers, passwords, and any
kind of personally identifiable information (PII) are all very crucial, as these kinds of
information can be used to break into accounts to steal money, or even used to steal
someone’s identity entirely.

251The Problem Space

How can this kind of information be protected? The primary means of protec-
tion used to prevent unauthorized users (or attackers; see Chapter 21, “Security:
A Broader Sweep,” later for a full definition of the elements of an attack) is
encryption.

Protecting User Privacy

Privacy is not just nice to have on the global Internet; it is a requirement for users to
trust the system. This is true of local networks, as well; if users believe they are being
spied on in some way, they are not likely to use the network. Rather, they are likely to
use sneakernet, printing information out and hand-carrying it, rather than transfer-
ring it over the network. While many people believe privacy is not a valid concern,
there are many valid concerns in this area.

For instance, a common saying in the information management field is knowledge
is power. Knowing about a computer or network gives you some measure of power
over the computer, network, or system. For instance, assume a bank configures an
automated backup for a particular database table; when the balances in the account
held in the table change by a particular amount, the backup is kicked off automat-
ically. This might seem like a perfectly reasonable sort of backup job, but it does
involve some amount of data exhaust.

Note

Data exhaust is information about the physical movements of people or informa-
tion that can be used to infer what those people or that information is doing. For
instance, if you always take the same route to work every morning, someone can
infer, once you have made some small part of the trip, combined with a time of
day, you are going to work. The same sorts of data exhaust exist in the network
world; if, every time, at a particular time of day, a particular piece of data of a
certain size is transmitted through the network, and it happens to coincide with
a particular event, such as transferring money between two accounts, then when
this particular data appears, the transfer must be taking place. Browsing, email
history, and other online actions all leave data exhaust, which can sometimes be
used to infer the contents of a data stream even if the stream is encrypted.

The vulnerability here is: if a threat actor puts the backup together with the
change in account value, that person will know specifically what the pattern of
account activity is. Enough clues of this sort can be developed into an entire set of
attack plans.

Chapter 10 Transport Security252

The same is true of people; having knowledge about people can give you some
ability to influence people in specific directions. While the influence over people is
not as great as the influence over machines, handing one person power over another
always carries moral implications that need to be handled carefully.

Nothing to Hide

“If you have done nothing wrong, you have nothing to hide.” This is a wide-
spread fallacy worth considering for a moment. The fallacy first implies hid-
ing something means you have done something wrong is the primary point of
hiding information about yourself. In reality, as noted earlier, information can
often be used to shape a person’s (or a culture’s) perceptions of reality, beliefs,
and actions in unhealthy ways. Humans are (it is generally but not universally
agreed) flawed. The presumption should always be information is given when
it is needed for a specific reason, and is not kept when it is no longer needed,
to protect people from using data about another person in unethical or unin-
tentional ways. Most often, in modern information technology systems, the
presumption runs the other way—“information wants to be free,” and should
only be controlled when there is a specific reason to control it.

The second point to remember is, as mentioned, humans are flawed. There
is probably some embarrassing action you have taken in the past, or some-
thing someone would consider “wrong” or “harmful.” While it is important
not to cover up serious and real crimes, it is also important to allow some
grace in the interaction between humans, just in order to make a society work.

The third point to remember is, returning to knowledge is power, that
power can be used asymmetrically. Companies often hide information about
themselves from users and yet expect users (and employees) to be completely
transparent. Asymmetrical power can be harmful to people in the real world.
Remember that every company is ultimately made up of employees, each of
whom is a customer in some other context, and each of whom deserves privacy.

One phrase used to describe the problem of information leaked by users as
they interact on a network is data exhaust (see the previous note). There are many
forms of data exhaust, some of which are nearly impossible to defend against.

The Solution Space

While every solution to the security and privacy issues described in the preceding
 sections generally involves hard math, this section will (attempt to) describe the

253The Solution Space

solutions without the math. Readers who would like to learn more about the mecha-
nisms considered here are encouraged to look at the “Further Reading” section at the
end of the chapter for resources describing specific kinds of encryption algorithms
and the math involved.

Encryption

Encryption takes a block of information (the plaintext) and encodes it using some
form of mathematical operation to obscure the text, resulting in the ciphertext. To
recover the original plain text, the mathematical operations must be reversed. While
encryption is often approached as a mathematical construct, it is sometimes easier to
start by thinking of it as a substitution cipher with a substitution table that varies
based on the key used. Figure 10-1 illustrates.

Figure 10-1 shows a four-bit block of information—a trivial example but still use-
ful to illustrate the point. The encryption process is conceptually a series of straight
substitutions:

 • If 0001 is found in the original block of data (the plaintext) and key 1 is in use,
then 1010 is substituted into the actual transmitted stream (the ciphertext).

 • If 0010 is found in the plaintext and key 1 is in use, then 0100 is substituted into
the transmitted data.

1010

0100

1011

0101

0000

1000

substituted
key 1

0001 0000

0010 0101

0011 1000

0100 1010

0101 0001

0110 1001

original substituted
key 2

Figure 10-1 A Cipher Block as a Substitution Table

Chapter 10 Transport Security254

 • If 0001 is found in the plaintext and key 2 is in use, then 0000 is substituted into
the transmitted data.

 • If 0110 is found in the plaintext and key 2 is in use, then 1001 is substituted into
the transmitted data.

The process of substituting one block of bits for another is called a transform.
These transforms must be symmetrical: they must not only allow the plaintext to
be encrypted to the ciphertext, but they must also allow the plaintext to be recov-
ered (unencrypted) from the ciphertext. In a substitution table, this process involves
looking up the key on the ciphertext side of the table and substituting the plaintext
equivalent.

The size of the substitution table is determined by the size of the block, or the
number of bits encoded at one time. If a 128-bit block is used, for instance, the
lookup table would need to have 2128 entries—a very large number indeed. This kind
of space can be still be searched by an efficient algorithm quickly, so the block must
have some other features than simply being large.

The first is that the ciphertext side of the substitution block must be as random as
possible. For a transform to be ideal, any pattern found in the plaintext must not be
available for analysis in the resulting ciphertext. The ciphertext output must appear
to be as close to a random set of numbers as possible, no matter what the input is.

The second is the substitution block should be as large as is practically possible.
The more random and larger the substitution block is, the harder it is to work back
from the plaintext and ciphertext to discovering the substitution pattern being used.
To perform a brute-force attack against a substitution using a 128-bit block size, the
attacker must correlate as many of the 2128 entries in the plaintext block with the 2128
entries in the ciphertext substitution block—if the information only uses a small (or
sparse) set of possible entries from the original 128-bit space, there is little practical
way to make the correlation fast enough to make this sort of attack practical—given
the encrypting sender changes its key often enough.

Note

There is a law of diminishing returns when it comes to the size of the block; at
some point, increasing the block size does not increase the effectiveness of the
cipher at hiding information.

Density is best explained with an example. Assume you are using a straight sub-
stitution cipher in the English language, where each letter is replaced by the letter
offset by four steps in the alphabet. In this sort of (trivial) cipher:

255The Solution Space

 • Each A would be replaced by an E.

 • Each B would be replaced by an F.

 • Each C would be replaced by a G.

 • Etc.

Now try encrypting two different sentences using this transform:

 • THE SKY IS BLUE == XLI WOC MW FPYI

 • THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG == XLI
UYMGO FVSAR JSB NYQTIH SZIV XLI PEDC HSK

For the attacker trying to figure out how the ciphertext version of the sentence
relates to the plaintext version, the first sentence presents 9 matching pairs of letters
out of the space of 26 possible letters. There is a good chance you can guess what the
correct transform is—move four steps to the right—from this small sample, but it is
possible there is some “trick” involved that causes future messages encrypted using
this transform to fail to be unencrypted correctly. The second sentence is, however,
a well-known example of a sentence containing every possible letter in the English
alphabet. The transform can be validated against every possible value in the entire
input and output range, making the discovery of the transform trivial.

In this example, the first sentence would be less dense than the second. In real
cryptographic systems, the general idea would be to use just several thousand possi-
ble symbols out of a space of 2128 or 2512 possible symbols, which creates a much less
dense information set to work with. At some point, the density becomes low enough,
the transform complex enough, and the ciphertext random enough, that there is no
practical way to compute the relationship between the input (the plaintext) and the
output (the ciphertext).

In real life, the substitution blocks are not precomputed in this way. Rather, a
cryptographic function is used to calculate the substitution value in real time. These
cryptographic functions take a block-sized input, the plaintext, perform the trans-
form, and output the correct ciphertext. The key is a second input that modifies the
output of the transform so each key causes the transform to produce a different out-
put. If the key size is 128 bits, and the block size is 256 bits, there are 2128 × 2256 pos-
sible output combinations from the transform. Figure 10-2 illustrates.

In Figure 10-2, each substitution table is the block size; if the block size is 256
bits, then there are 2256 possible substitutions in each table. Each key generates a new
table, so if the key is 128 bits, then there are 2128 possible tables. There are two gen-
eral ways to attack such an encryption system.

Chapter 10 Transport Security256

The first way to attack this type of encryption system is to try to map every pos-
sible input value to every possible output value, revealing the entire substitution
table. If the input only ever represents a small set of the possible inputs (the table is
sparsely used, or is a sparse array, more precisely), this task is nearly impossible. If
the user changes her key, and hence the particular table among the possible set of
tables, often enough, there is no way to perform this mapping faster than the key
is changed.

each table is 2256

possible substitutions

each key creates a table,
so there are 2128 possible tables

Figure 10-2 Substitution Tables Generated by Large Key Transforms

257The Solution Space

Note

There are still potential weaknesses even in large blocks combined with
 transforms to produce nearly random output—in other words, even if the
 transform is close to ideal. If you collect 23 people in a single room, there is
a high probability two of them will have the same birthday—but this seems
irrational because there are 365 potential days (not counting leap years) on
which a person could be born each year. The reason for the disparity between
what appears should happen and what does happen is this: in the real world,
people’s birthdays are clustered on a very small number of days throughout
the year. The input data, then, is a very dense “spot” in a moderately large set
of possible values. When this happens, the sparseness of the data can work
against the encryption system. If a small set of data is repeated in the larger set
on a regular basis, the attacker can focus on just the substitutions used most
often and potentially discover the contents of enough of the message to make
recovery of most of the meaning reasonably possible.

The second way to attack an encryption system of this kind is to attack the trans-
form itself—the cryptographic function. Remember these large substitution tables
are often impossible to generate, store, and transport, so some form of crypto-
graphic function is used to take a block of plaintext as an input and generate a block
of ciphertext as the output. If you could discover this transform function, then you
can calculate the output in the same way the transmitter and receiver are, and unen-
crypt the plaintext in real time.

In the real world, this problem is made more complex by

 • Kerckhoffs’ principle, which states the transform itself must not be a secret.
Rather only the key used to select which table among the possible tables should
be kept secret.

 • At least some plaintext and ciphertext can sometimes be recovered from an
ongoing encrypted data transmission for various reasons—perhaps a mistake,
or perhaps the point of the encryption is to verify the text, rather than keeping
the text from being read.

Given these restrictions, there are several key points to consider:

 • The difficulty of computing the key from the plaintext, ciphertext, and crypto-
graphic function (transform) must be very high.

Chapter 10 Transport Security258

 • The randomness of the output of the cryptographic function must be very
high, to reduce the possibility of brute-force attacks—just trying every pos-
sible key in the space—being successful.

 • The key space must be large, again to prevent brute-force attacks from being
successful.

The quality of a cryptographic function is determined by the ability of the func-
tion to produce as close to a random output from virtually any input in a way so an
attacker is prevented from discovering which key is being used, even though they
have both the plaintext and the ciphertext. Cryptographic functions, then, normally
use some form of one of the most difficult problems to calculate. One in particular
that is often used is computing the factors of very large prime numbers.

Security and Obscurity

No security through obscurity. If you get close enough to a security engi-
neer for long enough, or involved in any sort of debate over proper security,
you will likely hear these words somewhere along the way. A more formal
name for this phrase is Kerckhoffs’ principle, which states: The security of
the information carried in an encrypted block or stream should rely on the
secrecy of the private key, not the secrecy of the algorithm.

There is one problem with this phrase, however: it is often used out of
context. To understand the real meaning of the phrase, you need to go
back in time to the origin of encryption algorithms. In the physical lock
world, revealing the plans of a lock will often reveal various passageways
to bypassing or defeating the lock. This habit was carried over to early
 software security vendors; the reasoning is if an attacker knows how the
encryption algorithm works, he will be able to find ways to defeat the
encryption algorithm.

But encryption algorithms are not door locks; what is an important
 safeguard in one realm can be a dangerous crutch in another. Hiding code
developed to encrypt plaintext does not really make the code more secure;
in fact, just the opposite happens. Instead of improving security, obscuring
encryption code and processes simply prevents experts in the field from
 finding flaws and possible ways to defeat the code before these are exposed
in real deployments. Ultimately, security by obscurity is dangerous in this
 particular context.

259The Solution Space

So this is a good principle, but it can be misapplied. For instance, if a network
operator attempts to hide internal network architecture, addressing, or even
blocking external hosts from reaching internal ones, at least some security experts
will counter with “this is simply security by obscurity; you should not do that.”
Taken in this sense, however, encrypting data is also security by obscurity. Hiding
information and hiding information about your infrastructure are both essentially
hiding information, and hiding information is essentially a form of obscurity.

How can you tell when you should apply “no security by obscurity,” and
when you should not? Perhaps the best rule of thumb is this: hiding processes,
algorithms, and implementations is not a useful addition to security in the
cyber world. Hiding information, however, often is. It can be hard to apply
this rule of thumb in many situations, but it should be a good start in thinking
through the issues and making the right decision in each particular case.

What happens if you are using a 128-bit block, and you have 56 bits of data to
transport? The most natural thing to do in this situation would be to pad the plaintext
with some number; most likely all 0s or all 1s. The quality of the output is dependent,
to some degree, on the sparseness of the input; the fewer the range of numbers used
as an input, the more predictable the output of the cryptographic function will be. In
this case, it is important to use padding that is as close to random as possible; there is
an entire field of study around how to pad blocks of plaintext to “help” the crypto-
graphic function produce ciphertext that is as close to random as possible.

Multiple Rounds of Encryption
It is possible to process the same information through a cryptographic function
 multiple times. For instance, if you have a 128-bit block and a 128-bit key, you can

 • Take the plaintext and, using the key, calculate a ciphertext; call this ct1.

 • Take ct1 and, using the key, calculate a second-round ciphertext; call this ct2.

 • Take ct2 and, using the key, calculate a third-round ciphertext; call this ct3.

The actual transmitted ciphertext would be the final ct3. What does this pro-
cess accomplish? Remember the quality of the encryption process is related to the
randomness of the output against the input. Each round will, in many situations,
increase the randomness just a bit more. There is a point of diminishing returns in

Chapter 10 Transport Security260

this process; normally after the third round, the data is not going to become “any
more random,” and hence more rounds are essentially just wasting processing power
and time for very little gain.

Public versus Private Key Cryptography
There is a class of cryptographic functions that can transform the plaintext into
ciphertext, and back, using two different keys. This capability is useful when you
want to be able to encrypt a block of data with one key and allow someone else to
unencrypt the data using a different key. The key you keep secret is called the private
key, and the key you give to others, or publish, is called the public key.

To prove you are the actual sender of a particular file, for instance, you can encrypt
the file with your private key. Now anyone with your public key can unencrypt the
file, which could only have been sent by you. You would not normally encrypt the
entire block of data with your private key (in fact most systems using key pairs are
designed so you cannot do this); rather a signature is created using your private key
that can be verified using your public key. To ensure only the person you want to read
something can, you can encrypt some data with her public key, publish it, and only
the person with the correct private key can unencrypt it.

Such systems are called public key cryptography (sometimes the names engineers
choose are, perhaps, a little too obvious), or asymmetric cryptography. In public key
cryptography, the public key is often “released into the wild;” it is something anyone
with access to a key server or some other source can look up.

The alternative to public key cryptography is symmetric key cryptography. In
symmetric key cryptography, the sender and receiver share a single key that is used
to both encrypt and unencrypt the data (the shared secret). Given shared secrets are
(obviously) difficult to create and use, why is symmetric key cryptography ever used?
There are two basic tradeoffs to consider when choosing between symmetric and
public/private key cryptography:

 • Processing complexity: Public key cryptography systems generally require a
good deal more processing power to encrypt and unencrypt the transmitted
data. Symmetric key systems are generally much easier to develop and deploy
in a way that does not require large amounts of processing power and time.
Because of this, public key cryptography is often used to encrypt very small
amounts of data, such as a private key (see the example in the following section).

 • Security: Public key cryptography generally requires a somewhat unique set
of mathematical transform mechanisms. Symmetrically keyed systems tend to
have a wider range of available transforms that are also more complex and
hence more secure (they provide more randomness in the output and hence are
harder to break).

261The Solution Space

There is a place for both kinds of systems, given these tradeoffs and real-world
requirements.

Key Exchange

Some of the earliest cryptographic systems involved wrapping paper around a cylin-
der of a specific size; the cylinder had to be somehow carried between the two parties
to the encrypted communication without being captured by an enemy. In more recent
years, pads of keys were physically carried between the two end points of an
encrypted system. Some of these were arranged so a particular page would be used
for a certain time period and then ripped out, securely destroyed, and replaced by a
new page for the next day. Others were designed so each page in the pad would be
used to encrypt one message, at which point the page would be ripped out and
replaced—a one-time pad.

Note

The concept of a one-time pad has been carried into the modern world with authen-
tication systems that allow the user to create a code that is used once, and then
 discarded, to be replaced by a new code the next time the user tries to authenticate.
Any system that relies on a code that is used once is still called a one-time pad.

In the modern world, there are other ways you can exchange cryptographic mate-
rial, whether it is using a shared secret key or retrieving a private key.

Many times in cryptography, it is easier to explain how something works using
trivial examples. In the following explanations, Fish and Jeff will be two users who
are trying to exchange secure information, with Fish being the initiator and sender,
and Jeff being the receiver.

Exchanging Public Keys
Fish would like to send a message to Jeff in a way that only Jeff can read it; to do this,
she needs Jeff’s public key (remember she should not have access to Jeff’s private
key). Where can she get this information? She could

 • Ask Jeff for it directly. This might seem simple to do, but it could be very dif-
ficult in real life. How, for instance, can she be certain she is actually commu-
nicating with Jeff?

 • Look up Jeff’s public key in a public database of keys (a key server). Again, this
seems to be straightforward, but how does she know she has found the right
 person, or someone has not placed a false key for Jeff on this particular server?

Chapter 10 Transport Security262

These two problems can be solved through some sort of reputation system. For
instance, in the case of a public key, Jeff could ask several of his friends, who know him
well, to sign his public key using their private keys. Their signature on his public key
essentially says, “I know Jeff, and I know this is his public key.” Fish can examine this list
of friends to determine if there are any of them she can trust. Based on this examination,
Fish can determine she either trusts that this specific key is Jeff’s key, or she does not.

In this situation, it is up to Fish to determine how much, and what sort of, proof she
will accept. Should she, for instance, accept that the key she has is actually Jeff’s because

 • She directly knows one of Jeff’s friends and trusts this third person to tell her
the truth.

 • She knows someone who knows one of Jeff’s friends, and trusts this friend of
hers to tell her the truth about Jeff’s friend, and hence trusts Jeff’s friend to tell
the truth about Jeff and his key.

 • She knows several people who know several of Jeff’s friends and makes a deci-
sion to trust this is Jeff’s key based on the testimony of several people.

This kind of system is called a web of trust. The general idea is that trust has dif-
ferent levels of transitivity. The concept of transitive trust is somewhat controversial,
but the idea behind a web of trust is if you receive enough evidence, you can build
up a trust in a person/key pairing. An example of this kind of web of trust is the
Pretty Good Privacy ecosystem, where people meet at conferences to cross sign one
another’s keys, building up a web of transitive trust relationships that can be relied
on when their communication moves into the electronic-only realm.

Another option is the key server owner could somehow do an investigation of Jeff
and determine if he really is who he says he is, and whether or not this is really his
key. The clearest “real-world” example of this sort of solution is a public notary. If
you sign a document in front of a notary, he checks for some form of identification
(verifying who you are) and then watches you physically sign the document (verifying
your key).

This kind of validation is called a central source of trust (or similar—though it almost
always has the word centralized in it) or a Public Key Infrastructure (PKI). The solution
depends on Fish trusting the process and honesty of the centralized key repository.

Exchanging Private Keys
Given symmetric key cryptography is so much faster to process than public key cryp-
tography, you would ideally like to encrypt any long-standing or high-volume flows
using a symmetric shared secret key. But, short of somehow physically exchanging
keys, how is it possible to exchange a single private key between two devices that are
connected over a network? Figure 10-3 is used to illustrate.

263The Solution Space

A B

1. encrypted nonce

3. calculate private key

2. encrypted nonce

Figure 10-3 Using Public Keys to Either Exchange or Calculate a Private Session Key

In Figure 10-3:

 1. Assume A begins the process. A will encrypt a nonce, a random number used
once in the process and then thrown away (a nonce is a form of a one-time pad,
in effect), using B’s public key. Because the nonce has been encrypted with B’s
public key, in theory only B can unencrypt the nonce, as only B should know
B’s private key.

 2. B, on unencrypting the nonce, will now send some new nonce to A. This may
include A’s original nonce, or A’s original nonce plus some other information.
The point is that A must know, for certain, that the original message including
A’s nonce was received by B—and not some other system acting as B. This is
ensured by B including some piece of information that was encrypted using its
public key, as B is the only system that could have unencrypted it.

 3. A and B, using the nonces and other information exchanged to this point, will
calculate a private key, which is then used to encrypt/unencrypt information
transferred between the two systems.

The steps outlined here are somewhat naïve; there are better, more secure systems,
such as the Internet Key Exchange (IKE) protocol; see the “Further Reading” section
at the end of the chapter for resources in this area.

Cryptographic Hashes

Assume you wanted to send a large text file, or even an image, and allow receivers to
validate it originated from you. What if the data in question is very large? Or what if

Chapter 10 Transport Security264

the data needs to be compressed to be transmitted effectively? There is a natural con-
flict between cryptographic algorithms and compression; cryptographic algorithms
attempt to produce maximally random output, and compression algorithms attempt
to take advantage of nonrandomness in the data to compress data into a smaller
number of bits. Or perhaps you want the information to be read by anyone who
would like to read it, which means not encrypting it, but you would like receivers to
be able to verify you transmitted it if they would like to.

Cryptographic hashes are designed to provide a solution to resolve these prob-
lems. There is a brief explanation of hashes in Chapter 7, “Packet Switching.” You
might have already noticed at least one similarity between the idea of a hash and a
cryptographic algorithm. Specifically, a hash is designed to take a very large piece of
data, and create a fixed length representation so there are very few collisions in the
output for a wide range of inputs. This is very similar to the concept of as close to
random output for any input required of a cryptographic algorithm. Another simi-
larity worth mentioning is that hash and cryptographic algorithms both work better
with a very sparsely populated input space.

A cryptographic hash simply replaces the normal hash function with a crypto-
graphic function. In this case, the hash can be calculated and either posted alongside
the data or transmitted with the data.

Cryptographic hashes can either be used with symmetric or public key systems,
but they are normally used with public key systems.

Obscuring User Information

Returning to the chapter introduction, another security problem space is data
exhaust. In the case of individual users, data exhaust can be used to trace what users
are doing while they are on the network (rather than just processes). For instance:

 • If you carry a cell phone with you at all times, it is possible to trace the move-
ment of the Media Access Control (MAC) address as it moves between wireless
connection points to trace your physical movements.

 • Since most data streams are not symmetrical—data passes through large pack-
ets, while acknowledgments are passed through small packets—an observer
can discover when you are uploading and downloading data, and perhaps even
when you are completing small transactions. Combined with the destination
server, this information could reveal a good bit about your behavior as a user
in a particular situation, or over time. This, and many other kinds of traffic
analysis, can be performed even on encrypted traffic.

 • As you move from website to website, an observer can trace how long you
spend on each one, what you click on, how you reached the next site, what you

265The Solution Space

have searched for, what sites you keep open at any time, etc. This information
can reveal a good bit about you as a person, what you are trying to accomplish,
and other personal factors.

Two solutions of interest in this space are covered in the following sections as
examples of the sorts of solutions available: MAC address randomization and onion
routing.

MAC Address Randomization
The Institute of Electrical and Electronic Engineers (IEEE) originally designed the
MAC-48 address space, described in Chapter 4, “Lower Layer Transports,” to be
assigned by manufacturers of the network interfaces. These addresses would then be
used “as is” by manufacturers of networking equipment, so each piece of hardware
would have a fixed, immutable hardware address. This process was designed long
before cell phones were even a dream on the horizon and before privacy became an
issue.

In the modern world, this means a single device can be followed regardless of
where it connects to the network. Many users find this unacceptable, particularly as
it is not just the provider who can track this information, but anyone who can listen
in on the wireless signal, which means anyone with an antenna. One way to solve
this is to allow the device to change its MAC address on a regular basis, even perhaps
using a different MAC address in each packet. Since a third party listener, outside the
provider network, cannot “guess” the next MAC address any device will use, it can-
not track a particular device. A device that uses MAC address randomization will
also use a different MAC address on each network it joins, so it will not be trackable
across multiple networks.

There are attacks against MAC address randomization, primarily centering
around the user’s authentication to use the network. Most authentication systems
rely on the MAC address, because it is programmed into the device, to identify the
device, and in turn, the user. Once the MAC address is no longer an unchanging
identifier, there must be some other solution. Places where MAC address randomiza-
tion can be attacked are

 • Timing: If a device is going to change its MAC address, it must somehow tell
the other end of the wireless link about these changes, so the channel between
the connected device and the base station can remain viable. There must be
some agreed-on system of timing so the changing MAC address can continue
communicating across the change. If an attacker can determine when this
change will take place, then she can watch the right window of time and dis-
cover the new MAC address the device takes on.

Chapter 10 Transport Security266

 • Sequence numbers: As with all transport systems, there must be some way
to determine if all the packets have been received or dropped. An attacker can
track the sequence numbers being used to track packet delivery and acknowl-
edgment. Combined with the timing attack just noted, this can provide fairly
certain identification of a specific device across MAC address changes.

 • Information element fingerprints: Each mobile device has a set of capabili-
ties it can support, such as installed browsers, extensions, apps, and additional
hardware. Because each user is unique, the set of applications he uses will also
likely be fairly unique, creating a fingerprint of capabilities that will be reported
through the information element in response to probes from the base station.

 • Service Set Identifier (SSID) fingerprints: Each device keeps a list of networks it
can currently reach and (potentially) networks it could reach at some point in the
past. This list is likely to be fairly unique, and hence can act as a device identifier.

While each of these items may provide some level of uniqueness at a device level,
the combination of these items can come very close to identifying a specific device
often enough to be practically useful in tracking any specific user connecting to a
wireless network.

This does not mean MAC address randomization is useless, but rather this is one
step in preserving user privacy when connected to a wireless network.

Onion Routing
Onion routing is a mechanism used to disguise the path of, as well as encrypt, user
traffic passing through a network. Figure 10-4 is used to illustrate.

In Figure 10-4, host A wants to send some traffic to K securely, without any other
node in the network being able to see the connection between the host and the server,
and without any observer being able to see the plaintext. To accomplish this with
onion routing, A does the following:

 1. It uses a service to find a set of nodes that can interconnect and provide a path
to the server, K. Assume this set of nodes includes [B,D,G]; while the illustration
shows these as routers, they are more likely software routers running on hosts,
rather than dedicated network devices. Host A will first find B’s public key and
use this information to build a symmetric key encrypted session with B.

 2. Once this session is established, A will then find D’s public key, and use this
information to exchange a set of symmetric keys with D, finally building a ses-
sion to D using this symmetric secret key to encrypt the secured channel. It is
important to note that from D’s perspective, this session is with B, rather than A;

267The Solution Space

host A simply instructs B to take these actions on its behalf, rather than doing
them directly. This means that D does not know A is the originator of the traf-
fic; it only knows the traffic is sourced from B and carried across an encrypted
link from there.

 3. Once this session is established, A will then instruct D to set up a session with
G in the same way it instructed B to set up a session with D. D now knows the
destination is G but does not know where the traffic will be routed by G.

Host A now has a secure path to K with the following properties:

 • The traffic between each pair of nodes along the path is encrypted with a dif-
ferent symmetric private key. An attacker that breaks the connection between
one pair of nodes along the path still cannot observe the traffic being transmit-
ted between nodes elsewhere in the path.

 • The exit node, which is G, knows the destination but not the source of the traffic.

 • The entrance node, which is B, knows the source of the traffic but not the
destination.

In this kind of network, only A knows the full path between itself and the des-
tination. The intermediate nodes do not even know how many nodes are in the

A

B

D

E F

G

H

K

C

1

2

3

Figure 10-4 Onion Routing

Chapter 10 Transport Security268

path—they know about the previous and next nodes. The primary form of attack
against such a system is to take over as many exit nodes as you can, so you can
observe the traffic exiting from the entire network, and correlate it back into a full
stream of information.

Man in the Middle

Any kind of security should not only examine how you can protect informa-
tion, but also consider the different ways in which you can cause the protec-
tion of data to fail. Given no system is perfect, there will always be some way
you can attack the system successfully. If you know the kinds of attacks that
can be successfully launched against a transport security system, you can try
to design the network and environment in a way that prevents these attacks
from being used. Man-in-the-middle (MitM) attacks are common enough
that they are worth considering in some detail. Figure 10-5 illustrates.

Figure 10-5 is similar to Figure 10-3 with one addition: there is a host, B, situ-
ated between the host A and the server C that would like to start an encrypted
session. By some means, either spoofing C’s IP address, or modifying the
Domain Name Service (DNS) records so C’s name resolves to B’s address, or
perhaps even modifying the routing system so traffic that should be delivered
to C is delivered to B instead, the attacker has caused B to receive traffic origi-
nating at A and destined to C. In Figure 10-5:

 1. Host A sends a semirandom number, called a nonce, to C. This informa-
tion is received by B.

CA B

1. encrypted nonce 2. encrypted nonce

5. calculate private key 6. calculate private key

4. encrypted nonce 3. encrypted nonce

Figure 10-5 A Man-in-the-Middle Attack

269Transport Layer Security

Transport Layer Security

Transport Layer Security (TLS), also known as the Secure Socket Layer (SSL), is a
secure transport layer protocol deployed by default in most web browsers. When
users see the small green lock indicating that a website is “safe,” this means the SSL
certificate is valid, and the traffic between the host (on which the browser runs) and
the server (on which the web server runs) is being encrypted. TLS is a complex proto-
col with a lot of different options; this section will provide a rough overview of its
operation. Figure 10-6 illustrates the components of the TLS suite.

 2. Host B, which the attacker is using as the MitM, transmits this nonce on to
C in a way that makes it appear the packet actually originated at A. At this
point, the attacker knows the nonce encrypted by A; the attacker does not
know A’s private key but does have access to anything A sends encrypted
with A’s private key.

 3. The server, C, sends a response with an encrypted nonce, as well. B receives
this and records it.

 4. Host B passes the nonce it received from C on to A. Host A will still believe
this packet came directly from C.

 5. Host B calculates a private key with A as if it were C.

 6. Host B calculates a private key with C as if it were A.

Any traffic A sends to C will be received by B, which will

 • Unencrypt the data A has transmitted using the private key calculated at
step 5 in Figure 10-5.

 • Encrypt the data A has transmitted using the private key calculated at
step 6 in Figure 10-5 and transmit it to C.

During this process, the attacker, at B, has access to the entire flow, in
plaintext, between A and C. Neither A nor C realizes they have both built
an encrypted session to B, rather than to one another. These kinds of MitM
attacks are very difficult to prevent and detect.

Chapter 10 Transport Security270

In Figure 10-6:

 • The handshake protocol is responsible for initializing sessions and setting up
session parameters, including the initial private key exchange.

 • The alert protocol is responsible for error handling.

 • The change cipher specification is responsible for starting the encryption.

 • The record protocol breaks data blocks presented for transport into frag-
ments, (optionally) compresses the data, adds a Message Authentication Code
(MAC), encrypts the data using the symmetrical key, adds the original infor-
mation to the block, and then sends the block to the Transmission Control
Protocol (TCP) for transport across the network.

Applications running on top of TLS use a special port number to access the ser-
vice through TLS. For instance, web services using the Hypertext Transfer Protocol
(HTTP) are normally accessible over TCP port 80; TLS-encrypted HTTP is nor-
mally accessible through port 443. While the service is the same, the change in the
port number allows the TCP process to direct traffic that needs to be unencrypted for
the final application to read it.

The MAC, which within this context will mean a Message Authentication Code,
is used to ensure the sender is authenticated. While some cryptography systems
assume that successfully encrypting data with a key the receiver knows proves the
sender is truly who he claims to be, TLS does not. Instead, TLS includes a MAC that
validates the sender separately from the keys used to encrypt messages on the wire.
This helps prevent MitM attacks against TLS-encrypted data streams.

Figure 10-7 shows the TLS startup handshake, which is managed by the hand-
shake protocol.

handshake
protocol

alert
protocol

handshake
protocol

change
cipher

HTTP SMTP

TLS record protocol

TCP

special
sockets

Figure 10-6 TLS Components

271Transport Layer Security

In Figure 10-7:

 1. The client hello is sent in plaintext, and contains information about the version
of TLS the client is running, 32 random octets (the nonce), a session identi-
fier (which allows a previous session to be recovered or restored), a list of the
encryption algorithms (cipher suites) the client supports, and a list of the data
compression algorithms the client supports.

 2. The server hello is sent in plaintext, as well, and contains the same information
as above, from the server’s perspective. In the server hello, the encryption algo-
rithm field indicates the kind of encryption that will be used for this session.
This is normally the “best” encryption algorithm available at both the client
and the server (although it is not always the “best”).

 3. The server sends its public key (a certificate), along with the nonce that the
client sent to the server, where the nonce is now encrypted using the server’s
private key.

 4. The server hello done message indicates the client now has the information it
needs to complete the session setup.

 5. The client generates a private key and uses the server’s public key to encrypt it.
This is transmitted in the client key exchange message toward the server.

1. client hello

5. client key exchange

6. certificate verify

7. change cipher specification

8. finished

2. server hello

3. certificate

4. server hello done

9. change cipher specification

10. finished

cl
ie

nt

se
rv

er

Figure 10-7 TLS Secure Session Startup Process (Handshake)

Chapter 10 Transport Security272

 6. Once this has been transmitted, the client must sign something known to
both the server and the client in order to verify the sender is the correct device.
 Usually, the signature is across all the messages in the exchange up to this point;
generally, a cryptographic hash is used to generate a verification.

 7. The change cipher specification message essentially acknowledges the session
is up and running.

 8. The finished message once again authenticates all the previous handshake
messages to this point.

 9. The server then acknowledges the encryption session is set up by sending a
change cipher specification message.

 10. The server then sends a finished message, which authenticates the prior mes-
sages sent in the handshake in the same way as above.

Note

Optional steps in the TLS handshake have been left out of this explanation for
clarity.

Once the session is up and running, applications can send information toward the
receiving host on the correct port number. This data will be encrypted using the pre-
viously negotiated private key and then handed off to TCP for delivery.

Final Thoughts on Transport Security

This chapter has considered three specific problems in the space of transport secu-
rity: validating data, protecting data from being examined, and protecting user
privacy. For network engineers, understanding the theory of how transport secu-
rity works and where the weak spots in a transport security system interact with
the network design is often more important than understanding the intimate
details of the actual security mechanisms themselves. Because of this, this chapter
has focused on providing a stronger theoretical foundation in the form of “how to
think about transport security,” rather than on practical implementations of trans-
port security. Readers who are interested in a deeper exploration of transport secu-
rity are encouraged to look at the “Further Reading” section at the end of this
chapter.

273Further Reading

Overall, transport security is just one small piece of the overall security required in
network engineering; Chapter 21, “Security: A Broader Sweep,” considers a broader
sweep of security topics at both a network and a system level.

Further Reading

Bauer, Kevin, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. “Low-Resource Routing Attacks Against Tor.” In Proceedings of the
2007 ACM Workshop on Privacy in Electronic Society, 11–20. WPES ’07. New
York, NY, USA: ACM, 2007. doi:10.1145/1314333.1314336.

Brockners, Frank, Shwetha Bhandari, Sashank Dara, Carlos Pignataro, John
Leddy, Stephen Youell, David Mozes, and Tal Mizrahi. “Proof of Transit.”
Internet-Draft. Internet Engineering Task Force, March 2017. https://
datatracker.ietf.org/doc/html/draft-brockners-proof-of-transit-03.

Davies, Joshua. Implementing SSL / TLS Using Cryptography and PKI. 1st edition.
Hoboken, NJ: Wiley, 2011.

Ducklin, Paul. “What Your Encrypted Data Says about You.” Naked Security,
March 18, 2016. https://nakedsecurity.sophos.com/2016/03/18/what-your-
encrypted-data-says-about-you/.

Ferguson, Niels, and Bruce Schneier. Practical Cryptography. 1st edition. New York:
Wiley, 2003.

Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering:
Design Principles and Practical Applications. 1st edition. Indianapolis, IN:
Wiley, 2010.

Katz, Jonathan, and Yehuda Lindell. Introduction to Modern Cryptography. 2nd
edition. Boca Raton, FL: Chapman and Hall/CRC, 2014.

Kaufman, Charlie, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. Inter-
net Key Exchange Protocol Version 2 (IKEv2). Request for Comments 7296.
RFC Editor, 2014. doi:10.17487/RFC7296.

Matte, Célestin, Mathieu Cunche, Franck Rousseau, and Mathy Vanhoef.
“Defeating MAC Address Randomization Through Timing Attacks.” In
Proceedings of the 9th ACM Conference on Security #38; Privacy in Wire-
less and Mobile Networks, 15–20. WiSec ’16. New York, NY: ACM, 2016.
doi:10.1145/2939918.2939930.

Narayanan, Arvind, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Intro-
duction. Princeton, NJ: Princeton University Press, 2016.

https://datatracker.ietf.org/doc/html/draft-brockners-proof-of-transit-03
https://datatracker.ietf.org/doc/html/draft-brockners-proof-of-transit-03
https://nakedsecurity.sophos.com/2016/03/18/what-your-encrypted-data-says-about-you/
https://nakedsecurity.sophos.com/2016/03/18/what-your-encrypted-data-says-about-you/

Chapter 10 Transport Security274

Paar, Christof, Jan Pelzl, and Bart Preneel. Understanding Cryptography: A Text-
book for Students and Practitioners. 1st edition. Heidelberg; New York:
Springer, 2010.

Piper, Fred, and Sean Murphy. Cryptography: A Very Short Introduction. 1st edition.
Oxford; New York: Oxford University Press, 2002.

Rescorla, Eric, and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. Request for Comments 5246. RFC Editor, 2008. doi:10.17487/RFC5246.

Schneier, Bruce. Applied Cryptography: Protocols, Algorithms and Source Code in
C. 1st edition. Indianapolis, IN: Wiley, 2015.

Shimeall, Tim. “Traffic Analysis for Network Security: Two Approaches for Going
Beyond Network Flow Data.” SEI Blog, September 16, 2016. https://insights.
sei.cmu.edu/sei_blog/2016/09/traffic-analysis-for-network-security-two-
approaches-for-going-beyond-network-flow-data.html.

Silva, John Edward. “An Overview of Cryptographic Hash Functions and Their
Uses.” SANS Institute, January 15, 2013. https://www.sans.org/reading-room/
whitepapers/vpns/overview-cryptographic-hash-functions-879.

Sobers, Rob. “The Definitive Guide to Cryptographic Hash Functions
(Part 1).” Varonis Blog, August 2, 2012. https://blog.varonis.com/
the-definitive-guide-to-cryptographic-hash-functions-part-1/.

———. “The Definitive Guide to Cryptographic Hash Functions (Part II).”
Varonis Blog, August 14, 2012. https://blog.varonis.com/the-definitive-guide-
to-cryptographic-hash-functions-part-ii/.

Stallings, William. Cryptography and Network Security: Principles and Practice. 7th
edition. Boston, MA: Pearson, 2016.

Vanhoef, Mathy, Célestin Matte, Mathieu Cunche, Leonardo S. Cardoso, and Frank
Piessens. “Why MAC Address Randomization Is Not Enough: An Analysis of
Wi-Fi Network Discovery Mechanisms.” In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 413–24. ASIA
CCS ’16. New York, NY: ACM, 2016. doi:10.1145/2897845.2897883.

Review Questions

 1. Man-in-the-middle attacks are seen as a major security weakness, but there
are many situations in which a system is intentionally placed in the flow of an
encrypted stream of data. The system in the middle acts as a proxy, unencrypt-
ing and reencrypting the data as it passes through the system. Find at least one

https://insights.sei.cmu.edu/sei_blog/2016/09/traffic-analysis-for-network-security-two-approaches-for-going-beyond-network-flow-data.html
https://insights.sei.cmu.edu/sei_blog/2016/09/traffic-analysis-for-network-security-two-approaches-for-going-beyond-network-flow-data.html
https://insights.sei.cmu.edu/sei_blog/2016/09/traffic-analysis-for-network-security-two-approaches-for-going-beyond-network-flow-data.html
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
https://blog.varonis.com/the-definitive-guide-to-cryptographic-hash-functions-part-1/
https://blog.varonis.com/the-definitive-guide-to-cryptographic-hash-functions-part-1/
https://blog.varonis.com/the-definitive-guide-to-cryptographic-hash-functions-part-ii/
https://blog.varonis.com/the-definitive-guide-to-cryptographic-hash-functions-part-ii/

275Review Questions

use case for this kind of system, and explain some of the positive and negative
aspects of such a system.

 2. As an example of data exhaust, research the idea of a web browser fingerprint.
Describe the concept, how accurate it is, and what mitigations are available.

 3. A hash and a cryptographic algorithm have many similarities and some differ-
ences. Describe these similarities and differences.

 4. Find at least one cryptographic system that uses multiple rounds of encryp-
tion. Why was this number of rounds chosen? Does the encryption system sug-
gest more rounds for higher security, or not?

 5. In recent years, the concept of a public notary has become more difficult to
design and fulfill. Describe some of the challenges such a system might face
and some of the ways in which these challenges might be overcome.

 6. Is MAC address randomization implemented differently with IPv4 and IPv6?
What are the differences, and why do they exist?

 7. Investigate IPsec. How is it different from TLS? At what layer of the protocol
stack does it encrypt, and what modes of operation are available?

This page intentionally left blank

277

Building a single packet processing device[md]the router (or layer 3 switch, now
commonly just called a switch, to the confusion of just about everyone) being the
most common example[md]has been the focus up to this point. Now it is time to
begin connecting routers together. Consider the network in Figure P2-1.

An application running on host A needs to obtain some information from a pro-
cess running on F. Devices B, C, D, and E are, of course, packet processors (routers).
To forward packets between hosts A and F, router B is going to be called on to for-
ward packets to F, even though it is not connected to F; likewise, routers C and D are
going to need to forward packets to both A and F, even though they are connected to
neither of these hosts.

The question posed in this Part II, then, is this:

How do network devices build the tables needed to forward packets along
loop-free paths through the network?

PART II

The Control Plane

A B

C

D

E F

Figure P2-1 Topology Discovery

Part II The Control Plane278

The answer is much more complex than it might immediately appear, for there are
actually several problems contained within this one:

 • How do devices learn about the topology of the network[md]which links are
connected to what devices and destinations?

 • How do control planes take this information and build loop-free paths through
the network?

 • How do control planes detect and react to changes in the network?

 • How are control planes scaled to meet the needs of large scale networks?

 • What policies are implemented in the control plane, and how?

Each chapter in this part addresses one or more of the sub-problems of the larger
question asked in the preceding list. Two chapters are also dedicated to examples of
control planes, to show how the problems and solutions have been implemented by
widely deployed protocols. The chapters in Part II include:

 • Chapter 11: Topology Discovery, which considers how a control plane dis-
covers the network topology and reachability information

 • Chapters 12 and 13: Unicast Loop-Free Paths, which consider the problem
of calculating a set of loop-free paths through the network, and the widely
deployed solutions to this set of problems

 • Chapter 14: Reacting to Topology Changes, which considers the options a
control plane has to react to a change in the network topology

 • Chapter 15: Distance Vector Control Planes, which considers control planes
based on Bellman-Ford and the Diffusing Update Algorithm

 • Chapter 16: Link State and Path Vector Control Planes, which considers
routing protocols based on Dijkstra’s shortest path first algorithm, and rout-
ing protocols that keep a list of path elements through which a routing update
has passed

 • Chapter 17: Policy in the Control Plane, which considers what problems
policy needs to solve in the control plane, and a range of solutions for those
problems

 279

 • Chapter 18: Centralized Control Planes, which considers Software Defined
Networks, Programmable Networks, and other control planes that centralize
all or some of the policy or the calculation of loop-free paths

 • Chapter 19: Failure Domains and Information Hiding, which considers
route filtering, aggregation, summarization, and other forms of routing pro-
tocol policy

 • Chapter 20: Examples of Information Hiding, which considers flooding
domain implementation in link state protocols and route aggregation in the
Border Gateway Protocol

 The Control Plane

This page intentionally left blank

281

Chapter 11

Topology Discovery

Learning Objectives

After reading this chapter, you should understand:

 0 The basic terms node or vertex and edge as used in graph theory, and how
they relate to network devices

 0 What a reachable destination is

 0 The two basic things a control plane must discover about a network

 0 How network devices discover one another and detect the lack of two-way
connectivity

 0 How the MTU can be discovered through the network

 0 The difference between proactive control planes with reactive reachability
learning, proactive control planes, and reactive control planes

 0 The problems that need to be solved in redistributing information between
control planes.

Network diagrams typically show just a few types of devices, including routers,
switches, systems connected to the network (generally speaking, various sorts of
hosts), and various sorts of appliances (such as firewalls). These are often intercon-
nected with links, represented as lines. An example is provided in Figure 11-1.

Network diagrams, like many forms of abstraction, hide a lot of information to
make the information included more accessible. First, network diagrams tend to be

Chapter 11 Topology Discovery282

somewhere between logical and physical representations of the network. Such dia-
grams normally do not show every physical connection in the network; for instance,
a network diagram may show a bundle of links as a single link, or a single physical
wire that has been multiplexed as several logical links (such as Ethernet, or some
other broadcast link, which is a single physical channel used by multiple devices to
communicate).

Note

There is often some confusion about the term multiplexing in network engi-
neering. Many engineers tend to think of sharing two virtual links (see
 Chapter 9, “Network Virtualization”) as the only form of network multi-
plexing. However, any time there are multiple devices sharing a single link, a
situation ultimately requiring some form of addressing, time-based division
of traffic, or frequency-based division of traffic, multiplexing is being used.
 Virtualization can be seen as a second layer of multiplexing, or multiplexing
on top of multiplexing.

Definition by Platypus Considered Harmful

It is often tempting to try to make definitions precise in all situations. As
tempting as this is, however, you should resist it. Imagine, for a moment, the
first human on the face of the Earth wakes up on the first day of her exist-
ence and discovers a platypus. As the platypus lays eggs, has fur, and is warm
blooded like a mammal and has a bill like a bird, it would be tempting for
this first human to define the rest of the animals based on the platypus.

A B

C

D

E F

Figure 11-1 Topology Discovery Example

283

Starting with the platypus is going to cause a problem: it is going to stretch
the original set of classifiers out of shape enough to make further classifica-
tion almost impossible.

Hence, it is important not to let the platypus determine your definitions.
Rather, start from the most common cases and allow the edges to be some-
what soft. Sometimes devices must be able to shift roles when the context
shifts, and sometimes ideas, technologies, and devices just aren’t going to fit
into a neat category. It is better to allow the categories to stand for the general
case, and note the exceptions, than it is to end up with convoluted definitions
and classifiers that ultimately are ineffective at their primary job, which is to
describe things.

There is a balance here, of course—it may be that a definition becomes
“not useful” over time, as a greater number of exceptions are discovered to
the rule. On the other hand, it is almost never useful to discard a definition for
a single exception.

There are many cases of this problem in network engineering; you will
encounter two early in this chapter. The first of these is multiplexing, as noted
in the previous note; the second is node, which is defined in the text following
this sidebar.

Second, network diagrams often leave out the logical complexity of services. The
control plane, however, cannot mask these sorts of complexities out.

Instead, the control plane must gather information about the network locally and
from other control planes, advertise it to other devices running the control plane,
and build a set of tables the data plane can use to forward traffic across each device
in the network, from source to destination. This chapter is going to consider the
problem:

How does the control plane learn about the network?

This question can be broken down into multiple parts:

 • What is the control plane trying to learn about? Or perhaps, what are the com-
ponents of a network topology?

 • How does the control plane learn about devices connected to the network?

 • What are the basic classifications used in describing the advertisement of infor-
mation about the network?

 Topology Discovery

Chapter 11 Topology Discovery284

Note

The mechanisms used to carry information about the network are not considered
in this chapter, as they are typically intimately tied to the way in which the set of
loop-free paths is calculated.

Nodes, Edges, and Reachable Destinations

The first problem to solve is really a meta-question: what kinds of information does
a control plane need to learn and distribute in order to build loop-free paths
through a network? A word of warning about the following section, however: Net-
working terms are difficult to nail down, as individual terms are often used to
describe a variety of “things” in the network, depending on the context in which
they are used.

Node

A node either processes packets (including forwarding packets), sends packets, or
receives packets in a network. The term is taken from graph theory, where they can
also be called vertices, although this term is more loosely applied in network engi-
neering. There are several kinds of nodes in a network, including

 • Transit node: Any device that is designed to accept packets on one interface,
process them in some way, and send them on another interface. Examples of
transit nodes are routers and switches; they are often just called nodes, as they
will be here, rather than transit nodes.

 • Leaf node: Also called an end system or host; any device designed to run appli-
cations that generate and/or accept packets from one or more interfaces. These
are network sources and sinks; most often these nodes are actually called hosts,
rather than leaf nodes, to differentiate them from the shorthand nodes, which
typically means a transit node.

There are many readily apparent holes in these two definitions. What should a
device be called that accepts a packet on one interface, terminates the connection
in a local process or application, generates a new packet, and then transmits that
new packet out of a different interface? The problem becomes more difficult if the

285Nodes, Edges, and Reachable Destinations

information contained in the two packets is roughly the same, as in the case of a
proxy server, or some other similar device. In these cases, it is useful to classify the
device as either a leaf or a node within a specific context, depending on the role it
is taking in relation to other devices within the context. To give an example, from
the perspective of a host, a proxy server acts as a network forwarding device, as
the operation of the proxy server is (somewhat) transparent to the host. From the
perspective of an adjacent node, however, proxy servers are hosts, as they termi-
nate traffic streams, and (generally) participate in the control plane the same way
a host would.

Edge

An edge is any connection between two network devices across which packets are
forwarded. The nominal case is a point-to-point link connecting two routers—but
this is not the only case. In graph theory, an edge only connects precisely two nodes.
In network engineering, there are the notions of multiplexed, multipoint, and other
kinds of multiplexed links. These are most often modeled as a set of point-to-point
links, particularly when building a set of loop-free paths through the network. In
network diagrams, however, multiplexed links are often drawn as a single link with
multiple nodes attached.

Reachable Destination

A reachable destination can describe a single host or service, or a set of hosts or ser-
vices, reachable through the network. The nominal example of a reachable destina-
tion is either a host or a set of hosts on a subnet, but it is important to remember the
term can also describe a service in some contexts, such as a particular process run-
ning on a single device, or many copies of a service available on a number of devices.
Figure 11-2 illustrates.

In the network illustrated in Figure 11-2, reachable destinations may include

 • Any of the individual hosts, such as A, D, F, G, and H

 • Any of the individual nodes, such as B, C, or E

 • A service or process running on a single host, such as S2

 • A service or process running on multiple hosts, such as S1

 • A set of devices attached to a single physical link, or edge, such as F, G,
and H

Chapter 11 Topology Discovery286

This last reachable destination is also represented as an interface onto a particular
link or edge in the network. Hence, router E could have a number of reachable desti-
nations, including

 • The interface onto the link connecting router E to C

 • The interface onto the link connecting router E to B

 • The interface onto the link connecting router E to the hosts F, G, and H

 • The network representing reachability to the hosts F, G, and H

 • Any number of internal services that might be advertised as individual
addresses, ports, or protocol numbers

 • Any number of internal addresses attached to virtual links that do not exist in
the physical network, but might be used to represent internal state within the
device (not shown in Figure 11-2)

A B

D

C

E F

G

H

S1

S1

S2

Figure 11-2 An Illustration of Reachable Destinations

Learning about the Topology 287

The concept of a reachable destination, then, can mean a lot of different things
depending on the context. In most networks, a reachable destination is either a single
host, a single link (and the hosts attached to the link), or a set of links (and the hosts
attached to those links) aggregated into a single reachable destination.

Note

An example of reachable destinations being aggregated is provided in Chapter 5,
“Higher Layer Data Transports.” Using a shorter prefix length IP address to rep-
resent a set of longer prefix subnets is a form of aggregation.

Topology

The topology is the set of links (or edges) and nodes that describe the entire net-
work. Normally, the topology is described and drawn as a graph, but it can also be
represented in a data structure designed to be consumed by machines, or a tree,
which is normally designed to be consumed by humans.

Topological information can be summarized by simply making destinations
that are physically (or virtually) connected several hops away appear to be directly
attached to a local node, and then removing the information about the links and
nodes in any routing information carried in the control plane from the point of sum-
marization. Figure 11-3 illustrates this concept

Learning about the Topology

It would seem simple enough to learn about the network topology: examine the
attached links. What appears simple in networks, however, often turns out to be
complex. Examining the local interface can tell you about the link, but not about
other network devices attached to the link. Further, even if you can detect another
network device running the same control plane on a particular link, this does not
mean the other device can detect you. There are, then, several issues to explore.

Detecting Other Network Devices

Given routers A, B, and C are attached to a single link, as illustrated in Figure 11-4,
what mechanisms can they use to detect one another, as well as exchange informa-
tion about their capabilities?

The first point to note about the network shown on the left side of Figure 11-4
is the interfaces do not correspond to neighbors. The actual neighbor relationships

Chapter 11 Topology Discovery288

are shown on the right side of Figure 11-4. Each router in this network has two
 neighbors, but only one interface. This illustrates the point that the control plane
cannot use interface information to discover neighbors; there must be some other
mechanism the control plane can use to find neighbors.

A

B

C

A

B

C

Figure 11-4 Network Device Neighbor Discovery in the Control Plane

A

A

B

B

C

C

D

D

E

E

F

F

Before Summarization

After Summarization

Figure 11-3 Summarization of Topology Information in the Control Plane

Learning about the Topology 289

Manual configuration is one widely deployed solution to this problem. Particularly
in control planes designed to overlay another control plane, or control planes designed
to build neighbor relationships across multiple routed hops through the network, man-
ual configuration is often the easiest mechanism available. From a complexity perspec-
tive, manual configuration adds very little to the protocol itself; there is no need for any
form of multicast neighbor advertisements, for instance. On the other hand, manual
configuration of neighbors does require configuring the neighbor information, which
increases complexity from a configuration point of view. In the network in Figure 11-4,
router A would need to have neighbor relationships configured with B and C, router
B would need to have neighbor relationships configured with A and C, and router C
would need to have neighbor relationships configured with A and B. Even if the con-
figuration of neighbors is automated, manual configuration deepens and broadens the
interaction surfaces between the management and control planes.

Inferring neighbors from routing advertisements is a solution that was once wide-
spread, but has become less common. In this scheme, each device advertises reacha-
bility and/or topology information on a periodic basis. The first time a router receives
routing information from some other device, it adds the remote device to a local
neighbor table. So long as a neighboring device continues sending routing informa-
tion on a regular basis, the neighbor relationship will be considered active, or up.

When inferring neighbors from routing advertisements, it is important to be able
to determine when a neighbor has failed (so reachability and topology information
learned from the neighbor can be removed from any local tables). The most common
way to solve this problem is with a pair of timers: the hold or dead timer, and the
update or advertisement timer. So long as the neighbor sends an update or advertise-
ment within the dead or hold timer, it is considered up or active. If an entire dead
period passes without receiving any updates, the neighbor is considered dead, and
some action is taken to either validate the topology and reachability information
learned from the neighbor, or it is simply removed from the table.

The normal relationship between the dead and update timer is 3×—the dead
timer is set to three times the update timer. Hence, if a neighbor does not send three
updates or advertisements in a row, the dead timer wakes up, and begins processing
the down neighbor.

Explicit hellos are the most common neighbor discovery mechanism. Hello pack-
ets are transmitted based on a hello timer, and the neighbor is considered dead if a
hello is not received during the interval of a dead or hold timer. This is similar to
the dead and update timers used in inferring neighbors from routing advertisements.
Hellos typically contain information about the neighboring system, such as capabili-
ties supported, device level identifiers, etc.

Centralized registration is another mechanism sometimes used to discover, and
propagate information about, neighboring devices. Each device connecting to the
network will send information about itself to some service, and, in turn, learn about

Chapter 11 Topology Discovery290

other devices connected to the network from this centralized service. This central-
ized service must somehow be discovered, of course, which is generally accomplished
using one of the other mechanisms mentioned.

Detecting Two-Way Connectivity

In control planes with more complex adjacency formation processes—particularly
protocols that rely on hellos to form neighbor relationships—it is important to
detect if two routers can see one another (communicate bidirectionally) before form-
ing a relationship. Ensuring two-way connectivity not only prevents unidirectional
links from creeping into the forwarding table, but it also prevents a constant cycle of
neighbor formation—discover a new neighbor, build the correct local tables, adver-
tise reachability to the new neighbor, time out waiting for a hello or some other
information, remove the neighbor, or discover the new neighbor. There are three
broad options in managing two-way connectivity between network devices.

Do not bother checking for two-way connectivity. Some protocols do not try to deter-
mine if two-way connectivity exists between network devices in the control plane, but
rather assume a neighbor from which packets are being received must also be reachable.

Carry a list of neighbors heard from on the link. For protocols that use hellos to dis-
cover neighbors and maintain liveness, carrying a list of reachable neighbors on the same
link is a common method to ensure two-way connectivity exists. Figure 11-5 illustrates.

In Figure 11-5, assume router A is powered on before B. In this case:

 1. A will send hellos with an empty neighbor list, as it has not heard hellos from
any other network device on the link.

 2. When B is powered on, it will receive A’s hello, and hence include A in a list of
neighbors it has heard in its hello packets.

A B

Hello/neighbor list: Empty

Hello/neighbor list: B

Hello/neighbor list: A

Two Way Connectivity Established

Figure 11-5 Two-Way Handshake for Control Plane Two-Way Connectivity Check

Learning about the Topology 291

 3. When A receives B’s hello, it will, in turn, include B in its “heard from” neigh-
bor list in its hello packets.

 4. When both A and B are reporting one another in their “heard from” neighbor
lists, both routers can be certain two-way connectivity has been established.

This process is often called a three-way handshake, based on the three steps:

 1. A must send a hello to B, so B can include A in its neighbor list.

 2. B must receive A’s hello, and include A in its neighbor list.

 3. A must receive B’s hello with itself (A) in B’s neighbor list.

Rely on an underlying transport protocol. Finally, control planes can rely on an
underlying transport mechanism to ensure two-way connectivity exists. This is an
uncommon solution, but there are some widely deployed solutions. For instance,
the Border Gateway Protocol (BGP), explained in Chapter 16, “Link State and Path
Vector Control Planes,” relies on the Transmission Control Protocol (TCP), consid-
ered in Chapter 5, “Higher Layer Data Transports,” to ensure two-way connectivity
between BGP speakers.

Detecting the Maximum Transmission Unit

It is often useful for a control plane to move beyond just checking for two-way con-
nectivity. Many control planes also check to make certain the Maximum Transmis-
sion Unit (MTU) on both interfaces onto the link are configured with the same
MTU. Figure 11-6 illustrates the problem being solved with a link-level MTU check
in the control plane.

In a situation where the MTU is mismatched between two interfaces on the same
link, it is possible for a neighbor relationship to form but routing and other informa-
tion to fail to be carried between the network devices. While many protocols have
some mechanism to prevent information about the resulting unidirectional links
from being used in calculating loop-free paths through the network, it is still useful to
detect this situation so it can be explicitly reported and repaired. Several techniques
are commonly used by control plane protocols to either explicitly detect this condi-
tion, or to at least prevent the initial stages of neighbor formation from taking place.

The control plane protocol can include the locally configured MTU in a field in
the hello packets. Rather than just checking for the existence of a neighbor during the
three-way handshake, each router can also check to make certain the MTU on both
ends of the link match before adding a newly detected network device as a neighbor.

Chapter 11 Topology Discovery292

Another option is to pad the hello packets to the MTU of the local interface. If the
padded, maximum-sized, hello packet is not received by some other device on the link,
the initial stages of the neighbor relationship will not complete. The three-way hand-
shake cannot be completed if both devices are not receiving one another’s hello packets.

Finally, the control plane protocol can rely on an underlying transport to regu-
late packet sizes so the communicating devices can receive them. This mechanism is
primarily used in control planes designed to overlay some other control plane, par-
ticularly in the case of interdomain routing and network virtualization. Overlay con-
trol planes often rely on Path MTU (PMTU) discovery to provide an accurate MTU
between two devices connected through multiple hops.

The MTU size itself can have a large impact on the performance of a control
plane in terms of its speed of convergence. For instance, assume a protocol must
send information describing 500,000 destinations over a multihop link with 500ms
of delay, and each destination requires 512 bits to describe:

 • If the MTU is less than 1,000 bits, the control plane will require 500,000 round
trips to exchange the entire database of reachable destinations, or around
500,000 × 500ms, which is 250,000 seconds, or close to 70 hours.

Hello (small packet)

Hello (small packet)

Two way connectivity

Routing information (large packet)

Routing information (large packet)

Too large for receiver
Time out waiting for acknowledgment

Too large for receiver
Time out waiting for acknowledgment
. . .

A B

1500 MTU 1000 MTU

Figure 11-6 The Impact of a Mismatched MTU on the Control Plane

Learning about Reachable Destinations 293

 • If the MTU is 1,500 octets, or 12,000 bits, the control plane will require around
21,000 round trips to describe the entire database of reachable destinations, or
around 21,000 × 500ms, which is around 175 minutes.

The importance of compressing such a database, using some sort of windowing
mechanism to reduce the number of full round trips required to exchange the reach-
ability information and increasing the MTU, is readily apparent.

Learning about Reachable Destinations

Neighbor discovery allows the control plane to learn about the topology of the net-
work, but how is information about reachable destinations learned? In Figure 11-7,
how does router D learn about hosts A, B, and C?

There are two broad classes of solutions to this problem—reactive and
 proactive—discussed in the following sections.

Learning Reactively

In Figure 11-7, assume host A has just been powered on, and the network is only using
dynamic learning based on transmitted data traffic. How can router D learn about
this newly attached host? One possibility is for A to simply start sending packets. For
instance, if A is manually configured to send all packets toward destinations it does
not know how to reach (essentially, anything that is off segment, a concept consid-
ered in Chapter 6, “Interlayer Discovery”) to D, A has to send at least one packet for
D to discover its existence. On learning of A, D can cache any relevant information
for some time—generally for as long as A appears to be sending traffic. If A does not
send traffic for some time, D can time the entry for A in its local cache out.

D E
A

B

C

F

Figure 11-7 Discovering Reachability

Chapter 11 Topology Discovery294

This process of discovering reachability based on actual traffic flow is reactive
 discovery. From a complexity perspective, reactive discovery trades optimal traffic flow
against the information known about, and potentially carried, in the control plane.

It will take some amount of time for reactive discovery mechanisms to operate—
that is, for D to learn about the existence of A once the host starts sending packets. For
instance, if host F begins sending traffic toward A the moment A is powered on, traf-
fic may be forwarded through the network to D, but D will not have the information
required to forward the traffic onto the link, and hence to A. During the time between
host A being powered on and D discovering its existence, packets will be dropped—a
situation that will appear, to F, to be a network failure at the worst, and some addi-
tional jitter (or perhaps an unpredictable response across the network) at best.

Cached entries will need to be timed out over time. This will normally require
balancing a number of factors, including how large the cache is, how much device infor-
mation is cached, and how often the cache entry has been used in some past time period.

How long it will take to time out this cached information and any security risk
of some other device using stale information is the foundation for an attack. For
instance, if A moves its connection from D to E, the information D has learned about
A will remain in D’s cache for some time. During this time, if another device con-
nects to the network to D, it can impersonate A. The longer cached information is
valid, the more possible it is to execute this type of attack.

Learning Proactively

Some reachability information can be learned proactively, which means the router
does not need to wait for an attached host to start sending traffic to learn about it.
This capability tends to be important in environments where hosts can be highly
mobile; for instance, in a data center fabric where virtual machines may move
between physical devices while keeping their address or other identifying informa-
tion, or in networks that support wireless devices, such as mobile phones. There are
four widely used ways to learn reachability information proactively, covered here:

 • A neighbor discovery protocol can be run between the edge networking nodes
(or devices) and connected hosts. The information learned from such a neigh-
bor discovery protocol can then be used to inject reachability information in
the control plane. While neighbor discovery protocols are widely deployed, the
information learned through these protocols is not widely used to inject reach-
ability information into the control plane.

 • Reachability information can be learned through device configuration.
Almost all network devices (such as routers) will have a reachable address

Advertising Reachability and Topology 295

configured or discovered on all host-facing interfaces. Network devices can
then advertise these attached interfaces as reachable destinations. In this situa-
tion, the link (or wire), the network, or the subnet is the reachable destination,
rather than individual hosts. This is the most common way for routers to learn
network layer reachability information.

 • Hosts can register with an identity service. In some systems, a service
(whether centralized or distributed) keeps track of where hosts are attached,
including such information as the first hop router through which traffic should
be sent to reach them, name to address mapping, services each host is capa-
ble of providing, services each host is searching for and/or using, and other
information. Identity services are common, although they are not often highly
visible to network engineers. Such systems are very common in high mobility
environments, such as consumer-facing wireless networks.

 • The control plane can pull information from an address management sys-
tem, if one is deployed throughout the network. This is a very uncommon solu-
tion, however. Most of the interaction between the control plane and address
management systems would be through local device configuration; the address
management system assigns an address to an interface, and the control plane
picks up this interface configuration to be advertised as a reachable destination.

Advertising Reachability and Topology

Once topology and reachability information are learned, the control plane must distrib-
ute this information through the network. While the method used to advertise this
information is somewhat dependent on the mechanism used to calculate loop-free paths
(as which information is required where to calculate loop-free paths will vary depending
on how these paths are calculated), there are some common problems and solutions
that will apply to every possible system. The primary problems are deciding when to
advertise reachability and reliably transporting information through the network.

Deciding When to Advertise Reachability and Topology

When should the control plane advertise topology and reachability information?
The obvious answer might be “when it is learned”—but the obvious answer is often
the wrong answer. Determining when to advertise information actually involves a
careful balance between optimal network performance and managing the amount of
control plane state. Figure 11-8 will be used to illustrate.

Chapter 11 Topology Discovery296

Assume hosts A and F are sending data to one another almost constantly, but
B, G, and H do not send traffic at all for some extended period. Two obvious ques-
tions arise in this situation:

 • While it might make sense for router C to maintain reachability information
about B, why should D and E maintain this information?

 • Why should router E maintain reachability information about host A?

From a complexity perspective, there is a direct tradeoff between the amount of
information carried and held in the control plane and the ability of the network to
accept and forward traffic quickly. Considering the first question, for instance, the
tradeoff appears as C’s ability to send traffic from B to G on receiving it versus C
maintaining less information in its forwarding tables, but being required to obtain
the information required to forward traffic through some mechanism on receiving
packets that need to be forwarded. There are three broad solutions to this problem.

 • A Proactive Control Plane: The control plane can proactively discover the
topology, calculate a set of loop-free paths through the network, and advertise
reachability information.

 • Proactive Topology Discovery with Reactive Reachability: The control
plane can proactively discover the topology and calculate a set of loop-free

B C

D

E

F

G

H

A

Figure 11-8 When to Advertise Reachability and Topology Information

Advertising Reachability and Topology 297

paths. However, the control plane can wait until reachability information is
needed to forward packets before discovering and/or advertising reachability.

 • A Reactive Control Plane: The control plane can reactively discover the topol-
ogy, calculate a set of loop-free paths through the network (generally on a per
destination basis), and advertise reachability information.

If C learns, keeps, and distributes reachability information proactively, or this net-
work is running a proactive control plane, then new flows of traffic can be forwarded
through the network without any delays. If the devices illustrated are running a reac-
tive control plane, C would

 • Wait until the first packet in the flow toward G (for instance)

 • Discover the path to G using some mechanism

 • Install the path locally

 • Begin forwarding traffic toward G

The same process would need to be performed at D for traffic being forwarded
toward A from G and F (remember flows are almost always bidirectional). During the
time the control plane is learning a path to the destination, traffic is (almost always)
being dropped, because the network devices do not have any forwarding information
for this reachable destination (from the network device’s perspective, the reachable
destination does not exist). The time required to discover and build the correct for-
warding information may fall between a few hundred milliseconds to a few seconds;
during this time, the host and applications will not know whether or not connectiv-
ity will eventually be established, or if the destination is just unreachable.

Control planes can be broadly classified into

 • Proactive systems advertise reachability information throughout the network
before it is needed. Another way to phrase this is to say proactive control planes
keep reachability information for every destination installed at every network
device, regardless of whether the information is being used or not. Proactive
systems increase the amount of state carried and stored in the control plane to
make the network more transparent to hosts, or rather more optimal for short-
lived and time-sensitive flows.

 • Reactive systems wait until forwarding information is needed to obtain it, or
rather they react to the events in the data plane to build control plane informa-
tion. Reactive systems decrease the amount of state carried in the control plane
by making the network less responsive to applications, and less optimal for
short-lived or time-sensitive flows.

Chapter 11 Topology Discovery298

As with all tradeoffs in network engineering, the two options described here are
not exclusive. It is possible to implement a control plane that contains some proac-
tive, and some reactive, elements. For instance, it is possible to build a control plane
that has minimal amounts of reachability information describing rather suboptimal
paths through the network, but that can discover more optimal paths if a longer
lived, or quality of service sensitive flow, is detected.

Reactive Distribution of Reachability

Returning to Figure 11-8 as a reference, assume a reactive control plane has been
deployed, and B would like to start exchanging data flows with G. How can C
develop the forwarding information required to correctly switch this traffic?

The router can send a query through the network or send a query to a controller
to discover a path to the destination. For instance:

 • When B first connects to the network, and C learns about this newly attached
host, C could send information about B as a reachable destination to a control-
ler attached to the network.

 • In the same way, when G connects to the network, and D learns about this
newly attached host, D could send information about G as a reachable destina-
tion to a controller attached to the network.

Because the controller learns about every host (or reachable destination) attached
to the network (and, in some systems, the entire topology of the network, as well),
when C needs to learn how to reach host G, the router can query the controller,
which can provide this information.

Note

The concept of a centralized controller implies a single controller providing infor-
mation for the entire network, but this is not how the term centralized control
plane is commonly used throughout the network engineering world. The idea
of centralization, however, is rather loose in network engineering. Rather than
indicating a single device, centralized is generally used to mean not carried hop
by hop through the network, and not computed by each network device inde-
pendently. See Chapter 18, “Centralized Control Planes,” for more information.

The router (or host) can send an explorer packet that records the route from the
source to the destination and report this information to the source of the explorer,
which is then used as a source route. Figure 11-9 illustrates.

Advertising Reachability and Topology 299

Using Figure 11-9, and assuming host-based source routing:

 1. Host A needs to send a packet to H but does not have a path.

 2. A sends an explorer to its default gateway, router C.

 3. C does not have a route to the destination, so it forwards the explorer packet
onto all links other than the one it received the packet on; hence to B, D, and E.

 4. B is a host, has no further interfaces, and is not the target of the explorer, so it
ignores the explorer packet.

 5. Neither D nor E has a path to H, so they both forward the explorer onto all
interfaces except the one they received the packet on; hence onto the multi-
access link shared between themselves and F.

 6. F receives two copies of the same explorer packet; it chooses one based on some
local criteria (such as the first received, or some control plane policy) and for-
wards it onto all the interfaces on which it did not receive the packet, toward G.

 7. G receives the packet and, given it does not have a path to reach H, forwards it
onto the only other link it has, which leads to H.

 8. H receives the explorer and responds.

B

C

D

E

F

G
H

A

1: send packet to H
2: send explorer

3: send explorer

5: send explorer

6: send explorer

7: send explorer

8: send response along
recorded path

3: send explorer

4: ignore explorer 5: send explorer

Figure 11-9 Source Route Discovery

Chapter 11 Topology Discovery300

In this scheme, each device along the path adds itself to a list of traversed nodes
before forwarding the explorer packet to all interfaces except the one on which it
was received. In this way, when H receives the explorer packet (which is ultimately
directed at finding a path to H), the packet now describes a complete path from A
to H. When H replies to the explorer, it places this path into the body of the packet;
when A receives the response, it will now have a complete path from A to H.

Note

In some implementations, A would not either generate or receive the response to
the explorer packet. Rather C, the first hop router, could perform these functions.
In the same way, H itself may not respond to these explorer packets, but rather
G, or any other network device along the path that has information about how
to reach G. The general concept and processing remain the same in these cases,
however.

To send packets to H, then, A inserts this path into the packet header in the form
of a source route containing the path [A,C,D,F,G,H]. When each router receives this
packet, it will examine the source route in the header to determine which router to
forward the traffic to next. For instance, C will examine the source route information
in the packet header and determine the packet needs to be sent to D next, while D
will examine this information and determine it needs to send the packet to F.

Note

In some implementations, every explorer is actually sent to the destination, which
then determines which path traffic should take. There are, in fact, a number of
different ways to implement source routing; the process given here is just one
example to explain the general idea of source routing.

Proactive Distribution of Reachability

Proactive control planes, in contrast to reactive control planes, distribute reachabil-
ity and topology information throughout the network when the information
becomes available, rather than when it is needed to forward packets. The primary
challenge proactive control planes face is in ensuring that reachability and topology
information is carried reliably between the nodes in the network, resulting in every
device having the same reachability information.

Advertising Reachability and Topology 301

Note

This is really a distributed database problem; Chapter 14, “Reacting to Topology
Changes,” considers the distribution of reachability and topology within the con-
text of a database in more detail.

Dropping control plane information can result in permanent routing loops or cre-
ate routing black holes (so called because they consume traffic transmitted to desti-
nations with no trace), both of which seriously reduce the usefulness of the network
for applications (probably an understatement). There are several widely used mecha-
nisms to ensure the reliable transportation of control plane information through a
network.

A control plane can transmit information periodically, timing out older infor-
mation. This is similar to neighbor formation, in that each router in the network
will transmit the reachability information it has to all neighbors (or on all inter-
faces, depending on the control plane), based on a timer, usually called an update or
 advertisement timer. Reachability information, once received, is held in a local table
and timed out over some time period, often called the hold timer (again, just like a
neighbor discovery hello).

The remaining mechanisms described here rely on an existing neighbor discov-
ery system to ensure the reliable delivery—and continued reliability—of reachability
information. In all of these systems:

 • The list of neighbors is used to drive not only the transmission of new reach-
ability information, but also verifying the correct receipt of reachability
information.

 • So long as a neighbor is active, or alive, reachability information received from
that neighbor is assumed to remain valid.

Within the context of neighbor-based reachability distribution, there are several
commonly used mechanisms to make certain reachability information is carried
device to device; often any given control plane will deploy more than one of the tech-
niques described here.

The control plane can use sequence numbers (or some other mechanism) to
ensure correct replication. Sequence numbers can actually be used to describe indi-
vidual packets and large blocks of reachability information; Figure 11-10 illustrates.

On receiving a packet, the receiver can send an acknowledgment of the
receipt of the packet by noting the sequence numbers it has received. A separate
sequence number can be used to describe individual Network Layer Reachability

Chapter 11 Topology Discovery302

Information (NLRI) as it is carried through the network. NLRI information
spread out over several packets can then be described using a single sequence
number.

The control plane can describe the database to ensure correct replication. For
instance, a control plane could describe the information in the database as

 • A list of sequence numbers matching individual entries containing reachability
information contained in the database

 • Groups of contiguous sequence numbers contained in the database (a some-
what more compact way to represent all the sequence numbers)

 • A set of sequence numbers paired with hashes of the information within each
reachability information entry; this has the advantage of not only describing
the entries in the database, but also of providing a way for the receiver to verify
the contents of each entry, yet without carrying the entire database to perform
the check

 • A hash across blocks of reachability entries contained in the database, which
can be calculated across the same entries by the receiver and directly compared
to determine if entries are missing

These kinds of database descriptors can be transmitted periodically, or only when
there are changes, or even in other specific situations to not only ensure the network
devices have synchronized databases, but also to determine what is missing or in
error, so the additional information can be requested.

Each of these schemes has advantages and disadvantages; generally, protocols will
implement a scheme that allows an implementation to not only check for missing
information, but also information that has been inadvertently corrupted either in
memory or during transmission.

Packet Header

Packet Header

NLRI (part 1)

NLRI (part 2)

NLRI SequencePacket Sequence

Packet Sequence

Describes the contents of this packet

Describes the contents of this packet

Describes the content of this NLRI

Figure 11-10 Sequence Numbers Used to Ensure Reliable Replication

Redistribution between Control Planes 303

Redistribution between Control Planes

There are many instances where it is more effective, or in line with specific policy
restrictions, for a control plane to learn reachability and topology information from
another control plane, rather than through the mechanisms outlined up to this point
in this chapter. Some examples might be as follows:

 • Two organizations need to interconnect their networks, but neither wants to
allow the other to control the policies and operation of their control planes

 • A large organization is made up of many business units, each of which is
allowed to run its own internal network based on local conditions and applica-
tion requirements.

 • An organization needs some way to allow two control planes to interoperate
while transitioning from one to the other.

The reasons for allowing one control plane to learn reachability information from
another are almost boundless. Given the requirement, many network devices allow
operators to redistribute information between control planes. Redistributing reach-
ability raises two control plane–related problems: how to handle metrics and how to
prevent routing loops.

Note

Redistribution can be seen as exporting routes out of one protocol and into another.
In fact, import/export and redistribution are often used to mean the same thing,
either by different vendors, or even in different situations by the same vendor.

Redistribution and Metrics

The relationship between link properties, policies, and metrics are defined by each
control plane protocol independently of other protocols; in fact, a more descriptive,
or otherwise more useful, metric system is what sometimes attracts operators to a
specific control plane protocol. Figure 11-11 illustrates two sections of a network
running two different control planes, each of which uses a different method to calcu-
late link metrics.

Protocols X and Y, in this network, have been configured using two different sys-
tems for assigning metrics. In deploying protocol X, the administrator divided 1,000
by the link speed in gigabits. In deploying protocol Y, the administrator set up a

Chapter 11 Topology Discovery304

“table of metrics,” based on a best guess at the highest and lowest speed links they
might have for the next 10 to 15 years, and assigned metrics to different link speeds
within this table. The result, as the illustration shows, is incompatible metrics:

 • 10G links in protocol X have a metric of 100, while in protocol Y they have a
metric of 20.

 • 100G links in both protocol X and Y have a metric of 10.

Assuming the lower metric is preferred, if the metrics are added, the [B,C,F] link
would be considered a more desirable path than the [B,D,G] link. If the bandwidth is
considered, however, both links would be considered equally desirable.

If redistribution is configured between these two protocols, how should these
metrics be handled? There are three common solutions to this problem.

The administrator can assign a metric at each redistribution point, which is
carried as part of the internal protocol metric. For instance, the administrator might
assign a metric of 5 to the destination E at router C when redistributing from pro-
tocol X into Y. This destination, E, is injected into protocol Y with a metric of 5 by
router C. At router F, the metric to E would be 25 through C. At G, the cost to reach
E would be 35, along the path [F,C]. The desirability of using any particular exit
point for any specific destination is chosen by the operator when these manual met-
rics are assigned.

The metric of the “other” protocol can be accepted as part of the internal
protocol metric. This does not work in the case where one protocol has a wider

E

A

B

C

D

F

G

10G/Metric 100

100G/Metric 10

10G/Metric 20

10G/Metric 100

10G/Metric 100

100G/Metric 10

10
G

/M
et

ri
c

20

Protocol X Protocol Y

Figure 11-11 Redistribution and Metrics

Redistribution between Control Planes 305

range of available metrics than the other. For instance, if protocol Y has a maximum
metric of 63, the 10G metrics from protocol X will be “above maximum”; a situation
that is not likely to be optimal. Assuming no such restriction, router C would inject a
route to E with a cost of 100 into protocol Y. The cost to reach E at router F would be
110; the cost at G would be 130 through [F,C].

Note

You might recognize a tradeoff between control plane state and optimal use of
the network here, another instance of the complexity tradeoffs in real-world pro-
tocol design. Carrying the external metric in a separate field adds control plane
state, but allows more optimal steering of traffic through the network. Assigning
or consuming the external metric reduces control plane state, but at the cost of
being able to optimize traffic flow.

The external metric can be carried as a separate field, so each network device
can make a separate determination about the best path to each external destination.
This third solution is the most widely used, as it provides the best ability to steer
traffic between the two networks. In this solution, C injects reachability to E with
an external cost of 100. At F, there are two metrics in the advertisement describing
reachability to E; the internal metric to reach the redistribution (or exit) point is 20,
and the metric to reach E within the external network is 100. At G, the internal met-
ric to reach the exit point is 30, and the external metric is 100.

How would an implementation use both of these metrics? Should the proto-
col choose the closest exit point, or rather the lowest internal metric? This would
optimize the local network usage, and potentially deoptimize the usage of network
resources in the external network. Should the protocol choose the exit point closest
to the external destination, or rather the lowest external metric? This would opti-
mize network resources in the external network, potentially at the cost of deoptimiz-
ing the use of network resources in the local network. Or should the protocol try
to combine these two metrics in some way, to optimize the use of resources in both
networks as much as possible?

Some protocols choose to always optimize local or external resources, while oth-
ers will provide operators with a configuration option. For instance, a protocol may
allow external metrics to be carried as different types of metrics, where one type
is considered larger than any internal metric (hence preferring the lowest internal
 metric first, and using the external metric as a tie breaker), and the other type is
where the internal and external metrics are considered equivalent (hence adding the
internal and external metrics to make a path decision).

Chapter 11 Topology Discovery306

Redistribution and Routing Loops

In the discussion above, you might have noticed that destinations redistributed from
one protocol to another always appear as if they are connected to the redistributing
router. In essence, redistribution acts as a form of summarization (which means
topology information is removed, rather than reachability information), as described
earlier in this chapter. While this point isn’t crucial to redistribution metrics, it is
important to consider in the ability of the control plane to choose the optimal path.
In some specific cases, deoptimization can lead to a complete failure of the control
plane to choose loop-free paths; Figure 11-12 illustrates.

To build the routing loop in this network:

 1. The route to host A is redistributed from protocol X to Y with a manually con-
figured metric of 1.

 2. Router E prefers the route through C with a total metric (internal and external) of 2.

 3. Router D prefers the route through E with a total metric of 3.

 4. Router D redistributes the route to host A into protocol X with the existing
metric of 3.

 5. Router B has two routes to A: one with a cost of 10 (directly) and one with a
metric of 4 through D.

 6. Router B chooses the path through D, creating a routing loop.

 7. And so on (the loop will continue until each protocol reaches its maximum
metric).

A B C

D

E

10

1 1

1 1

Protocol X Protocol Y

Figure 11-12 Redistribution Routing Loop

Final Thoughts on Topology Discovery 307

This example is a little stretched to create a routing loop in a trivial network, but
all routing loops caused by redistribution are similar in their structure. It is impor-
tant, in this example, that not only has topology information been lost (the route
to A has been summarized, appearing, from E’s perspective, to be directly attached
to C), but metric information has been lost as well (the original route, with a cost
of 11, is redistributed into protocol Y with a cost of 1 at C). There are a number of
common mechanisms used to prevent this routing loop from forming.

The routing protocol can always prefer internal over external routes. In this
case, if B always prefers the internal route to A over the external path through D,
the routing loop cannot form. Many routing protocols will use an ordering prefer-
ence when installing routes into the local routing table (or Routing Information Base,
RIB), to always prefer internal routes over external ones. The reason for this prefer-
ence is to prevent routing loops of this type from forming.

Filters could be configured to prevent individual destinations from being
redistributed twice. In this network, router D could be configured to prevent any
external route received in protocol Y from being redistributed into protocol X. In a
situation where there are only two protocols (or networks) with control plane infor-
mation redistributed between them, this can be a simple solution. In cases where
the filters need to be configured for each destination, the filters can quickly become
difficult to manage. Mistakes in configuring these filters can either cause some des-
tinations to become unreachable (routing black holes), or permit a loop to form,
potentially causing a failure in the control plane.

Routes can be tagged when they are redistributed, and then filtered based
on these tags at other redistribution points. For instance, when the route to A is
redistributed into protocol Y at C, the route could be administratively tagged with
some number, such as 100, so the route can be easily identified. At router D, a fil-
ter could be configured to block any route marked with the tag 100, preventing the
routing loop from forming. Many protocols allow a route to carry an administrative
tag (sometimes called a community, or some other similar name), and then to filter
routes based on this tag.

Final Thoughts on Topology Discovery

This chapter covered a lot of ground, mostly in the process of considering a wide
array of problems that control planes face in some fundamental areas. For each of
these problems, a range of solutions was offered, many of which are implemented by
real control plane protocols used in running networks throughout the world.

Discovering the topology on a per link basis was the first problem considered,
including detecting other network devices, determining if two-way connectivity
exists between devices, and determining the MTU (and whether or not it matches).

Chapter 11 Topology Discovery308

Learning about reachable destinations was the second problem considered. Two
broad classes of solutions were considered here: reactive and proactive. Advertising
reachability information was divided into the same two broad classes, reactive and
proactive, but reliable transmission of information through the network was also
considered in some detail. Finally, redistribution between routing protocols was con-
sidered, as this is a common way for a control plane to learn about reachable destina-
tions in an indirect way.

You will meet these problems, and their solutions, again in considering actual
protocol implementations in Chapter 15, “Distance Vector Control Planes,” and
Chapter 16, “Link State and Path Vector Control Planes,” which consider distributed
and centralized control plane implementations in more detail. Each of these prob-
lems and their solutions are fundamental to the operation of successful control plane
protocols in the real world.

Further Reading

Alekseev, V. B., V. P. Kozyrev, and A. A. Sapozhenko. “Graph Theory,” February 2011.
https://www.encyclopediaofmath.org/index.php/Graph_theory.

Caldwell, Chris K. “Graph Theory Tutorials,” 1995. http://primes.utm.edu/graph/.

Doyle, Jeff, and Jennifer DeHaven Carroll. Routing TCP/IP, Volume 1. 2nd edition.
New Delhi, India: Cisco Press, 2005.

“Enhanced Interior Gateway Routing Protocol.” Cisco. Accessed September 4, 2017.
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior- gateway-
routing-protocol-eigrp/16406-eigrp-toc.html.

Huang, Peng, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. “Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems.” In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, 150–55. HotOS ’17. New York, NY, USA: ACM, 2017.
doi:10.1145/3102980.3103005.

Krebs, Valdis. “The Social Life of Routers.” Internet Protocol Journal, December
2000. http://www.orgnet.com/SocialLifeOfRouters.pdf.

Lahey, Kevin. TCP Problems with Path MTU Discovery. Request for Comments
2923. RFC Editor, 2000. doi:10.17487/RFC2923.

Mathis, Matt, and John Heffner. Packetization Layer Path MTU Discovery. Request
for Comments 4821. RFC Editor, 2007. doi:10.17487/RFC4821.

McCann, Jack, Stephen E. Deering, Jeffrey Mogul, and Robert M. Hinden. Path
MTU Discovery for IP Version 6. Request for Comments 8201. RFC Editor,
2017. doi:10.17487/RFC8201.

https://www.encyclopediaofmath.org/index.php/Graph_theory
http://primes.utm.edu/graph/
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-
http://gateway-routing-protocol-eigrp/16406-eigrp-toc.html
http://gateway-routing-protocol-eigrp/16406-eigrp-toc.html
http://www.orgnet.com/SocialLifeOfRouters.pdf

Review Questions 309

Medved, Jan, Nitin Bahadur, Hariharan Ananthakrishnan, Xufeng Liu, Robert
Varga, and Alexander Clemm. “A Data Model for Network Topologies.” Inter-
net-Draft. Internet Engineering Task Force, March 2017. https://tools.ietf.org/
html/draft-ietf-i2rs-yang-network-topo-12.

Moy, John. OSPF Version 2. Request for Comments. RFC Editor, April 1998.
doi:10.17487/RFC2328.

Rekhter, Yakov, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
Request for Comments 4271. RFC Editor, 2006. doi:10.17487/rfc4271.

Retana, Alvaro, Russ White, and Don Slice. EIGRP for IP: Basic Operation and
 Configuration. 1st edition. Boston, MA: Addison-Wesley Professional, 2000.

Savage, Donnie, Steven Moore, James Ng, Russ White, Donald Slice, and Peter
 Paluch. Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP). Request
for Comments 7868. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7868.txt.

White, Russ, Alvaro Retana, and Don Slice. Optimal Routing Design. 1st edition.
Cisco Press, 2005.

Review Questions

 1. Classify each device as either a transit or a leaf node:

a. A mobile phone being used as a hot spot

b. A router

c. A database server

d. A switch

e. A proxy server

 2. Explain the difference between aggregation and summarization as it is used in
the chapter (and throughout this book).

 3. Note the kind of neighbor discovery, two-way connectivity check, and link
MTU discovery used in each of the following routing protocols:

a. Open Shortest Path First (OSPF)

b. Intermediate System to Intermediate System (IS-IS)

c. Routing Information Protocol (RIP)

d. Border Gateway Protocol (BGP)

https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-12
https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-12
https://rfc-editor.org/rfc/rfc7868.txt

Chapter 11 Topology Discovery310

 4. Classify each of the following protocols as reactively or proactively discovering
the topology and calculating the set of loop-free paths through the network:

a. Spanning Tree Protocol (STP)

b. Open Shortest Path First (OSPF)

c. BABEL

d. OpenFlow

 5. Classify each of the following protocols as reactively or proactively discovering
and advertising reachable destinations:

a. Spanning Tree Protocol (STP)

b. Open Shortest Path First (OSPF)

c. BABEL

d. OpenFlow

 6. Describe a situation where an overflow in a cache used to hold forwarding
information can cause the control plane to forward packets until the cache is
either timed out or otherwise cleared.

 7. Read the explanation of a gray failure (from the paper noted in the “Further
Reading” section). How do you think gray failures might relate to the discov-
ery of neighbor status and checking for two-way connectivity?

 8. Assume you could tag routes as they are being redistributed, and then filter
based on those tags at all other redistribution points. Can you explain how this
kind of tagging could be used to prevent redistribution routing loops?

 9. It seems it would be possible to build a table that converts metrics from one
protocol to another automatically during the redistribution process, and yet
very few (almost no) routing protocols are designed with this kind of capabil-
ity. What would be the problem with such a system?

 10. One protocol, the Enhanced Interior Gateway Routing Protocol (EIGRP), does
allow a routing process to set the external metrics directly from the external
routing process. Can you figure out the circumstances when this is possible,
and explain why?

311

Chapter 12

Unicast Loop-Free Paths (1)

Learning Objectives

After reading this chapter, you should be able to understand:

 0 The relationship between calculating a set of shortest paths and calculat-
ing a set of loop-free paths

 0 The concept of a Loop-Free Alternate and remote Loop-Free Alternate
paths

 0 The difference between a minimum spanning tree and a Shortest Path Tree,
and how they are calculated

 0 The waterfall or continental divide and P/Q models of preventing routing
loops

 0 The concept of a greedy algorithm in finding loop-free paths

 0 The Bellman-Ford algorithm for finding loop-free paths

 0 The horizon point and split horizon

 0 How to find loop-free paths in the Diffusing Update Algorithm (DUAL)

Network engineers typically think of the control plane as doing a wide variety of
things, from calculating the shortest path through the network to distributing policy
used to forward packets. The idea of the shortest path, however, sneaks in the con-
cept of the optimal path. Likewise, the idea of policy also sneaks in the concept of
optimization of network resources. While both policy and the shortest path are
important, neither one of these is at the root of what the control plane does. The job

312 Chapter 12 Unicast Loop-Free Paths (1)

of the control plane is to find a set of loop-free paths through a network first; opti-
mization is a nice add-on, but optimization can only be “done” in the context of
finding a set of loop-free paths.

The question this chapter will answer, then, is

How does a control plane calculate loop-free paths through a network?

This chapter will begin by examining the relationship between the shortest, or
lowest metric, path and loop-free paths. The next topic considered is Loop-Free
Alternate (LFA) paths, which are not the best paths but still loop free. Such paths are
useful in designing control planes that quickly switch from the best path to an alter-
nate loop-free path in the case of failures or changes in the network topology. Two
specific mechanisms used for finding a set of loop-free paths are then discussed; two
more are discussed in Chapter 13, “Unicast Loop-Free Paths (2).”

Which Path Is Loop Free?

The relationship between the shortest path, generally in terms of metrics, and loop-
free paths is fairly simple: the shortest path is always loop free. The reason for this
relationship can be expressed most simply in terms of geometry (or more specifically
graph theory, which is a specialized field of study within discrete mathematics).
 Figure 12-1 is used to explain why.

What are the paths available from A, B, C, and D toward the destination?

 • From A: [B,H]; [C,E,H]; [D,F,G,H]

 • From B: [H]; [A,C,E,H]; [A,D,F,G,H]

 • From D: [F,G,H]; [A,C,E,H]; [A,B,H]

A

B

C

D

E

F G

H
Destination

Figure 12-1 Available Paths Through a Network

Which Path Is Loop Free? 313

If every device in the network must choose the path it will use toward the destina-
tion independently (without reference to the path chosen by any other device), it is
possible to form persistent loops. For instance, A could choose the path [D,F,G,H],
and D could choose the path [A,C,E,H]. Device A will then forward traffic toward
the destination to D, and D will then forward traffic toward the destination to A.
There must be some rule other than choose a path implemented by the algorithm
used to calculate a path on each device, such as choose the shortest (or lowest cost)
path. But why does choosing the shortest (or lowest cost) path prevent the loop?
 Figure 12-2 illustrates.

Figure 12-2 assumes A chooses the path [D,F,G,H] to the destination, and D
chooses the path through A to the destination. What D cannot know, because it is
calculating a path to the destination without any knowledge of what A has calcu-
lated, is that A is using the path through D itself to reach the destination. How can
the control plane avoid such a loop? By observing that the cost of a path along a loop
must always contain the cost of the loop as well as the loop-free element of the path.
In this case, the path through A, from the perspective of D, must include the cost
from D to the destination. Hence the cost through A, from the perspective of D, will
always be greater than the lowest available cost from D. This leads to the following
observation:

The lowest cost (or shortest) path cannot contain a path that passes through
the calculating node; or rather, the shortest path is always loop free.

There are two important points about this observation.
First, this observation does not say paths with higher costs are definitely loops,

only that the lowest cost path must not be a loop. It is possible to expand the rule to
discover a wider set of loop-free paths beyond the lowest cost path; these are called
Loop-Free Alternates.

A

A

D

D

D

F

F

G

G

H

H

Destination

Destination

Figure 12-2 Longer Paths Contain Shorter Ones

Chapter 12 Unicast Loop-Free Paths (1)314

Second, this observation holds only if every node in the network has the same
view of the network topology. Nodes can have different views of the network topol-
ogy for a number of reasons; for instance:

 • The network topology has changed, and all the nodes have not yet been noti-
fied of the change; hence microloops.

 • Some information about the network topology has been removed from the
topology database through summarization or aggregation.

 • The metrics have been configured so the lowest cost path is inconsistent from
different perspectives.

Control planes used in real networks are carefully crafted to either work around
or minimize the impact of different devices having different views of the network
topology, potentially causing a looped path. For instance:

 • Control planes are carefully tuned to minimize the time differential between
learning of a topology change and modifying forwarding (or to drop traffic
during topology changes, rather than forwarding it).

 • When summarizing topology or aggregating reachability, care is taken to pre-
serve cost information.

 • Network design “best common practices” encourage the use of symmetric
metrics, and many implementations make it difficult or impossible to config-
ure links with truly dangerous metrics, such as a zero link cost.

It often takes a great deal of design work to find, and work around or prevent,
the unintended subversion of the shortest path rule in real-world control plane
protocols.

Why Not Use a Node List?

An obvious question, at this point, should be: why not simply use a node list
to find loop-free routes? For instance, in Figure 12-1, if A calculates a path
through D, can D just somehow obtain the path A has calculated, discover
that D itself is in the path, and hence not use the path through A?

The first problem with this mechanism is in the discovery process. How
should D learn about the path A has chosen, and A learn about the path D

Trees 315

has chosen, without causing a race condition? The two devices could choose
one another as their next hop toward the destination at the same moment and
then inform one another at the same moment, resulting in both choosing some
other path at the same time. The result could either be a stable set of loop-free
paths, the two devices cycling between choosing one another and having no path
to the destination, or satable condition where there is no path to the destination.

The second problem with this mechanism is summarization—the inten-
tional removal of information about the network topology to reduce the
amount of state carried in the control plane. The control plane will only have
metrics to work with wherever the topology is summarized; hence it is better
to use a rule based on metrics, or costs, rather than the set of nodes through
which a path passes.

Note both of these problems can be solved; there are, in fact, path-vector
algorithms that rely on a list of nodes to calculate loop-free paths through a
network. While these systems are widely deployed, they are often considered
too complex to be deployed in many network engineering situations. Hence
metric-, or cost-, based systems are widely used.

Trees

The simple shortest path rule is used to build a description of a set of paths, rather than
a single path, in real-world networks. While a number of different kinds of trees can be
used to represent a set of paths through a topology or network, there are two com-
monly used to describe computer networks: the Minimum Spanning Tree (MST) and
the Shortest Path Tree (SPT). The difference between these two kinds of trees is often
subtle. The network shown in Figure 12-3 will be used to illustrate the MST and SPT.

In Figure 12-3, a number of different paths will touch every node; for instance,
from A’s perspective:

 1. [A,B,E,D,C] and [A,C,D,E,B], each with a total cost of 10

 2. [A,B,E] with a cost of 5 and [A,C,D] with a cost of 3, for a total cost of 8

 3. [A,C,D,E] with a cost of 6 and [A,B] with a cost of 1, for a total cost of 7

An MST is a tree that visits each node in the network with the minimum
 overall cost (normally measured as the sum of all the links chosen in the network).

Chapter 12 Unicast Loop-Free Paths (1)316

An algorithm that computes the MST will choose option 3, as it has the lowest total
cost along the set of edges required to reach every node in the network.

An SPT describes the shortest path to each destination in the network, independ-
ent of the total cost of the graph. An algorithm that calculates an SPT would choose,
from A’s perspective:

 • [A,B] to B with a cost of 1, as this path is shorter than [A,C,D,E,B] with a cost of 10

 • [A,B,E] to E with a cost of 5, as this is shorter than [A,C,D,E] with a cost of 6

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

1

1

1

1

1

1

2

2

2

3

3

3

4

4

4

Ba
se

 T
op

ol
og

y
M

in
im

um
 S

pa
nn

in
g

Tr
ee

Sh
or

te
st

 P
at

h
Tr

ee

Figure 12-3 The Minimum Spanning Tree and the Shortest Path Tree

Alternate Loop-Free Paths 317

 • [A,C] to C with a cost of 1, as this is shorter than [A,B,E,D,C] with a cost of 10

 • [A,C,D] to D with a cost of 3, as this is shorter than [A,B,E,D] with a cost of 8

Comparing the set of shortest paths to the set of paths that will touch every node,
above, an algorithm that calculates an SPT would choose option 2, rather than 3 in
the preceding list. In other words, the SPT will ignore the total cost of the edges in
the MST to find the shortest path to each reachable destination (in this case, nodes),
while the MST will ignore the shortest path to each reachable destination in order to
minimize the cost of the entire graph.

Network control planes most often compute SPTs, rather than MSTs, using some
form of greedy algorithm. While SPTs are not optimal for solving all network traffic
flow problems, they are generally better than MSTs in the types of traffic flow prob-
lems that network control planes must solve.

Greedy Algorithms

Greedy algorithms choose locally optimal solutions to solve larger problems.
For instance, in calculating the shortest path through a network, a greedy algo-
rithm may choose to visit closer neighboring nodes (can be reached across a
link with lower cost) before nodes that are farther away (can be reached across a
link with a higher cost). In this way, greedy algorithms can be said to relax com-
putation, normally by either ignoring or approximating global optimization.

Sometimes greedy algorithms can fail; when they do fail, they can fail
spectacularly, providing the worst possible solution. For instance, with the
right set of metrics, it is possible for a greedy algorithm, such as Dijkstra’s
(described in Chapter 13, “Unicast Loop-Free Paths (2)”), to calculate the set
of longest paths through a network, rather than the set of shortest. Hence
greedy algorithms are sometimes considered a heuristic, as they approximate
the solution to a hard problem, or can solve it in constrained environments,
rather than actually solving the general problem.

In the real world, computer networks are designed in a way to make these
algorithms compute the best possible solution to the problem at hand in every
case—namely, finding the shortest set of paths through a network.

Alternate Loop-Free Paths

The shortest path rule, as described in the preceding section, is a negative test, rather
than a positive one; it can always be used to find a loop-free path among a set of

Chapter 12 Unicast Loop-Free Paths (1)318

available paths, but not to determine which other paths in the set might also happen
to be loop free. Figure 12-4 illustrates.

In Figure 12-4, it is easy to observe that the shortest path from A to the destination
is along the path [A,B,F]. It is also easy to observe that the paths [A,C,F] and [A,D,E,F]
are alternate paths to the same destination. But are these paths loop free? The answer
depends on the meaning of loop free: normally a loop-free path is one in which the
traffic will not loop through any node (will not visit any node in the topology more
than once). While this definition is generally good, it is possible to narrow the defini-
tion in the case of a single node with multiple next hops over which it can send traffic
toward a reachable destination. Specifically, the definition can be narrowed to:

A path is loop free if the next hop device will not forward traffic toward a
specific destination back to me (the sending node).

In this case, the path through C, from A’s perspective, can be said to be loop free
if C does not forward traffic toward the destination through A. In other words, if A
transmits a packet to C for Destination, C will not forward the packet back to A, but
rather will forward the packet closer to Destination. This definition simplifies the
problem of finding alternate loop-free paths somewhat. Rather than considering the
entire path toward the destination, A needs to only consider whether or not any par-
ticular neighbor will forward traffic back to A itself when forwarding traffic towards
the destination.

Consider, for instance, the path [A,C,F]. If A sends a packet to C for the destina-
tion beyond F, will C forward this packet back to A? The paths available to C are

 • [C,A,B,F], with a total cost of 5

 • [C,A,D,E], with a total cost of 6

 • [C,F], with a total cost of 2

A

B

C

D E

F

1 2

2

1 1

2

2
Destination

Figure 12-4 Alternate Loop-Free Paths

Alternate Loop-Free Paths 319

Given C is going to choose the shortest path to the destination, it will choose
[C,F], and hence will not forward the traffic back to A. Turning this into a question:
why will C not forward traffic back to A? Because it has a path that is lower cost than
any path through A to reach the destination. This can be generalized and called a
downstream neighbor:

Any neighbor with a path that is shorter than the local path to the destination
will not loop traffic back to me (the sending node).

Or rather, given that the local cost is represented as LC, and the neighbor’s cost is
represented as NC, then

If NC < LC, then the neighbor is downstream.

Now consider the second alternate path shown in Figure 12-4: [A,D,E,F]. Once
again, if A sends traffic toward the destination to D, will D loop the traffic back to A?
The paths D has available are

 • [D,A,C,F], with a total cost of 5

 • [D,A,B,F], with a total cost of 4

 • [D,E,F], with a total cost of 3

Assuming D will use the shortest available path, D would forward any such traffic
through E, rather than back through A. This can be generalized and called a Loop-
Free Alternate (LFA):

Any neighbor with a path that is shorter than the local path to the destination
plus the cost of the neighbor to reach me (the local node) will not loop traffic
back to me (the local node).

Or rather, given the local cost is represented as LC, the neighbor’s cost is repre-
sented as NC, and the cost back to the local node (from the neighbor’s perspective)
is BC:

If NC + BC < LC, then the neighbor is an LFA.

There are two other models often used to explain Loop-Free Alternates: the
waterfall model and P/Q Space. It is useful to look at these models in a little
more detail.

Chapter 12 Unicast Loop-Free Paths (1)320

Waterfall (or Continental Divide) Model

One way to prevent loops in the routes calculated by a control plane is to simply not
advertise routes to neighbors that would forward traffic back to me (the sending
node). This is called split horizon; it leads to the concept of traffic flowing through a
network acting like water along a waterfall, or stream bed, taking the path of least
resistance toward the destination, as shown in Figure 12-5.

In Figure 12-5, if traffic enters the network at C (at Source 2) and is destined
beyond E, it will flow down the right side of the ring. If, however, traffic enters the

A

C

B

D

E

Destination

Packet Divide

Source 1

Source 2

Figure 12-5 Traffic Flow from a Metric-based Packet Divide

Alternate Loop-Free Paths 321

network at A and is destined beyond E, it will flow down the left side of the ring.
To prevent traffic destined beyond E from looping on this ring, one simple thing the
control plane can do is either not allow A to advertise the destination to C, or not
allow C to advertise the destination to A. Preventing one of these two routers from
advertising to the other is called split horizon, because it stops a route from being
propagated across a horizon, or rather beyond the point where any particular device
knows traffic being passed along a particular link will be looped.

Split horizon is implemented by only allowing a device to advertise reachability
through interfaces it is not using to reach the destination in question. In this case:

 • D is using E to reach the destination, so it will not advertise reachability toward E

 • C is using D to reach the destination, so it will not advertise reachability toward D

 • B is using E to reach the destination, so it will not advertise reachability toward E

 • A is using B to reach the destination, so it will not advertise reachability toward B

Hence, A blocks B from knowing about the alternate path that it has to the des-
tination through C, and C blocks D from knowing about the alternate path that it
has to the destination through A. A Loop-Free Alternate path will cross this split
horizon point in the network. In Figure 12-5, A can calculate that C’s path cost is
less than A’s path cost, so any traffic A forwards to C toward the destination will be
forwarded along some other path than the one A knows about. C, in LFA terms, is a
downstream neighbor of A.

An alternate way to look at the LFA calculation, then, is to find the split horizon
point in the ring and determine whether or not the devices on either side of the split
horizon point would forward traffic through the packet divide.

P/Q Space

Another model to describe how LFAs work is P/Q Space; Figure 12-6 illustrates.
It is easiest to begin with a definition of the two spaces. Assuming the [E,D] link is

to be protected from failure:

 • Calculate a reverse Shortest Path Tree from E (E uses the cost of the paths
toward itself, rather than the costs away from itself, in calculating this tree,
because traffic is flowing toward D on this path).

 • Remove the [E,D] link, along with any nodes only reachable by passing through
the link.

 • The remaining nodes that E can reach are the Q space.

Chapter 12 Unicast Loop-Free Paths (1)322

 • Calculate a Shortest Path Tree from D.

 • Remove the [E,D] link, along with any nodes only reachable by passing through
the link.

 • The remaining nodes that D can reach are in the P space.

If D can find a router in the Q space to which to forward traffic if the [E,D] link
fails, this is an LFA.

Remote Loop-Free Alternates

What if there is no LFA? It is sometimes possible to find a remote Loop-Free Alter-
nate (rLFA), which can carry the traffic to the destination, as well. The rLFA is not

A

C

B

D

E

Destination

Source

P Space

Q Space

Figure 12-6 P Space and Q Space

Alternate Loop-Free Paths 323

directly connected to the calculating router, but is rather one or more hops away; this
means the traffic must be carried through the routers between the calculating router
and the remote next hop; this is normally accomplished by tunneling the traffic.

These models can explain rLFAs without looking at the math required to
 calculate them. Understanding where a ring will “divide” into P and Q, or into
the two halves divided by split horizon helps you quickly understand where an
rLFA can be used to work around a failure even if no LFA is present. Returning
to Figure 12-6, for instance, if the [E,D] link fails, D must simply wait for the
network to converge to begin forwarding traffic toward the destination. The best
path from E has been removed from D’s tree by the failure, and E has no LFA it
can forward traffic to.

Return to the restricted definition of a loop-free path that this section began
with—any neighbor to which a device can forward traffic without the traffic being
returned. There is no particular reason why the neighbor to which a device sends
packets in the case of a local link failure must be locally connected. Chapter 9, “Net-
work Virtualization,” describes the ability to create a tunnel, or an overlay topology,
that can carry traffic between any two nodes in the network.

Given the ability to tunnel traffic across C, so C does not forward traffic based on
the actual destination, but rather on a tunnel header, D can forward traffic directly to
A, bypassing the loop. When the [E,D] link fails, then, D can do the following:

 1. Calculate the closest point in the network where traffic can be tunneled and
will not return to C itself.

 2. Form a tunnel to that router.

 3. Encapsulate the traffic into the tunnel header.

 4. Forward the traffic.

Note

In actual implementations, the rLFA tunnel would be precalculated, rather than
calculated at the time of failure. These rLFA tunnels do not necessarily need to
be visible to the normal forwarding process, as well. This text is arranged for
clarity of how this process works, rather than focusing on how it is normally
implemented.

D will forward the traffic to the tunnel destination, rather than the original
destination; this bypasses C’s local forwarding table entry for the original destina-
tion, which would loop the traffic back to C. The calculation of such intersection

Chapter 12 Unicast Loop-Free Paths (1)324

points will be discussed in the section on Dijkstra’s Shortest Path First algorithm
in Chapter 13.

Bellman-Ford Loop-Free Path Calculation

Bellman-Ford is one of the simpler protocols to understand, as it is generally
implemented by comparing newly learned information about a destination with
existing information about the same destination. If the newly discovered route is
better than the currently known route, the higher cost route is simply replaced in
the path list—as dictated by the shortest path rule for finding loop-free paths
through the network. By iterating over the entire topology in this way, a set of
shortest paths to each destination is found. Figure 12-7 is used to illustrate the
process.

A (1) 1

1

1

1

1

1

C (3)

B (2)

2

2

2

D (4)

E (5)

H (8)
G (7)

F (6)

Figure 12-7 A Sample Network to Run Bellman-Ford

Bellman-Ford Loop-Free Path Calculation 325

Note

While Bellman-Ford is mostly known for its distributed variant implemented in
widely deployed protocols such as the Routing Information Protocol (RIP), it was
originally designed as a search algorithm performed on a single structure describ-
ing a topology of nodes and edges. Bellman-Ford is discussed as an algorithm here.
A distributed algorithm similar to Bellman-Ford is discussed in the next section.

Bellman-Ford as an Algorithm

Although first proposed by Alfonso Shimbel in 1955,1 and again by Edward
F. Moore in 1957,2 this algorithm is named after Richard Bellman, who pub-
lished it in 1958,3 and Lester Ford, Jr., who published it in 1956.4

Bellman-Ford will calculate a Shortest Path Tree to each reachable destina-
tion in a worst case of O(V*E), where V is the number of nodes (vertices) in
the network, and E is the number of links (edges). Essentially, this means the
amount of time Bellman-Ford takes to operate over a topology and calculate
a Shortest Path Tree is linear against the number of devices and links; dou-
bling the number of either will double the amount of time it takes to run.
Doubling both at the same time will increase the run time by a factor of 4.

Bellman-Ford is thus a moderately slow algorithm when used against
larger topologies in the worst case, when the nodes in the topology table start
out ordered from the farthest from the root to the closest to the root. If the
topology table is sorted from the closest to the root to the farthest, Bellman-
Ford can terminate in O(E), which is much faster; in the real world, it is dif-
ficult to ensure either ordering, so the actual time required to build a Shortest
Path Tree is normally somewhere between O(V*E) and O(E).

Bellman-Ford is a greedy algorithm, operating by assuming every node in
the network other than the local node is only reachable through an infinite
cost, and replacing these infinite costs with actual costs as the topology is
walked. Assuming all nodes are infinitely distant is called relaxing the calcu-
lation, as it uses an approximate distance for all unknown destinations in the
network, replacing them with a real cost once it has been calculated.

1. Shimbel, “Structure in Communication Nets.”

2. Moore, “The Shortest Path through a Maze.”

3. Bellman, “On a Routing Problem.” 87–90.

4. Ford, Network Flow Theory.

Chapter 12 Unicast Loop-Free Paths (1)326

Note

The actual runtime of any algorithm used for calculating a Shortest Path Tree is
normally swamped by the amount of time required to carry information about
topology changes through the network; see Chapter 14, “Reacting to Topology
Changes,” for more information on this topic. Implementations of all of these
protocols, particularly in their distributed form, will contain a number of optimi-
zations to reduce their runtime to far below the worst case, so while the worst case
is given as a reference point, it often has little (or no) bearing on the performance
of each algorithm in actual deployed networks.

To run Bellman-Ford over this topology, it must first be converted into a set of vec-
tors and distances, and stored in a data structure, such as shown in Table 12-1.

Table 12-1 Topology, or Edges, Represented as a Table for Bellman-Ford

Row Source (s) Destination (d) Distance (cost)

1 F (6) G (7) 1

2 E (5) H (8) 1

3 D (4) H (8) 2

4 D (4) E (5) 1

5 B (2) F (6) 1

6 B (2) E (5) 2

7 C (3) D (4) 1

8 A (1) B (2) 2

9 A (1) C (3) 1

There are nine entries in this table because there are nine links (edges) in the net-
work. Shortest path algorithms calculate a unidirectional tree (in one direction along
the graph). In the network in Figure 12-7, the SPT is shown originating at node 1,
and calculation is shown moving away from node 1, which will be the point from
which the calculation takes place. The algorithm, in pseudocode, is as follows:

Note

The data structures in this example are 1 referenced (or based), which means
the first row is 1 rather than 0, to make the numbering clearer.

// create a set to hold the response, with one entry for each node

// the first slot in the resulting structure will represent node 1,

Bellman-Ford Loop-Free Path Calculation 327

// the second node 2 etc.

define route[nodes] {

 predecessor // as a node

 cost // as an integer

}

// set the source (me) to 0 cost

// position 1 in the array is the origination point’s entry

route[1].predecessor = NULL

route[1].cost = 0

// table 1, above, is held in an array called topo

// walk the topo (edges) table once for each entry in the route

// (results) table, replacing longer entries with shorter ones

i = nodes

while i > 0 {

 j = 1

 while j <= nodes { // iterates over every row in the topology

table

 source_router = topo[j].s

 destination_router = topo[j].d

 link_cost = topo[j].cost

 if route[source_router].cost == NULL {

 source_router_cost = INFINITY

 } else {

 source_router_cost = route[source_router].cost

 }

 if route[destination_router].cost == NULL {

 destination_router_cost = INFINITY

 } else {

 destination_router_cost = route[destination_router].cost

 }

 if source_router_cost + link_cost <= destination_router_cost {

 route[destination_router].cost = source_router_cost + link_

cost

 route[destination_router].predecessor = source_router

 }

 j = j + 1 //or j++ depending on what pseudocode this is

representing

 }

i = i - 1

}

Chapter 12 Unicast Loop-Free Paths (1)328

This code is deceptive in appearing more complex than it really is. The key line
is the comparison if route[topo[j].s].cost + topo[j].cost < route[topo[j].d].cost; it
is useful to focus on this line through an example. In the first run through the outer
loop (which is run once for each entry in the results table, called route here):

 • For the first line of the topo table:

 • j is 1 so topo[j].s is node 6 (F), the source of the vector in the edge table

 • j is 1, so topo[j].d is node 7 (G), the destination of the vector in the edge table

 • route[6].cost = infinity, topo[1].cost = 1, and route[7].cost = infinity

 • infinity + 1 == infinity, so the condition fails and nothing else happens

 • Any topo table entry with a source cost of infinity will give the same result, as
infinity + anything will always equal infinity; the rest of the rows containing a
source with a cost of infinity will be skipped.

 • For the eighth line of the topo table (the eighth edge):

 • j is 8, so topo[j].s is node 1 (A), the source of the vector in the edge table

 • j is 8, so topo[j].d is node 2 (B), the destination of the vector in the edge table

 • route[1].cost = 0, topo[8].cost = 2, and route[2].cost = infinity

 • 0 + 2 <= infinity, so the condition succeeds

 • route[2].predecessor is set to 1, and route[2].cost is set to 2

 • For the ninth line of the topo table (the ninth edge):

 • j is 9, so topo[j].s is node 1 (A), the source of the vector in the edge table

 • j is 9, so topo[j].d is node 3 (C), the destination of the vector in the edge table

 • route[1].cost = 0, topo[9].cost = 1, and route[3].cost = infinity

 • 0 + 1 <= infinity, so the condition succeeds

 • route[3].predecessor is set to 1, and route[3].cost is set to 1

In the second run of the outer loop:

 • For the fifth line of the topo table (the fifth edge):

 • j is 5, so topo[j].s is node 2 (B), the source of the vector in the edge table

 • j is 5, so topo[j].d is node 6 (F), the destination of the vector in the edge table

Bellman-Ford Loop-Free Path Calculation 329

 • route[2].cost = 2, topo[5].cost = 1, and route[6].cost = infinity

 • 2 + 1 <= infinity, so the condition succeeds

 • route[6].predecessor is set to 2, and route[6].cost is set to 3

 • For the sixth line of the topo table (the sixth edge):

 • j is 6, so topo[j].s is 2 (B), the source of the vector in the edge table

 • j is 6, so topo[j].d is 5 (E), the destination of the vector in the edge table

 • route[2].cost = 2, topo[6].cost = 2, and route[5].cost = infinity

 • 2 + 2 <= infinity, so the condition succeeds

 • route[5].predecessor is set to 2, and route[5].cost is set to 4

 • The remainder of this run is shown in Table 12-2.

In the third run of the outer loop, node 8 is of particular interest, as there are two
paths to this destination.

 • For the second line of the topo table (the second edge):

 • j is 2, so topo[j].s is node 5 (E), the source of the vector in the edge table

 • j is 2, so topo[j].d is node 8 (H), the destination of the vector in the edge
table

 • route[5].cost = 4, topo[2].cost = 1, and route[8].cost = infinity

 • 4+1 <= infinity, so the condition succeeds

 • route[8].predecessor is set to 5, and route[8].cost is set to 5

 • For the third line of the topo table (the third edge):

 • j is 3, so topo[j].s is node 4 (D), the source of the vector in the edge table

 • j is 3, so topo[j].d is node 8 (H), the destination of the vector in the edge
table

 • route[4].cost = 2, topo[3].cost = 2, and route[8].cost = 5

 • 2+2 <= 4, so the condition succeeds

 • route[8].predecessor is set to 4, and route[8].cost is set to 4

Chapter 12 Unicast Loop-Free Paths (1)330

The interesting point in the third cycle through the topo table is the entry for the
edge [5,8] is processed first, which sets 8’s (H’s) predecessor to 5 and cost to 5. When
the next line in the topo table is processed, however, the [4,8] edge, the algorithm
discovers a shorter path to node 8 and replaces the existing one. Table 12-2 shows the
state of the route table with each pass through the topo table.

Table 12-2 Bellman-Ford Cycles Across the Sample Network

A (1) B (2) C (3) D (4) E (5) F (6) G (7) H (8)

P C P C P C P C P C P C P C P C

First
Cycle

N 0 1 2 1 1 N I N I N I N I N I

Second
Cycle

N 0 1 2 1 1 3 2 2 4 2 3 N I N I

Third
Cycle

N 0 1 2 1 1 3 2 2 4 2 3 6 4 4 4

In Table 12-2, the top line represents an entry in the routing table and a node that
is reachable in the network. For instance, A (1) represents the best path to A, B (2)
represents the best path to B, etc. The P column represents the predecessor, or the
node through which A must pass to reach the destination indicated. The C represents
the cost to reach this destination. The sample network can be completed in three
cycles, given the algorithm is coded to detect the completion of the tree. The pseu-
docode, as shown, does not have any test for this completion and would run the full
8 cycles (one for each node) anyway.

Note

Bellman-Ford can also support negative cost edges (unlike Dijkstra’s algorithm);
as these do not normally exist in a network, the process for handling these is not
shown here.

Garcia’s Diffusing Update Algorithm

The Diffusing Update Algorithm (DUAL) is one of the two algorithms discussed
here originally designed to be implemented in a distributed network. It is unique in
also having the removal of reachability and topology information contained in the
algorithm’s state machine. The other algorithms discussed here leave the removal of
information to the implementation of the protocol, rather than considering this
aspect of the algorithm’s operation within the algorithm itself.

Garcia’s Diffusing Update Algorithm 331

The Origins of the Diffusing Update Algorithm

By 1993, Bellman-Ford and Dijkstra had been implemented as distributed algo-
rithms in several routing protocols. The experience gained from these early
implementations and deployments led to a “second wave” of research into
and thinking around the problem of routing in packet switched networks,
resulting in path vector and DUAL. The abstract from the 1993 paper by J. J.
 Garcia -Luna- Aceves summarizes much of this previous work and experience,
and proposes a new distributed computation system (rather than strictly an
algorithm) to find the shortest path through a network more efficiently. In the
earlier days of network engineering, memory, processor, and network utilization
were three primary concerns in designing a protocol; processors were either 6- or
8-bit; memory was measured in kilobytes, and bandwidth was measured in kilo-
bytes per second. Hence, the development of a protocol that was very efficient
in these terms was a major breakthrough in deploying large-scale networks. The
abstract of the original Garcia-Luna-Aceves paper is worth repeating here:

Abstract—A family of distributed algorithms for the dynamic computation
of the shortest paths in a computer network or internet is presented, validated,
and analyzed. According to these algorithms, each node maintains a vector with
its distance to every other node. Update messages from a node are sent only to its
neighbors; each such message contains a distance vector of one or more entries,
and each entry specifies the length of the selected path to a network destination,
as well as an indication of whether the entry constitutes an update, a query, or a
reply to a previous query. The new algorithms treat the problem of distributed
shortest-path routing as one of diffusing computations, which was first proposed
by Dijkstra and Scholten. They improve on algorithms introduced previously by
Chandy and Misra, Jaffe and Moss, Merlin and Segall, and the author. The new
algorithms are shown to converge in finite time after an arbitrary sequence of
link cost or topological changes, to be loop-free at every instant, and to out-
perform all other loop-free routing algorithms previously proposed from the
 standpoint of the combined temporal, message, and storage complexities.5

The protocol resulting from this paper, Enhanced Interior Gateway Routing
Protocol (EIGRP), was widely deployed at scales that other protocols simply
could not attain. DUAL, like Bellman-Ford, is a greedy algorithm, and would run
(if it were implemented as a nondistributed algorithm) in O(E*V) in the worst
case when calculating the initial set of Shortest Path Trees. Special optimizations,
however, allow DUAL to operate very quickly in the case of topology changes.

5. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Computations.” 130–41.

Chapter 12 Unicast Loop-Free Paths (1)332

As DUAL is designed as a distributed algorithm, it is best to describe its operation
across a network; Figure 12-8 and Figure 12-9 are used for this purpose. To explain
DUAL, this example will trace the flow of A learning about three destinations and
then processing changes in the state of reachability for these same destinations. The
first example will consider the case where there is an alternate path, but no down-
stream neighbor; the second will consider the case there is an alternate path and a
downstream neighbor.

Note

While the original DUAL paper refers to neighbor adjacencies, they will not be
described in this discussion. Rather, it will simply be assumed such neighbors
exist, and hence the transmission of control plane data is reliable.

In Figure 12-8, learning D from A’s perspective:

 1. A learns two paths to D:

a. Through H with a cost of 3.

b. Through C with a cost of 4.

A

B

C

E

H

2

2

1 1
1

1

1

D

Figure 12-8 First Network for Demonstrating the Diffusing Update Algorithm

Garcia’s Diffusing Update Algorithm 333

 2. A will not learn the path through B, because B is using A as its successor:

a. A is the best path B has to reach D.

b. As B is using the path through A to reach D (the destination), it will not
advertise the route it knows about D (through C) to A.

c. B will split horizon its advertisement of D toward A to prevent possible for-
warding loops from forming.

 3. A compares the available paths and chooses the shortest path as loop free:

a. The path through H is marked as the successor.

b. The feasible distance is set to the cost along the shortest path, which is 3.

 4. A checks the remaining paths to determine if any of them are downstream
neighbors:

a. C’s cost is 3.
 A knows this because C advertises the route to D with its local metric, which is 3.
 A saves C’s local metric in its topology table.
 Hence, A knows the local cost at C and the local cost at A.

A

B

C

E

H

2

2

1

1

1

1

1

D

Figure 12-9 Second Network for Demonstrating the Diffusing Update Algorithm

Chapter 12 Unicast Loop-Free Paths (1)334

b. 3 (the cost at C) >= 3 (the cost at A), so this route may be a loop,
 Hence, C does not meet the feasibility condition.

c. C is not marked as a downstream neighbor.

Downstream neighbors are called feasible successors in DUAL.
Assume the [A,H] link fails. DUAL does not rely on periodic updates, so A cannot

simply wait for another update with valid information; rather A must actively pursue
an alternate path. This is, therefore, a diffused process of alternate path discovery. If
the [A,H] link fails, considering just D:

 1. A examines its local table for any feasible successors (downstream neighbors).

 2. There are no feasible successors, so A must discover an alternate loop-free path
to D (if one exists).

 3. A sends a query to each neighbor to determine if there is some alternate loop-
free path to D.

 4. At C:

a. C’s successor is E (not A, from whom it received the query).

b. E’s cost is lower than A’s cost to D; hence C’s path is not a loop.

c. C replies with its current metric of 3 to A.

 5. At B:

a. A is B’s current successor.

b. Through the query, B now discovers its best path to D has failed, and it must
also find an alternate path.

c. B’s processing is not considered here, but rather is left as an exercise for the
reader.

d. B replies to A that it has no alternate path (responds with an infinite metric).

 6. A receives these replies:

a. The path through C is the only one available, with a cost of 4.

b. A marks the path through C as its successor.

c. There are no other paths to D; hence there is no feasible successor (down-
stream neighbor).

In Figure 12-9, the destination (D) has been moved from H to E; this will be used
for the second example.

Garcia’s Diffusing Update Algorithm 335

In this example, there is a feasible successor (downstream neighbor). Learning D
from A’s perspective:

 1. A learns two paths to D:

a. Through H with a cost of 4.

b. Through C with a cost of 3.

 2. A will not learn any path through B:

a. B has two paths to D.

b. Through both C and A with a cost of 4.

c. B is using both A and C as its successors in this case.

d. B will split horizon its advertisement of D toward A because A is marked as
a successor.

 3. A compares the available paths and chooses the shortest path as loop free:

a. The path through C is marked as the successor.

b. The feasible distance is set to the cost along the shortest path, which is 3.

 4. A checks the remaining paths to determine if any of them are downstream neighbors:

a. H’s cost is 2.

b. 2 (the cost at H) <= 3 (the cost at A), so this route cannot be a loop; hence H
does meet the feasibility condition.

c. H is marked as a feasible successor (downstream neighbor).

If the [A,C] link fails just considering A:

 1. A will examine its local topology table for a feasible successor.

 2. A feasible successor exists through H.

 3. A switches its local table to H as the best path.

a. No diffusing update has been run, so no paths have been verified or
recalculated.

b. Hence, the feasible distance cannot be changed; it remains at 3.

 4. A sends an update to its neighbors noting its cost to reach D has changed from 3 to 4.

 The impact of this update is not described here, but consider that B is using A
as a successor.

Chapter 12 Unicast Loop-Free Paths (1)336

As you can see, processing when a feasible successor exists is much faster and sim-
pler than without. In networks where a routing protocol using DUAL (specifically
EIGRP) has been deployed, one primary design goal will be limiting the scope of any
queries generated in the case where there is no feasible successor. Query scope is the
primary determinant of how quickly the DUAL algorithm completes and hence how
quickly the network converges.

Figure 12-10 illustrates a basic DUAL finite state machine.
Things included in route gets worse could include

 • Failure of a connected link or neighbor

 • Receiving an update for a route with a higher metric

 • Receiving a query from the current successor

route
gets

worse

is there a
feasible

successor?

switch to the
feasible

successor

send metric
update to
neighbors

send queries
to

neighbors

calculate
shortest path

(successor)

calculate
feasible

sucessors

send updates
to

neighbors

route
gets

better

yes no

Figure 12-10 A Simple DUAL Finite State Machine

Further Reading 337

Things included in route gets better could include

 • A new route learned from a neighbor

 • A new neighbor discovered, along with the routes this neighbor can reach

 • Receiving all queries sent to neighbors when a route gets worse

Final Thoughts

This chapter is the first of two discussing calculating loop-free paths through a net-
work. The shortest path rule is the foundation of most calculation mechanisms;
 Bellman-Ford and DUAL, the foundation of most widely deployed distance-vector
protocols (classifications of protocols are considered in more depth in Chapters 15
through 17, which discuss distributed and centralized control planes). The next
chapter considers one more algorithm that relies on the shortest path rule, and then
turns to path vector, and finally disjoint paths.

Further Reading

Bellman, Richard. “On a Routing Problem.” Quarterly of Applied Mathematics 16
(1958): 87–90.

“Enhanced Interior Gateway Routing Protocol (EIGRP) Wide Metrics White Paper.”
Cisco. Accessed January 28, 2017. http://www.cisco.com/c/en/us/products/
collateral/ios-nx-os-software/enhanced-interior-gateway-routing-protocol-
eigrp/whitepaper_C11-720525.html.

Ford, L. R. Network Flow Theory. Santa Monica, CA: RAND Corporation, 1956.

Garcia-Luna-Aceves, J. J. “Loop-Free Routing Using Diffusing Computations.”
IEEE/ACM Transactions on Networking 1, no. 1 (February 1993): 130–41.

Hendrick, C. Routing Information Protocol. Request for Comments 1058. RFC
 Editor, 1988. doi:10.17487/rfc1058.

Malkin, Gary S. RIP Version 2. Request for Comments 2453. RFC Editor, 1998.
doi:10.17487/rfc2453.

Malkin, Gary S., and Robert E. Minnear. RIPng for IPv6. Request for Comments
2080. RFC Editor, 1997. doi:10.17487/rfc2080.

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enhanced-interior-gateway-routing-protocol-eigrp/whitepaper_C11-720525.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enhanced-interior-gateway-routing-protocol-eigrp/whitepaper_C11-720525.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enhanced-interior-gateway-routing-protocol-eigrp/whitepaper_C11-720525.html

Chapter 12 Unicast Loop-Free Paths (1)338

Moore, Edward F. “The Shortest Path through a Maze.” In Proceedings of the
 International Symposium on Switching Theory 1957, Part II. Cambridge MA:
Harvard University Press, 1959.

Perlman, Radia. “An Algorithm for Distributed Computation of a Spanningtree in
an Extended LAN.” SIGCOMM Computer Communication Review 15, no. 4
(September 1985): 44–53. doi:10.1145/318951.319004.

———. Interconnections: Bridges, Routers, Switches, and Internetworking Proto-
cols. 2nd edition. Reading, MA: Addison-Wesley Professional, 1999.

Retana, Alvaro, Russ White, and Don Slice. EIGRP for IP: Basic Operation and Con-
figuration. 1st edition. Boston, MA: Addison-Wesley Professional, 2000.

Russ White. “CAP Theorem and Routing.” Rule 11 Reader, March 25, 2016. https://
rule11.tech/cap-theorem-routing/.

———. “Ordered FIB.” Packet Pushers, March 25, 2014. http://packetpushers.net/
ordered-fib/.

———. “Video: Do Remote LFAs Really Solve Microloops?” Rule 11 Reader, Septem-
ber 11, 2017. https://rule11.tech/video-remote-lfas-really-solve-microloops/.

Savage, Donnie, Steven Moore, James Ng, Russ White, Donald Slice, and Peter
 Paluch. Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP). Request
for Comments 7868. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7868.txt.

Shimbel, A. “Structure in Communication Nets.” In Proceedings of the Symposium
on Information Networks. New York: Polytechnic Press of the Polytechnic
Institute of Brooklyn, n.d., 199–203.

Review Questions

 1. Explain the relationship between the calculation of shortest paths and
 loop-free paths through a network.

 2. What are the conditions an alternate path must meet to be considered a Loop-
Free Alternate?

 3. Explain the difference between the waterfall and P/Q space models of under-
standing where loops will form using a network diagram containing seven rout-
ers in a ring and a single destination reachable through one of these routers.

 4. When is an algorithm for solving the problem of loop-free paths called
“greedy”?

https://rule11.tech/cap-theorem-routing/
https://rule11.tech/cap-theorem-routing/
http://packetpushers.net/ordered-fib/
http://packetpushers.net/ordered-fib/
https://rule11.tech/video-remote-lfas-really-solve-microloops/
https://rfc-editor.org/rfc/rfc7868.txt

Review Questions 339

 5. Compare the state machine given in the chapter for DUAL to the state machine
given in the EIGRP RFC. What is left out, what is combined, etc.? What are the
advantages and disadvantages of having more or less detailed state machine
diagrams? When would you prefer one or the other?

 6. Draw a small network of around 10 or 11 nodes, and walk through the pro-
cess of running the Bellman-Ford and Diffusing Update algorithms on it. Will
DUAL find any Loop-Free Alternates in this network? Are there any places
where a remote Loop-Free Alternate can be calculated?

 7. In the network from question 6, assume a single link has failed; trace the reac-
tion of DUAL to this event? Will queries be required? Why or why not?

This page intentionally left blank

341

Chapter 13

Unicast Loop-Free Paths (2)

Learning Objectives

After reading this chapter, you should be able to understand:

 0 Dijkstra’s Shortest Path First algorithm

 0 The computation of Loop-Free Alternates using Dijkstra’s algorithm

 0 Suurballe’s Disjoint Path algorithm

 0 DFS numbering for calculating disjoint paths

 0 Maximally redundant trees for calculating disjoint paths

The preceding chapter discussed the shortest path rule and two algorithms (or per-
haps systems) to find loop-free paths through a network. There is a wide range of
such systems—far too many to cover in a few chapters of a larger book—but it is
important for network engineers to be familiar with at least a few of these systems.
This chapter considers Dijkstra’s Shortest Path First, Path Vector, and two different
disjoint path algorithms: Suurballe’s and Maximally Redundant Trees (MRTs).
Finally, this chapter will consider one other problem that control planes need to
solve: ensuring two-way connectivity through the network.

Dijkstra’s Shortest Path First

Dijkstra’s Shortest Path First (SPF) algorithm is, perhaps, the most widely recog-
nized and understood system for discovering loop-free paths through a network. It is

Chapter 13 Unicast Loop-Free Paths (2)342

used by two widely deployed routing protocols, and in many other everyday systems
such as software designed to find the shortest path through a road network, or to
discover connections and connection patterns in social networks.

The History of Dijkstra’s Algorithm

Edsger Dijkstra, a theoretical physicist, published his shortest path algorithm
in 1959.1 This greedy algorithm, in its original form, ran in the worst case in
O(n2), but has been optimized through the use of self-balancing and ordered
heaps, to O(|E|+|V| log |V|), where E is the number of edges (or links) in the
network, and V is the number of vertices (or nodes). In most real-world net-
works, various assumptions are made that allow the algorithm to run faster
than this, computing a tree across a large set of nodes and edges in tens to
hundreds of milliseconds.

Dijkstra originally designed this algorithm as a “toy problem” to demon-
strate the abilities of a 6-bit computer and then reused it to find the mini-
mum amount of wire required to connect several computers. The algorithm is
often considered a version of Prim’s Universal Shortest Path First algorithm.
Prim published a version in 1957, a version of which was apparently known
by Jarnik in the 1920s.

This intertwined history of algorithms is common in the field of computer
science; it is often difficult to unwind the true history of any particular algo-
rithm, as many were discovered (in theory) by very early Greek or other clas-
sical mathematicians.

1. Dijkstra, “A Note on Two Problems in Connexion with Graphs.”

Dijkstra’s algorithm, in pseudocode, uses two data structures. The first is the ten-
tative list, or the TENT; this list contains the set of nodes under consideration for
inclusion in the Shortest Path Tree. The second is the PATH; this list contains the set
of nodes (and therefore links, as well), which are on the Shortest Path Tree.

01 move "me" to the TENT

02 while TENT is not empty {

03 sort TENT

04 selected == first node on TENT

05 if selected is in PATH {

Dijkstra’s Shortest Path First 343

06 *do nothing*

07 }

08 else {

09 add selected to PATH

10 for each node connected to selected in TOPO

11 v = find node in TENT

12 if (!v)

13 move node to TENT

14 else if node.cost < v.cost

15 replace v with node on TENT

16 else

17 remove node from TOPO

18 }

19 }

As always, the algorithm is less complex than it appears on initial inspection; the
key is the sorting of the two lists and the order in which nodes are processed off
the TENT list. Here are some notes on the pseudocode before walking through an
example:

 1. The process starts with a copy of the topology database, called TOPO here;
this will be clearer in the example, but it is simply a structure containing the
source nodes, the destination nodes, and the cost of the link between them.

 2. The TENT is the list of nodes that may, tentatively, be considered the shortest
path to any particular node.

 3. The PATH is the Shortest Path Tree (SPT), a structure containing a loop-free
path to each node, and the next hop from “me” to that node.

 4. The first crucial point in this algorithm is keeping only nodes already somehow
connected to a node on the PATH list on the TENT; this means the shortest
path on the TENT is the next shortest path in the network.

 5. The second crucial point in this algorithm is the comparison between any exist-
ing nodes on the TENT that connect to the same node; this, combined with
the sorting of the TENT and the separation of the TENT from the PATH,
executes the shortest path rule.

With these points in mind, Figures 13-1 through 13-9 are used to illustrate the
operation of Dijkstra’s SPF algorithm.

Chapter 13 Unicast Loop-Free Paths (2)344

Each of the following illustrations, along with the accompanying description, will
show one step in the SPF algorithm on this network, beginning with Figure 13-2.

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

Figure 13-1 A Small Network for Demonstrating Dijkstra’s SPF Algorithm

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
A A 0
A B 1
A D 5
A E 2
A F 1
B C 1
C D 1
E F 1
D G 2
E G 2

A 0 A 0

Figure 13-2 The First Step in Dijkstra’s SPF Calculation

Dijkstra’s Shortest Path First 345

At the point illustrated in Figure 13-2, A has been moved from the TOPO into
the TENT and then into the PATH. The cost of the origin node to itself is always 0;
this link is included to start the SPF calculation. This represents lines 01 through 09
in the pseudocode shown earlier. Figure 13-3 illustrates the second step in the SPF
calculation.

In Figure 13-3, each node connected to A has been moved from the TOPO to the
TENT; this represents lines 10 through 17 in the pseudocode shown earlier. When
this step began, there was only A in the TENT, so there are no existing nodes in the
TENT that would have caused any metric comparisons. The TENT is now sorted,
and execution continues with line 03 in the pseudocode. Figure 13-4 illustrates.

In Figure 13-4, one of the two shortest cost paths—to B and F, each with a cost of
1—has been chosen and moved to the PATH (lines 05–09 in the pseudocode shown
earlier). When B is moved from the TENT to the PATH, any nodes with an origin of
B in the TOPO are moved to the TENT (lines 10–17 in the pseudocode). Note C was
not already in the TENT before being drawn on through B’s move to the PATH, so
no metric comparison is done. The cost to C is the sum of the cost of its predeces-
sor in the PATH (which is B, with a cost of 1), and the link between the two nodes;
hence C is added to the TENT with a cost of 2. The TENT is sorted (line 3 of the
pseudocode), so the process is ready to begin again. Figure 13-5 illustrates the next
step in the process.

In Figure 13-5, the shortest path on the TENT has been chosen, and F moved from
the TENT to the PATH. There is a link between F and E (shown in previous illustra-
tions as [E,F]), but the path through F to E is the same cost as the path [A,E], so this

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
B C 1
C D 1
E F 1
D G 2
E G 2

B 1
F 1
E 2
D 5

A 0

Figure 13-3 The Second Step in Dijkstra’s SPF Calculation

Chapter 13 Unicast Loop-Free Paths (2)346

link is not added to the TENT. Rather, it remains grayed out, as not being considered
for inclusion in the SPT, and is removed from the TOPO. Figure 13-6 illustrates the
next step in the process, which will move one of the metric 2 paths into the PATH.

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
C D 1
D G 2
E G 2

C 2
E 2
D 5

A 0
B 1
F 1

Figure 13-5 The Fourth Step in Dijkstra’s SPF Calculation

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
C D 1
E F 1
D G 2
E G 2

F 1
C 2
E 2
D 5

A 0
B 1

Figure 13-4 The Third Step in Dijkstra’s SPF Calculation

Dijkstra’s Shortest Path First 347

Note

Most real-world implementations support carrying multiple equal cost paths
from the TENT into the PATH, so they can forward traffic across all links with
the same metric. This is called equal cost multipath, or ECMP. There are a num-
ber of different ways to accomplish this, but they are not covered here.

In Figure 13-6, the path to C through B, with a cost of 2, has been moved to the
PATH, and the path to D through [A,B,C,D] has been moved to the TENT. In mov-
ing this path to the TENT, however, line 11 in the pseudocode finds an existing path
to D on the TENT, the [A,D] path, with a cost of 5. The metric through the new
path, 3, is lower than the metric through the existing path, 5, so the [A,D] path is
removed from the TENT when the [A,B,C,D] path is added (line 15 in the pseudo-
code). Figure 13-7 shows the next step, where the remaining cost 2 link is moved from
the TENT to the PATH.

In Figure 13-7, the path to E, with a cost of 2, has been moved from the TENT to
the PATH. G has been moved to the TENT with a cost of 4 (the sum of [A,E] and
[E,G]). E’s other neighbor, F, is explored, but it is already on the PATH, so it is not
considered for inclusion in the TENT. Figure 13-8 illustrates the next step, which
moves D onto the PATH.

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
D G 2
E G 2

A 0
B 1
F 1
C 2

E 2
D 3

Figure 13-6 The Fifth Step in Dijkstra’s SPF Calculation

Chapter 13 Unicast Loop-Free Paths (2)348

In Figure 13-8, D, with a total cost of 3, has been moved from the TENT to the
PATH. This brings D’s neighbor, G—the last entry in TOPO—into consideration
for the TENT. However, there is already a path to G with a total cost of 4 through
[A,E,G], so line 14 in the pseudocode fails, and the path [D,G] is removed from the
TOPO. This is the final SPT.

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
D G 2 D 3

G 4
A 0
B 1
F 1
C 2
E 2

Figure 13-7 The Sixth Step in Dijkstra’s SPF Calculation

A

D

E

F

G

B

C

1

1

1

1

1

2

2
2

5

TOPO TENT PATH
A 0
B 1
F 1
C 2
E 2
D 3
G 4

Figure 13-8 The Seventh Step in Dijkstra’s SPF Calculation

Dijkstra’s Shortest Path First 349

The primary difficulty in understanding Dijkstra’s algorithm is the shortest path
rule isn’t executed in one place (or on one router), as it is with Bellman-Ford or the
Diffusing Update Algorithm (DUAL). The shortest path is (apparently) checked only
when moving nodes from the TOPO to the TENT—but in reality, the sorting of the
TENT itself executes another portion of the shortest path rule, and checking against
the PATH for existing nodes constitutes another step in the process, making the pro-
cess three steps:

 1. If the path to the node is longer than any on the TENT, then the one on the
TENT is a shorter path across the entire network.

 2. A path that has risen to the top of the TENT through sorting is the shortest to
that node in the network.

 3. If the path moves to the PATH from the top of the TENT, it is the shortest path
to that node in the network, and any other entries in the TOPO to that node
should be discarded.

With the base algorithm in place, it is useful to look at some optimiza-
tions, and the calculation of Loop-Free Alternates (LFAs) and remote Loop-Free
Alternates (rLFAs).

Partial and Incremental SPF

There is no particular reason that the entire SPT must be rebuilt each time there is a
change to the network topology or reachability information; Figure 13-9 is used to
explain.

Assume G loses its connection to 2001:db8:3e8:100::/64; device A does not need
to recalculate its path to any of the nodes in the network. The reachable destina-
tion is just a leaf on the tree, even if it is a set of hosts connected to a single wire
(such as an Ethernet). There is no reason to recalculate the entire SPT when a single

A C

B
D

E
G

F

2001:db8:3e8:100::/64

Figure 13-9 Partial and Incremental SPF

Chapter 13 Unicast Loop-Free Paths (2)350

leaf (or any set of leaves) is disconnected from the network. In this case, only the
leaf (the Internet Protocol [IP] address or the reachable destination) itself would
need to be removed from the network (or rather, the destination can be removed
from the database without any change to the network). This is a partial recalcula-
tion of the SPT.

Assume the [C,E] link fails. What does A do in this case? Again, there is no change
to the topology of C, B, and D, so there is no reason for A to recalculate the entire
tree. It is possible, in this case, for A to remove the entire tree beyond E. To compute
just the changed portion of the graph, do the following:

 • Remove the failed node and all nodes that A passes through E to reach.

 • Recalculate the tree just from C’s predecessor (in this case, A) to determine if
there are alternate paths to reach nodes previously reachable through E before
the [C,E] link failed.

This is called an incremental SPF.

Calculating LFAs and rLFAs

Chapter 12, “Unicast Loop-Free Paths (1),” considered the theory behind LFAs and
rLFAs. Bellman-Ford does not calculate either downstream neighbors or LFAs, and
does not appear to have the information required to do so. DUAL calculates down-
stream neighbors by default and uses them during convergence. What about protocols
based on Dijkstra (and, by extension, similar SPF algorithms)? Figure 13-10 illustrates a
simple mechanism that these protocols can use to find LFAs and downstream
neighbors.

The definition of a downstream neighbor is one where the neighbor’s cost to
reach a destination is less than the local cost to reach the destination. From A’s
perspective:

 • A knows the local cost to reach the destination, based on the SPT built by run-
ning Dijkstra’s SPF.

 • A knows B’s and C’s cost to reach the destination, by subtracting the cost of
the [A,B] and [A,C] links from the locally calculated cost.

Hence, A can compare the local cost with the cost from each neighbor to deter-
mine if any neighbor is downstream in relation to any particular destination. The
definition of an LFA is

Dijkstra’s Shortest Path First 351

If the neighbor’s cost to “me” plus the neighbor’s cost to reach the destination
is lower than the local cost, the neighbor is an LFA.

Or rather, given

 • NC is the neighbor’s cost to the destination.

 • BC is the neighbor’s cost to me.

 • LC is the local cost to the destination.

If NC + BC < LC, then the neighbor is an LFA. In this case, A knows the cost
of the [B,A] and [C,A] links from the perspective of the neighbor (it would be
contained in the topology table, although it is not used in computing the SPT
using Dijkstra’s algorithm). So LFAs and downstream neighbors require very little
additional work to calculate, but what about remote LFAs? The P/Q Space model

A

C

B

D

E

Destination

Figure 13-10 Calculating LFAs and Downstream Neighbors with Dijkstra’s Algorithm

Chapter 13 Unicast Loop-Free Paths (2)352

provides the simplest way for Dijkstra-based algorithms to compute downstream
neighbors and LFAs. Figure 13-11 is used to illustrate from within the P/Q Space
(see Chapter 12).

The definition of the P space is the set of nodes reachable from one end of the
protected link, and the definition of Q space is the set of nodes reachable without
traversing the protected link. This should suggest a moderately simple way to calcu-
late these two spaces using Dijkstra:

Calculate an SPT from the perspective of the device connected to one end of
the link; remove the link without recalculating the SPT. The remaining nodes
are reachable from this end of the link.

A

C

B

D

E

Destination

P Space

Q Space

Figure 13-11 P/Q Space and Calculating Remote LFAs with Dijkstra’s Algorithm

Path Vector 353

In Figure 13-11, E can

 • Calculate the Q space by removing the [E,D] link from a copy of the local SPT,
and all nodes that E uses D to reach.

 • Calculate the P space by calculating an SPT from D’s perspective (using D as
the root of the tree), removing the [D,E] link, and then all nodes that D uses E
to reach.

 • Find the closest node reachable from both E and D with the [E,D] link removed.

Dijkstra’s SPF is a versatile, widely used algorithm for computing Shortest Path
Trees through a network.

Path Vector

Path vector relies on keeping a list of the nodes through which a path passes. Any
node that receives an update with itself in the path will just discard the update, as it
is not a viable path. Figure 13-12 is used for an example.

In Figure 13-12, each device advertises information about destinations to each
neighboring device; for the destination attached to E:

 1. E will advertise F with itself in the source, so with a path of [E], to both B and D.

 2. From B:

 B will advertise F to A with a path of [E,B].

 3. From D:

 D will advertise F to C with a path of [E,D].

 4. From C:

C will advertise F to A with a path of [E,D,C].

Note

Path vector was not developed as a theory or algorithm, but rather as a protocol;
it is unique among the algorithms discussed here in this regard.

Which path will A prefer? In a path vector system, there can be a number of met-
rics, including the length of the path, policy preferences, etc. For instance, assume

Chapter 13 Unicast Loop-Free Paths (2)354

there is a metric that is set locally at each node carried with each route. This local
metric is carried between nodes but not summed in any way as it passes through
the network, and each node can set this metric independently of the other nodes (so
long as the node uses the same metric toward every neighbor). For instance, E’s local
metric is advertised to B, which then sets its own local metric for this destination and
advertises the resulting route to A, etc.

To determine the best path, each node can then

 • Discard any destination with the local node identifier in the path.

 • Compare the metric, choosing the highest local metric among those it has received.

 • Compare the length of the path, choosing the shortest path among those it has
received.

 • Advertise only the path being used to forward traffic.

A

C

B

D

E

F

Figure 13-12 Path Vector Operation Example

Path Vector 355

Note

It does not matter if each node chooses the highest or the lowest metric; it only
matters that each node does the same thing throughout the entire network. If
comparing paths, however, the node must always choose the shorter path.

If every node in the network always follows these three rules, no loop will form.
For instance:

 • E advertises F to B with a path of [E] and a metric of 100.

 • B advertises F to A with a path of [E,B] and a metric of 100.

 • E advertises F to D with a path of [E] and a metric of 100.

 • D advertises F to C with a path of [E,D] and a metric of 100.

 • C advertises F to A with a path of [E,D,C] and a metric of 100.

A has two paths, both with the same metric, and hence will use the second rule
to choose one, which is the shorter path. In this case, A will choose the path through
[E,B]. A will advertise the route it is using toward C, but if C is following the same
set of rules, it will also have two paths with a metric of 100 available, one with the
path [E,B,A], and the second with a path of [E,D,C]. In this case, there must be a tie
breaker that C uses internally to choose between the two routes. It isn’t important
what this tie breaker is, so long as it is consistently applied within the node; no mat-
ter which path C chooses, the traffic toward F will not loop.

Assume, however, a slightly different set of circumstances:

 • E advertises F to B with a path of [E] and a metric of 100.

 • B advertises F to A with a path of [E,B] and a metric of 100.

 • E advertises F to D with a path of [E] and a metric of 50.

 • D advertises F to C with a path of [E,D] and a metric of 50.

 • C advertises F to A with a path of [E,D,C] and a metric of 50.

A has two paths, one with a metric of 100, and another with a metric of 50.
Therefore:

 • A will choose the higher of the two metrics, the path through [E,B], and adver-
tise this route to C.

Chapter 13 Unicast Loop-Free Paths (2)356

 • C will choose the higher of the two metrics, the path through [E,B,A], and
advertise this route to D.

 • D will choose the higher of the two metrics, the path through [E,B,A,C], and
advertise this route to E.

 • E will discard this route, as E itself is already in the path.

Hence, even if the metric overrides the path length at (almost) every node, no loop
will form.

The Multiple Metric Problem

Every algorithm discussed to this point has used a single metric to compute
loop-free paths except path-vector, and path-vector uses two metrics in a very
constrained way, with one always preferred over the other. The path, in fact,
can be seen as a “tie breaker” that comes into play only when the primary
metric, which does not relate to the path in any way (because it is not summed
hop by hop in the network) fails to prevent a loop. Some protocols can use
multiple metrics, but they will always combine these metrics in some way so
only a single combined metric is used to find loop-free paths. Why?

In mathematical terms, all methods used to find a set of loop-free (or
shortest) paths through a network are solvable in polynomial, or nonexpo-
nential, time—or rather, they are considered problems of the class P. There
is a broader class of problems, containing P, that contains any problem solv-
able using a (theoretical) nondeterministic Turing machine. Among the NP
problems, there is a set of problems considered NP-complete, which means
there is no known efficient way to solve the problem; in other words, to solve
the problem, every possible combination must be listed, and the best possible
solution chosen from among this set.

The multiple metric problem is classified as NP-complete, and hence—
while solvable—it is not solvable in any way lending itself to use in near- real-
time communication networks.

Disjoint Path Algorithms

Consider the problem of a medical procedure executed by a robot following the
hands of a live surgeon halfway across the world. It is possible that making such a
system work requires packets to be delivered from the sensors on the surgeon’s hands

Disjoint Path Algorithms 357

to the robot in near real time, in order, with little or no jitter, and absolutely no pack-
ets can be dropped. This example, of course, can be expanded to many different situ-
ations, including financial systems and other mechanical control systems where
near-real-time packet delivery with no failures is required.

What is often needed in these situations is to transmit two copies of each packet
and then allow the receiver to choose the packet best fitting the Quality of Service
(QoS) and packet loss characteristics needed to support the application. All of the
systems discussed so far, however, can find only one loop-free path, and potentially
an alternate path (an LFA and/or an rLFA). The problem being solved, then, by dis-
joint path algorithms, is this:

How can paths be built through a network in such a way as to make certain they
use the smallest number of overlapping resources (devices and links) as possible
(hence are maximally disjoint, or maximally redundant)?

This section will begin by describing the concept of a two-connected network,
and then consider two different (but seemingly related) ways of calculating disjoint
topologies on two-connected networks.

Two-Connected Networks

A two-connected network is any network in which there are at least two paths
between a source and destination that do not use the same devices (nodes) or links
(edges). There are points to pay attention to here:

 • A network is two-connected in relation to a specific set of sources and des-
tinations; most networks are not two-connected for every source and every
destination.

 • Small blocks of any given network may be two-connected for some sources and
destinations, and these blocks may be interconnected by narrow one- or two-
connected choke points.

Note

Choke points will play a major role in many different areas of network design, a
topic considered in Part III, “Network Design.”

It is often easiest to understand two-connectedness through an actual example;
Figure 13-13 shows a network marked out in blocks.

Chapter 13 Unicast Loop-Free Paths (2)358

In block A, there are at least two different disjoint paths between X and F:

 • [X,A,B,E,F] and [X,C,F]

 • [X,A,B,F] and [X,C,F]

In block B, there is one pair of disjoint paths from G to L: [G,K,L] and [G,H,L].
There are no disjoint paths to Z, as this node is single connected. There are also no
disjoint paths between F and G, as these two are single connected. The [F,G] link can
be considered a choke point between these two topology blocks. It is not possible,
in the network illustrated in Figure 13-13, to compute two disjoint paths between
X and Z.

Suurballe’s Disjoint Path Algorithm

In 1974, J. W. Suurballe published a paper describing how to use multiple runs of
Dijkstra’s SPF algorithm to find multiple disjoint topologies in a network.2 The algo-
rithm essentially computes SPF once, removes a subset of the links in use on the SPT,
and then computes a second SPF across the remaining links. Suurballe’s algorithm is
harder to explain than to illustrate in an example because of its reliance on the direc-
tional nature of the links computed through SPT; Figure 13-14 through Figure 13-18
are used as examples.

Figure 13-14 shows the state of the operations after the first SPF run has com-
pleted and the initial SPT is computed. Note the directional arrows on the links; it is

2. Suurballe, “Disjoint Paths in a Network.”

A G

B H

E

C

K

F L

X
Z

Block A Block B

Figure 13-13 Two-Way Connected Network Example

Disjoint Path Algorithms 359

not common to think about an SPT as being directional, but in reality it is, with each
link oriented away from the source, or the root of the tree. When F computes a tree
back toward X, it would also produce a directional tree with the arrows pointing in
the opposite direction.

Edges (or links) on the SPT are called tree edges, and edges (or links) not on the
resulting SPT are called nontree edges. In Figure 13-14, the tree edges are marked in
solid black with directional arrows, and the nontree edges are lighter gray dashed lines.

The second step is shown in Figure 13-15.
Figure 13-15 shows each link with modified costs; each link that was a part of

the original SPT (each tree edge, shown as a solid line) has two costs, one in each
direction, while links not originally part of the SPT (nontree edges, shown as dashed
lines) have their original costs. Note the arrows showing the direction of the cost in
each case; this will be important in the next stage of the calculation. To calculate the
costs of the two directional links for each tree edge:

 1. Call one end of the link u and the other end of the link v; note the equation is
being run in both directions.

 2. Subtract the cost from the source to v from the cost of the link from u to v.

 3. Add the cost from the source to u.

A

C

D

F

E

B

X

Z

1

1

2
2

2

2

2

Figure 13-14 Using Suurballe’s Algorithm for Finding Disjoint Paths, Step 1

Chapter 13 Unicast Loop-Free Paths (2)360

If the source is s:

d[sp](u,v) = d(u,v) − d(s,v) + d(s,u)

This essentially sets the cost of tree edges to 0, as can be seen by doing the math
for the [B,E] link:

 • B is u, E is v, A is s

 • d(u,v) = 2, d(s,v) = 3, d(s,u) = 1

 • 2 − 3 + 1 = 0

All of the nontree edges, however, will be set to some (generally larger) nonzero
cost. For the network in Figure 13-15:

 • For the [B,A] link (note [A,B] is not a link in the directional tree being
calculated):

B is u, A is v, A is s

d(u,v) = 0, d(s,v) = 0, d(s,u) = 1

0 − 0 + 1 = 1

A

C

D

F

E

B

X

Z

0

0

2
0

2

0

0

Figure 13-15 Using Suurballe’s Algorithm for Finding Disjoint Paths, Step 2

Disjoint Path Algorithms 361

 • For the [E,B] link:

E is u, B is v, A is s

d(u,v) = 2, d(s,v) = 1, d(s,u) = 3

2 − 1 + 3 = 4

 • For the [C,A] link:

C is u, A is v, A is s

d(u,v) = 2, d(s,v) = 0, d(s,u) = 2

2 − 0 + 2 = 4

 • For the [F,D] link:

F is u, D is v, A is s

d(u,v) = 1, d(s,v) = 4, d(s,u) = 5

1 − 4 + 5 = 2

 • For the [D,B] link:

D is u, B is v, A is s

d(u,v) = 1, d(s,v) = 1, d(s,u) = 2

1 − 1 + 2 = 2

The next step, shown in Figure 13-16, is to remove all the directional edges
pointing toward the source that lies along the original SPT toward the specific des-
tination (Z, in this case), reverse the direction of the zero-cost edges (links) along
this same path, and then run Dijkstra’s SPF again, creating a second SPT on the
same topology.

Returning to the original SPT, the path from X to Z was along the path [A,B,D,F].
Hence, the four nonzero-cost edges (the dashed lines) pointing back toward the
source, A, along this path have been removed. Along the same path, [A,B,D,F], the
direction of each edge has been reversed; for instance, [A,B] originally pointed from
A toward B and now points from B toward A. The next step is to run SPF across this
graph, remembering traffic cannot flow against the direction of the link. The result-
ing tree is shown in Figure 13-17.

Figure 13-17 shows the original tree and the newly calculated tree overlaid on the
original topology as two different dashed lines. The two topologies still share the

Chapter 13 Unicast Loop-Free Paths (2)362

A

C

D

F

E

B

X

Z

0

0

2
0

2

0

4

40

Figure 13-16 Using Suurballe’s Algorithm for Finding Disjoint Paths, Step 3

A

C

D

F

E

B

X

Z

Figure 13-17 Using Suurballe’s Algorithm for Finding Disjoint Paths, Step 4

Disjoint Path Algorithms 363

[B,D] link in common, so they are not truly disjoint yet. At this point, there are two
shortest paths from X to Z:

 • [A,B,D,F]

 • [A,C,D,B,E,F]

These two graphs are merged to form a set of edges, and any links that are
included in both graphs, but in opposite directions, are discarded; the combined set
looks like this:

[A->B, B->E, E->F, A->C, C->D, D->F]

Note the directionality of each link again—it is crucial to paring out the overlap-
ping link, which would be listed both as [B->D] and [D->B]. With this subset of
possible edges on the graph, it is possible to see the correct set of shortest paths are
[A,B,E,F] and [A,C,D,F].

Suurballe’s algorithm is complex, but shows the principal points of calculating
disjoint trees—including how difficult they are to compute.

Maximally Redundant Trees

A simpler alternative to Suurballe’s algorithm to calculate disjoint trees is computing
Maximally Redundant Trees (MRTs). The best place to begin in understanding
MRTs is with the humble Depth First Search (DFS), particularly the numbered DFS.
Figure 13-18 is used as an illustration.

A 1

B 2

C 5

D 7

G 6

E 3

F 4

Figure 13-18 A Depth First Search Tree Example

Chapter 13 Unicast Loop-Free Paths (2)364

In Figure 13-18, the left side represents a simple topology; the right, the same
topology that has been numbered using a DFS. Assuming the DFS algorithm used to
“walk” the tree always chooses the left node over the right, the process would look
something like this:

01 main {

02 dfs_number = 1

03 root.number = dfs_number

04 recurse_dfs(root)

05 }

06 recurse_dfs(current) {

07 for each neighbor of current {

08 child = left most neighbor (not visited)

09 if child.number == 0 {

10 dfs_number++

11 child.number = dfs_number

12 if child.children > 0 {

13 recurse_dfs(child)

14 }

15 }

16 }

17 }

The best way to understand this code is to walk through the recursion a few times
to see how it works. Using Figure 13-18:

 • In the first call into recurse_dfs, A, or root, is set as the current node.

 • Once inside recurse_dfs, the leftmost node of A is chosen, or B.

 • B does not have a number when the loop is entered, so the if statement on line
09 is true.

 • B is assigned the next DFS number (line 11).

 • B has children (line 12), so recurse_dfs is called again with B as the current
node.

 • Once inside the (second level of) recurse_dfs, the leftmost neighbor of B is
 chosen, which is E.

 • E does not have a DFS number, so the if statement on line 09 is true.

 • E is assigned the next DFS number (3).

Disjoint Path Algorithms 365

 • E does not have children, so the processing winds back to the top of the loop.

 • F is now the leftmost neighbor of B that has not been visited, so it is assigned
to child.

 • F does not have a number, so the if statement on line 09 is true.

 • F is assigned the next DFS number (4).

 • B has no more children, so the for loop at line 07 fails, and the recurse_dfs exits.

 • However, recurse_dfs does not actually exit—it just “falls back” to the previ-
ous recursion level, which is line 14; this level of recursion is still processing A’s
neighbors.

 • C is the next neighbor of A that has not been touched, so child is set to C.

 • And so on.

Examining the numbers of the nodes on the right side of Figure 13-18 leads to the
following interesting observations:

 • If A always follows an increasing number to reach D, it will follow
the path [A,C,G,D].

 • If D always follows a decreasing DFS number to reach A, it will follow the
path [D,A].

 • These two paths are, in fact, disjoint.

This property holds for all topologies that have been assigned numbers through a
DFS search: a path that follows always-increasing numbers will always be disjoint with
a path that always follows decreasing numbers. This is precisely the property MRTs
rely on to build disjoint paths. The problem with DFS numbering, however, is it is
difficult to do in near real time. There must be some sort of elected root, traffic is sub-
optimal at a local level (much like a Minimum Spanning Tree, or MST, might be), and
any changes to the topology require the entire DFS numbering scheme to be rebuilt.

To work around these problems, MRT builds disjoint topologies using the same
principle but in a different way. Figure 13-19 is used to explain.

The first step in building an MRT is to find a short loop through the topology
from a root (generally these loops are found using Dijkstra’s SPF algorithm). In this
case, A will be chosen as the root, and the loop will be [A,B,C,D]. This first loop will
be used as the first of the two topologies, say the red topology. Reversing the loop
to [A,D,C,B] generates a disjoint topology, say the blue topology. This first pair of
topologies through this short loop is called an ear.

To expand the range of the MRT, a second ear is added to the first. To do this, a
second loop is discovered, this time through [A,D,F,E,B], and the disjoint topology

Chapter 13 Unicast Loop-Free Paths (2)366

is [A,B,E,F,D]. The question is: which of these two topology extensions should be
added to the red topology, and which should be added to the blue? This is where a
form of DFS numbering comes into play.

Each device in the network must already have an identifier assigned, either by the
administrator, or through some other mechanism. These identifiers must be unique
per device. Within the DFS numbering scheme there is also the concept of a low
point, which indicates where on a particular tree this node attaches, and also what
nodes attach to the tree through this node.

Given these unique identifiers and the ability to calculate a low point, each node in
the network can be ordered just like it were given a number through a DFS numbering
process. The key is to know how the ordering corresponds to the existing red and blue
topologies. Assume B’s low point is higher than C’s, if the [A,B,C,D] topology is part
of the red topology. For any other ear or loop in the topology, which passes through
B and C, the direction of the ear in which B is less than C should be placed on the red
topology. The loop in the opposite direction should be place on the blue topology.

This explanation is rather cursory, but it does give you the sense of how MRTs
form disjoint topologies. Refer to the “Further Reading” section at the end of this
chapter for more information on MRTs and their construction.

Two-Way Connectivity

This chapter and the preceding one have described a number of different ways to
compute a loop-free path (or a set of disjoint paths) through a network. In each of
these cases, the path computed is unidirectional—from the root of the tree to the

A C G

B E

D F

Figure 13-19 Sample Network for Building an MRT

Final Thoughts 367

edges, or reachable destinations. It is, in fact, possible, for no return path to exist. In
other words, a source may be able to reach a destination along a loop-free path, but
there may be no return path from the destination to the source. This can be an
uncommon failure mode in some link types, a result of filtering reachability infor-
mation, or a number of other situations in the network.

Note

Two-way connectivity is not always desired; consider the case of a submarine, for
instance, that needs to receive information about its current mission but cannot
transmit any information without revealing its current position. The ability to
send packets to devices located on the submarine, even though there is no two-
way connectivity to them, would be desirable. Control planes either must be mod-
ified or specially designed to handle this kind of uncommon case, as the common
case is for two-way connectivity to be required for proper network operation.

One other problem control planes must contend with in the area of comput-
ing paths is ensuring end-to-end two-way connectivity exists.

There are a number of ways a control plane can solve this problem:

 • Some control planes just ignore this problem, which means they assume some
other protocol, such as a transport protocol, will detect this condition.

 • The control plane can check for this problem during route calculation. It is possi-
ble, for instance, when calculating routes using Dijkstra’s algorithm, to perform
a back link check while computing loop-free paths. Performing this back link
check at each step of the computation can ensure two-way connectivity exists.

 • The control plane can assume two-way connectivity between neighbors
ensures end-to-end two-way connectivity. Control planes that perform
explicit two-way connectivity checks on a per neighbor basis can (generally)
safely assume any path through those neighbors is also capable of two-way
communications.

Final Thoughts

These two chapters have covered a lot of ground, beginning with the shortest path
rule and its importance in the process of computing loop-free paths through a net-
work. Bellman-Ford, in its original form, was discussed next, then Garcia’s DUAL.

Chapter 13 Unicast Loop-Free Paths (2)368

Routing protocols built on these two protocols are considered distance-vector proto-
cols, a term you will encounter in following chapters. Dijkstra’s SPF was considered
next; protocols built on this algorithm are considered link state. Then the path-
vector solution was discussed, and finally disjoint paths.

Most of these algorithms can be used either by a distributed control plane or a
centralized one. The primary point is to know how the loop-free path problem can
be solved, so you can recognize it in its many forms and understand how it is being
solved, no matter what protocol or controller you are looking at.

Further Reading

Chandra, Ravi, and John Scudder. Capabilities Advertisement with BGP-4. Request
for Comments 5492. RFC Editor, 2009. doi:10.17487/rfc5492.

Chen, Enke, Tony J. Bates, and Ravi Chandra. BGP Route Reflection: An Alternative
to Full Mesh Internal BGP (IBGP). Request for Comments 4456. RFC Editor,
2006. doi:10.17487/rfc4456.

Chen, Enke, John Scudder, Alvaro Retana, and Daniel Walton. Advertisement
of Multiple Paths in BGP. Request for Comments 7911. RFC Editor, 2016.
doi:10.17487/rfc7911.

Chen, Enke, and Quaizar Vohra. BGP Support for Four-Octet AS Number Space.
Request for Comments 4893. RFC Editor, 2007. doi:10.17487/rfc4893.

Chunduri, Uma, Wenhu Lu, Albert Tian, and Naiming Shen. IS-IS Extended
Sequence Number TLV. Request for Comments 7602. RFC Editor, 2015.
doi:10.17487/rfc7602.

Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs.” Numerische
Mathematik 1, no. 1 (1959): 269–71. doi:10.1007/BF01386390.

Doyle, Jeff, and Jennifer DeHaven Carroll. Routing TCP/IP, Volume 1. 2nd edition.
New Delhi, India: Cisco Press, 2005.

Ferguson, Dennis, Acee Lindem, and John Moy. OSPF for IPv6. Request for Com-
ments 5340. RFC Editor, 2008. doi:10.17487/rfc5340.

Ginsberg, Les, Stephane Litkowski, and Stefano Previdi. IS-IS Route Preference for
Extended IP and IPv6 Reachability. Request for Comments 7775. RFC Editor,
2016. doi:10.17487/rfc7775.

Heitz, Jakob, Keyur Patel, Job Snijders, Ignas Bagdonas, and Nick Hilliard. “BGP
Large Communities.” Internet-Draft. Internet Engineering Task Force, January
2017. https://tools.ietf.org/html/draft-ietf-idr-large-community-12.

https://tools.ietf.org/html/draft-ietf-idr-large-community-12

Further Reading 369

“Intermediate System to Intermediate System Intra-Domain Routing Informa-
tion Exchange Protocol for Use in Conjunction with the Protocol for Pro-
viding the Connectionless-Mode Network Service.” Standard. Geneva:
International Organization for Standardization, 2002. http://standards.iso.org/
ittf/PubliclyAvailableStandards/.

Katz, Dave. “OSPF and IS-IS: A Comparative Anatomy.” Presented at the
NANOG19, Albuquerque, NM, June 12, 2000. https://nanog.org/meetings/
abstract?id=1084.

McPherson, Danny R., and Keyur Patel. Experience with the BGP-4 Protocol.
Request for Comments 4277. RFC Editor, 2006. doi:10.17487/rfc4277.

Meyer, David, and Keyur Patel. BGP-4 Protocol Analysis. Request for Comments
4274. RFC Editor, 2006. doi:10.17487/rfc4274.

Mirtorabi, Sina, Abhay Roy, Acee Lindem, and Fred Baker. “OSPFv3 LSA Extend-
ibility.” Internet-Draft. Internet Engineering Task Force, October 2016. https://
tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13.

Moy, John. “OSPF Version 2.” Request for Comments 2328. RFC Editor, April 1998.
doi:10.17487/RFC2328.

Parker, Jeff. Recommendations for Interoperable Networks Using Intermediate Sys-
tem to Intermediate System (IS-IS). Request for Comments 3719. RFC Editor,
2004. doi:10.17487/rfc3719.

Przygienda, Dr. Antoni B. Optional Checksums in Intermediate System to Inter-
mediate System (ISIS). Request for Comments 3358. RFC Editor, 2002.
doi:10.17487/rfc3358.

Ramachandra, Srihari S., and Yakov Rekhter. BGP Extended Communities Attri-
bute. Request for Comments 4360. RFC Editor, 2006. doi:10.17487/rfc4360.

Raszuk, Robert, Christian Cassar, Bruno Decraene, Stephane Litkowski, Kevin
Wang, and Erik Aman. “BGP Optimal Route Reflection (BGP-ORR).” Inter-
net-Draft. Internet Engineering Task Force, January 2017. https://tools.ietf.org/
html/draft-ietf-idr-bgp-optimal-route-reflection-13.

Rekhter, Yakov, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
Request for Comments 4271. RFC Editor, 2006. doi:10.17487/rfc4271.

Retana, Alvaro, and Russ White. “BGP Custom Decision Process.” Internet-Draft.
Internet Engineering Task Force, February 2017. https://tools.ietf.org/html/
draft-ietf-idr-custom-decision-08.

Roy, Abhay, Yi Yang, and Alvaro Retana. Hiding Transit-Only Networks in OSPF.
Request for Comments 6860. RFC Editor, 2013. doi:10.17487/rfc6860.

http://standards.iso.org/ittf/PubliclyAvailableStandards/
http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://nanog.org/meetings/abstract?id=1084
https://nanog.org/meetings/abstract?id=1084
https://tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13
https://tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13
https://tools.ietf.org/html/draft-ietf-idr-bgp-optimal-route-reflection-13
https://tools.ietf.org/html/draft-ietf-idr-bgp-optimal-route-reflection-13
https://tools.ietf.org/html/draft-ietf-idr-custom-decision-08
https://tools.ietf.org/html/draft-ietf-idr-custom-decision-08

Chapter 13 Unicast Loop-Free Paths (2)370

Shand, Mike, Stefano Previdi, Les Ginsberg, and Danny R. McPherson. Simplified
Extension of Link State PDU (LSP) Space for IS-IS. Request for Comments
5311. RFC Editor, 2009. doi:10.17487/rfc5311.

Suurballe, J. W. “Disjoint Paths in a Network.” Networks 4, no. 2 (1974): 125–45.
doi:10.1002/net.3230040204.

Vohra, Quaizar, and Enke Chen. BGP Support for Four-Octet Autonomous Sys-
tem (AS) Number Space. Request for Comments 6793. RFC Editor, 2012.
doi:10.17487/rfc6793.

Walton, Daniel, Alvaro Retana, Enke Chen, and John Scudder. Solutions for BGP
Persistent Route Oscillation. Request for Comments 7964. RFC Editor, 2016.
doi:10.17487/rfc7964.

Wang, Lili, Zhaohui (Jeffrey) Zhang, and Nischal Sheth. OSPF Hybrid Broadcast
and Point-to-Multipoint Interface Type. Request for Comments 6845. RFC
Editor, 2013. doi:10.17487/rfc6845.

“What Are the Differences between NP, NP-Complete and NP-Hard? Stack Overflow.”
Accessed September 24, 2017. https://stackoverflow.com/questions/1857244/
what-are-the-differences-between-np-np-complete-and-np-hard.

White, Russ. Intermediate System to Intermediate System (IS-IS) Routing Protocol
LiveLessons. Video. LiveLessons. Cisco Press, 2016. http://www.ciscopress.com/
store/ intermediate-system-to-intermediate- system-is- is-routing-
9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo.

White, Russ. “iSPF Versus PRC.” Rule 11 Reader, June 7, 2017. https://rule11.tech/
ispf-verse-prc/.

White, Russ, Danny McPherson, and Srihari Sangli. Practical BGP. Boston, MA:
Addison-Wesley Professional, 2004.

White, Russ, and Alvaro Retana. IS-IS: Deployment in IP Networks. 1st edition.
 Boston, MA: Addison-Wesley, 2003.

Review Questions

 1. Read through the additional material on DFS numbering systems. The concept
of the low point was left out of the main text for brevity. Can you expand on
this concept and the importance of finding the low point in determining dis-
joint paths through the network?

 2. Compare the operation of Bellman-Ford and Dijkstra in a network with nega-
tive cost links; draw a small network of six or seven routers, set one of the links

https://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard
https://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
https://rule11.tech/ispf-verse-prc/
https://rule11.tech/ispf-verse-prc/

Review Questions 371

so it has a negative cost in both directions, and determine the set of loop-free
paths through the network using both algorithms. You do not need to run the
algorithm to do this in a formal way; just describe which paths the Dijkstra
algorithm will have a problem with and how the Bellman-Ford algorithm will
react to these same paths.

 3. Run MRT across the network shown in Figure 13-19 and show the resulting
disjoint topologies.

 4. Run Dijkstra’s SPF across the network shown in Figure 13-19 from the perspec-
tive of A, using a cost of 1 for each link. Show the resulting shortest paths.

 5. Using the network shown in Figure 13-19, assuming all link costs are 1, what
would be the best path toward G? Would D have an LFA or rLFA in this
network?

 6. Is there any way you can think of to ensure connectivity exists with a unidirec-
tional connectivity problem, such as the submarine example given in the note?

This page intentionally left blank

373

Chapter 14

Reacting to Topology
Changes

Learning Objectives

After reading this chapter, you should be able to understand:

 0 The four steps of the convergence process

 0 Using polling and event-driven mechanisms for topology change detection

 0 Bidirectional Forwarding Detection

 0 Record-level replication and flooding

 0 Microloops

 0 Hop-by-hop control plane state distribution

 0 The CAP theorem and its interaction with control planes

You might have noticed that very few of the mechanisms described in Chapter 12
“Unicast Loop-Free Paths (1),” and Chapter 13, “Unicast Loop-Free Paths (2),” con-
sidered changes in the topology. Most of these solutions are focused on computing
loop-free paths through an apparently stable network, as discovered by the mecha-
nisms described in Chapter 11, “Topology Discovery.” But what happens when the
topology changes? Returning to the introduction of Part II:

How do network devices build the tables needed to forward packets along
loop-free paths through the network?

Chapter 14 Reacting to Topology Changes374

Now it is time to consider one more of the subproblems of this overarching problem:

How do control planes detect and react to changes in the network?

This question will be answered by examining two components of the convergence
process in a control plane. The convergence process in a network can be described in
four stages. Figure 14-1 is used for reference in describing these four stages.

Once the [C,E] link fails, the four stages that must occur are detection, distribu-
tion, computation, and installation.

 1. Detecting the change: Whether the inclusion of a new device or link, or
the removal of a device or link, regardless of the reason, the change must be
detected by any connected devices. In Figure 14-1, devices C and E must detect
the failure of the [C,E] link; when the link is brought back up, they must also
detect the inclusion of this (apparently new) link in the topology.

 2. Distributing information about the change: Each device participating
in the control plane must learn about the topology change in some way. In
 Figure 14-1, devices A, B, and D must somehow be notified of the failure of the
[C,E] link; when the link is brought back up, they must again be notified of the
inclusion of this (apparently new) link in the topology.

 3. Computing a new loop-free path to the destination: These algorithms are
discussed in Chapters 12 and 13. In Figure 14-1, B and C must compute some
alternate path to reach destinations behind E (or perhaps E itself).

 4. Installing the new forwarding information into the relevant local tables: In
Figure 14-1, B and C must install the newly computed loop-free paths to desti-
nations beyond E into their local forwarding tables, so traffic can be switched
along the new path.

A B

C

D

E

Figure 14-1 The Convergence Process

Detecting Topology Changes 375

The following sections will focus on the first two of the four steps described in the
preceding list, beginning with some thoughts on detecting topology changes. Some
examples of protocols specializing in detecting topology changes will be considered.
The distribution of topology and reachability information will take up the final half
of this chapter. As this problem is, essentially, a distributed database problem, it will
be addressed from that perspective.

Detecting Topology Changes

The first step in reacting to a change in the network topology is to detect the change.
Returning to Figure 14-1, how should the two devices connected to the link, C and E,
detect the link has failed? The solution to this problem is not as simple as it might
first appear for two reasons: information overload and false positives.

Information overload occurs when the control plane receives so much informa-
tion it simply cannot distribute information about topology changes, and/or com-
pute and install alternate paths into the relevant tables at each device, fast enough
to keep the state of the network consistent. In the case of quick, persistently occur-
ring changes, such as a link disconnecting and connecting every few milliseconds,
the control plane can be overwhelmed with information, causing the control plane
itself to consume enough network resources to cause the network to fail. It is also
possible for a series of failures to trigger a positive feedback loop, in which case the
control plane “folds in” on itself, either reacting very slowly or failing altogether.
The solution to information overload is to hide the true state of the topology from
the control plane until the rate of change is within the bounds the control plane can
support.

False positives are the second sort of problem; if a link drops one packet out of
every 100, and the single packet dropped each time just happens to be a control plane
packet used to monitor the link’s state, the link will appear to go down and come
back up (flap) quite frequently—even though other traffic is being forwarded across
the link without problem.

There are two broad classes of solutions to the event detection problem:

 • Implementations can send packets periodically to determine the state of a link,
device, or system. This is polling.

 • Implementations can trigger a reaction to a change in the state of a link or
device off some physical or logical state within the system. This is event
driven.

There are, as always, different tradeoffs with these two solutions, and subcatego-
ries of each one.

Chapter 14 Reacting to Topology Changes376

Polling to Detect Failures

Polling can be performed remotely, or out of band; or locally, or in band; Figure 14-2
illustrates.

In Figure 14-2, A and B are sending a hello, or some other form of polling packet,
periodically across the same link they are connected through, and the same link
across which they are forwarding traffic. This is in band polling, which has the advan-
tage of tracking the state of the link over which traffic is being forwarded, reach-
ability information is being carried, etc. On the other hand, D is polling A and B
for some information about the state of the [A,B] link from another location in the
network. For instance, D could be checking the state of the two interfaces on the
[A,B] link on a periodic basis, or perhaps sending a packet along the [C,A,B,C] path
on a periodic basis, etc. The advantage here is information about the state of a large
number of links can be centralized, making network management and troubleshoot-
ing easier. Both kinds of polling are often used in real-world network deployments.

Polling mechanisms often use two separate timers to operate:

 • A timer to determine how often the poll is transmitted; this is often called the
polling interval in the case of out of band polling, and is often called the hello
timer in the case of in band polling

 • A timer to determine how long to wait before declaring a link or device down,
or to raise some sort of alarm; this is often called a dead interval or dead timer
in the case of in band polling

A B

C

D

in band

out of band
out of band

Figure 14-2 In Band and Out of Band Polling

Detecting Topology Changes 377

The objective of in and out of band polling is often different. Out of band poll-
ing to discover changes in network state is often (but not always—specifically in the
case of a centralized control plane) used to monitor the network state, and allows for
centralized reactions to changes in state. In band polling is most often used (as you
might expect) to detect changes in state locally, to drive the reaction of distributed
control planes.

Event-Driven Failure Detection

Event-driven failure detection relies on some local, measurable event to determine
the status of a particular link or device. Figure 14-3 illustrates.

Note

This is just an example; not all router implementations follow this model.

In Figure 14-3, which shows one possible implementation of the architecture ele-
ments between the physical interface and the routing protocol, there are four steps:

 1. The link between the two physical interface (phy) chips located at either end of
the link fails. Physical interface chips are normally optical to electrical hand-
offs. Most physical interface chips also perform some level of decoding on the
inbound information, converting the individual bits on the wire to packets
(deserialization), and packets into bits (serialization). Information is encoded
by the physical interface onto a carrier, which is supplied by the two physical
chips connected to the physical media. If the link fails, or one of the two inter-
faces is disconnected for any reason, the physical interface chip on the other
end of the link will see the carrier drop in near real time—usually based on the
speed of light and the length of the physical media. This condition is called
loss of carrier.

 2. The physical interface chip will, on detecting loss of carrier, send a notification
toward the routing table (RIB) on the local device. This notification normally
starts life as an interrupt, which is then translated into some form of Applica-
tion Programming Interface (API) call into the RIB code, which results in the

phy
chip (2)

phy
chip (1)

RIB
process

routing
protocol

take
neighbor

down

1 2 3 4

Figure 14-3 Event-Driven Detection Example

Chapter 14 Reacting to Topology Changes378

routes reachable through the interface, and any next hop information through
the interface, being marked stale or being removed from the routing table. This
signal may, or may not, pass through the Forwarding Information Base (FIB)
along the way, depending on the implementation.

 3. The RIB will notify the routing protocol about the routes it just removed from
the local table based on the interface down event.

 4. The routing protocol can then remove any neighbors reachable through the
indicated interfaces (or rather through the connected routes).

There is no point in Figure 14-3 in which there is a periodic process checking the
state of anything, nor are there any packets moving across the wire. The entire pro-
cess is based on the physical interface chip losing carrier on the connected media;
hence this process is event driven.

It is often the case that event-driven and polled status are combined. For instance,
in Figure 14-3, if there were a management station polling the status of the interface
in the local RIB on a periodic basis, the process from the physical interface chipset
to the RIB would be event driven, while the process from the RIB to the management
station would be driven by polling.

Comparing Event-Driven and Polling-Based Detection

Table 14-1 summarizes the advantages and disadvantages of each event detection
mechanism.

Table 14-1 Comparison of Polling and Event-Driven Detection

Out of Band
Polling In Band Polling Event Driven

Status
Distribution

Status is driven from
a centralized system;
the centralized
system has a bigger
picture view of the
overall network state

Status is driven
by local devices;
gathering a bigger
picture view of
the state of the
entire network
requires gathering
information from
each individual
network device

Status is driven
by local devices;
gathering a bigger
picture view of
the state of the
entire network
requires gathering
information from
each individual
network device

Detecting Topology Changes 379

Ties
forwarding
state to link
or device
state

Link and/or
device state can be
falsely reported;
does not directly
test forwarding
capability

Link and/or device
state can be directly
tied to forwarding
capability (barring
failures within
the state checking
mechanism)

Link and/or device
state can be directly
tied to forwarding
capability (barring
failures within
the state checking
mechanism)

Speed of
Detection

Must have some
waiting interval
before declaring
a link or device
failed to prevent
false positives;
slows reporting of
network changes

Must have some
waiting interval
before declaring
a link or device
failed to prevent
false positives;
slows reporting of
network changes

Some timer before
reporting failures
might be desirable to
reduce the reporting
of false positives,
but this timer can
be very short, and
backed with a
double-check of the
state of the system
itself; generally much
faster at reporting
network changes

Scaling Must transmit
periodic polls,
consuming
bandwidth, memory,
and processing
cycles; scales within
these limits

Must transmit
periodic polls,
consuming
bandwidth, memory,
and processing
cycles; scales within
these limits

Small amounts
of current local
state; tends to scale
better than polling
mechanisms

While it may appear event-driven detection should always be favored, there
are some specific situations where polling can solve problems that event-driven
 mechanisms cannot. For instance, one of the main advantages of polling-based
 systems, particularly when deployed in band, is to “see” the state of otherwise invis-
ible boxes. For instance, in Figure 14-4, there are two routers connected through a
third device, identified as a repeater in the illustration.

In Figure 14-4, device B is a simple physical repeater; whatever it receives on the
[A,B] link it retransmits, just as it received it, on the [B,C] link. There is no control
plane of any sort running on this device (at least not that A and C are aware of).
 Neither A nor C can detect this device, as it does not change the signal in any way
A or C could measure.

Chapter 14 Reacting to Topology Changes380

What happens if the [A,B] link fails if A and B are using an event-driven mech-
anism to determine link state? A will lose carrier, of course, because the physical
interface at B will no longer be reachable. However, C will continue to receive carrier
and hence will not detect the link failure at all. If it is possible for A and C to some-
how communicate with B, this situation can be resolved. For instance, if B tracks all
the Address Resolution Protocol (ARP) requests it receives, it can, when the [A,B]
link fails, somehow send an “inverse ARP” notifying B that A is no longer reachable.
The other solution available in this situation is some sort of polling between A and C
that verifies reachability across the entire link, including the state of B (even though
A and C are not aware that B exists).

From a complexity perspective, event-driven detection increases the interaction
surfaces between the systems in a network, while polling tends to keep state within
a system. In Figure 14-3, there must be some sort of interface between the physical
interface chipset, the RIB, and the routing protocol implementation. Each of these
interfaces represents a place where information that might be better hidden through
an abstraction is transferred between systems, and an interface that must be main-
tained and managed. Polling, on the other hand, can often be contained within a sin-
gle system, completely ignoring the underlying mechanisms and technologies in place.

An Example: Bidirectional Forwarding Detection

It will be useful, at this point, to spend a few pages examining an example of a proto-
col designed specifically to detect link state in a network. Neither of these protocols
is part of a larger system (such as a routing protocol), but rather interact with other
protocols through programming interfaces and status indicators.

Bidirectional Forwarding Detection (BFD) is grounded in a single observation:
there are many control planes running on a typical network device, each with its
own failure detection mechanism. It would be more efficient to run a single shared
detection mechanism among all the different control planes. In most applications,
BFD does not replace existing hello protocols used in each control plane, but rather
augments them. Figure 14-5 illustrates.

In the BFD model, there are likely to be at least two different polling processes
running over the same logical link (there could be more, if there are logical links
layered on top of other logical links, as BFD can be used across various network

A B C

Figure 14-4 Signal Repeaters and Loss of Carrier

Detecting Topology Changes 381

virtualization technologies, as well). Control plane polling will use hellos to discover
adjacent devices running the same control plane process, to exchange capabilities,
determine the Maximum Transmission Unit (MTU), and, finally, to make certain
the control plane process on the adjacent device is still running. These hellos are run
across the control plane connection in Figure 14-5, which can be seen as a sort of
“virtual link” passing through the physical link.

BFD polling will run underneath the control plane connection, as shown, verify-
ing the operation of the physical connection and forwarding planes on the two con-
nected devices. This two-layered approach allows BFD to operate much more quickly,
even as a polling mechanism, than any routing protocol-based detection mechanism.

BFD can operate in four distinct modes:

 • Asynchronous mode: In this mode, BFD acts like a lightweight hello protocol.
The BFD process at A, potentially running on a distributed process (or even in
an Application-Specific Integrated Circuit [ASIC]), sends hello packets to C;
the BFD process at C acknowledges these hello packets. This is a fairly tradi-
tional use of polling through hellos.

 • Asynchronous mode with echo: In this mode, the BFD process in A will
send hello packets to C so the hello packets will be processed only through
the forwarding path, hence allowing only the forwarding path to be polled. To
accomplish this, A sends hello packets to C formed in such a way that they will
be forwarded back to A. For instance, A can send a packet to C with A’s own
address as the destination; C can pick this packet up and forward it back to A.
In this mode, the hellos transmitted by A are completely different from the hel-
los transmitted by C; there is no acknowledgment, just the two systems sending
independent hellos that test the link bidirectionally from each end.

A B C

control plane connection

forwarding forwarding

routing
protocol

routing
protocol

BFD BFD

Figure 14-5 Bidirectional Forwarding Detection

Chapter 14 Reacting to Topology Changes382

 • Demand mode: In this mode, the two BFD peers agree to send hellos just when
connectivity needs to be validated, rather than periodically. This is useful in
the case where there is some other way to determine link status—for instance,
if the [A,C] link is an Ethernet link, which means carrier detect is available to
detect link failure—but when the alternate method is not necessarily trusted to
provide accurate connectivity status in all situations. For instance, in the case
of “switch in the middle,” where B is disconnected from A but not C, C could
send a BFD hello on noting any problem with the connectivity to verify its
connection with A is still good. In demand mode, some event, such as a lost
packet, can cause a local process to trigger a BFD detection event.

 • Demand mode with echo: This mode is like demand mode—regular hellos
are not transmitted between the two devices running BFD. When a packet is
transmitted, it is sent in such a way as to cause the other device to forward the
hello packet back to the sender. This reduces the amount of processor load on
both devices, allowing much faster timers to be used for BFD hellos.

Regardless of the mode of operation, BFD calculates different polling (hello) and
detection (dead) timers separately across the link. The best way to explain the pro-
cess is through an example. Assume A sends a BFD control packet with a proposed
polling interval of 500ms, and C sends a BFD control packet with a proposed polling
interval of 700ms. The higher number, or rather the slower polling interval, is chosen
for the relationship; the rationale for this is the slower system must be able to keep up
with the polling interval to prevent false positives.

The polling rate is modified in actual use to prevent synchronization of hello
packets across multiple systems on the same wire. If there were four or five systems
deploying the Border Gateway Protocol (BGP) on a single multiaccess link, and every
system sets its timer to send the next hello packet based on the receipt of the last
packet, it is possible for all five systems to synchronize their hello transmission so
all the hellos on the wire are transmitted at precisely the same moment. Since BFD
normally operates with timers less than one second in length, this could result in a
device receiving hellos from multiple devices at the same time, and not being able to
process them quickly enough to prevent a false positive.

The specific modification used is to jitter the packets; each transmitter must take
the base polling timer and subtract some random amount of time that is between 0%
and 25% of the polling timer. For instance, if the polling timer is 700ms, as in the
example given, A and C would transmit each hello packet sometime between around
562 and 750ms after the transmission of the last hello.

The final point to consider is the amount of time A and C will wait before declar-
ing the link (or neighbor) down. In BFD, each device can calculate its own dead timer,
normally expressed as a multiple of the polling timer. For instance, A could choose
to consider the link (or C) down after two BFD hellos are missed, while C might
decide to wait for three BFD hellos to be missed.

Change Distribution 383

Change Distribution

Once a change in the network topology has been detected, it must be distributed in
some way to all the devices participating in the control plane. Each item in a network
topology can be described as either

 • A link, or edge, including the nodes or reachable destinations attached to this link

 • A device, or node, including the nodes, links, and reachable destinations con-
nected to this device

This rather restricted set of terms lends itself to being held in a table, or database,
often called the topology table or topology database. The question of distributing
changes in the network topology to all the devices participating in the control plane,
then, can be described as the process of distributing changes to specific rows in this
table or database throughout the network.

The way in which information is distributed through a network depends on the
design of the protocol, of course, but there are three commonly used kinds of distribu-
tion: hop-by-hop distribution, flooded distribution, and a centralized store of some sort.

Flooding

In flooding, each device participating in the control plane receives, and stores, a copy
of every piece of information about the network topology and reachable destina-
tions. While there are a number of ways to synchronize a database, or table, only one
is normally used in control planes: record-level replication. Figure 14-6 illustrates.

In Figure 14-6, each device will flood the information it knows to each neighbor,
who will then reflood the information to each neighbor. For instance, A knows two
specific things about the network topology: how to reach 2001:db8:3e8:100::/64 and
how to reach B. A floods this information to B, which, in turn, floods this information
to C. Each device in the network ultimately ends up with a copy of all the topology
information available; A, B, and C have synchronized topology databases (or tables).

In Figure 14-6, C’s connectivity to D is shown as an item in the database; not all con-
trol planes would include this information. Instead, C may just include connectivity to
the 2001:db8:3e8:102::/64 range of addresses (or subnet), which contains D’s address.

Note

In larger networks, it is impossible for the entire description of a device’s connec-
tions to fit into a single MTU-sized packet, and connection information needs to
be timed out and reflooded on a regular basis to ensure freshness.

Chapter 14 Reacting to Topology Changes384

An interesting problem arises in flooded distribution mechanisms that can cause
temporary routing loops, called microloops; Figure 14-7 illustrates.

In Figure 14-7, assume the [E,D] link fails. Consider the following chain of events,
including some roughly possible times for each event:

 1. Start: A is using E to reach D; C is using D to reach E.

 2. 100ms: E and D discover the link failure.

 3. 500ms: E and D flood information about the topology change to C and A.

A B C D
20

01
:d

b8
:3

e8
:1

00
::/

64

20
01

:d
b8

:3
e8

:1
01

::/
64

20
01

:d
b8

:3
e8

:1
02

::/
64

I can reach
100::/64

I can reach B

I can reach
100::/64

I can reach
101::/64

I can reach A
I can reach C

I can reach
101::/64

I can reach
102::/64

I can reach B
I can reach D

I can reach
101::/64

I can reach
102::/64

I can reach B
I can reach D

I can reach
101::/64

I can reach
102::/64

I can reach B
I can reach D

I can reach
100::/64

I can reach
101::/64

I can reach A
I can reach C

I can reach
100::/64

I can reach
101::/64

I can reach A
I can reach C

I can reach
100::/64

I can reach B

I can reach
100::/64

I can reach B

complete
database

Figure 14-6 Flooding Between Network Devices

Change Distribution 385

 4. 750ms: C and A receive the updated topology information.

 5. 1,000ms: E and D recompute their best paths; E selects A as its best path to
reach D, D selects C as its best path to reach E.

 6. 1,250ms: A and C flood information about the topology change to B.

 7. 1,400ms: A and C recompute their best paths; A selects B to reach D, C selects
B to reach E.

 8. 1,500ms: B receives the updated topology information.

 9. 2,000ms: B recomputes its best paths; it chooses C to reach D, and A to
reach E.

While the times and ordering might vary slightly in any particular network, the
ordering of discovery, advertisement, and recomputing will almost always follow
a similar pattern. In this example, a microloop forms between steps 5 and 7; for
400ms, A is using E to reach D, and E is using A to reach D. Any traffic entering
the ring at either A or D during the time between E’s recalculation of the best
path to D and A’s recalculation of the best path to D will loop. A more formal
definition of this problem will be considered in the later section, “Consistency,
Accessibility, and Partitionability.” One solution to this problem is to precom-
pute Loop-Free Alternates or remote Loop-Free Alternates (both discussed in dis-
cussed in Chapter 13).

A

B
C

D

E

Figure 14-7 Microloops in Flooded Database Distribution

Chapter 14 Reacting to Topology Changes386

Microloops and Ordered FIB

If the routers receiving new topology information and calculating new best
paths could be induced to order the installation of the new best paths, the
microloop can be avoided. In Figure 14-7, if C could somehow be config-
ured to wait to install its new best path until B has computed and installed
its new best path, and if D could be configured to wait to install its new best
path until C has computed and installed its new best path, the microloop can
be avoided. In other words, one way to avoid the microloop is to somehow
ensure the Forwarding Information Base (FIB) entries in the network devices
are installed in the order B->(C,A)->(D,E).

There is actually a technique for computing the order of installs called
ordered FIB, or oFIB.1 This mechanism assumes some form of Shortest Path
First (SPF) algorithm, such as Dijkstra’s, to compute the best path. To com-
pute the order in which the FIB entries should be installed to avoid the loop,
begin with the assumption that all the new topology information available
will be received on every network device before the best path calculation is
undertaken by any network device. This requires measuring the largest (typi-
cal) amount of time flooding updated topology information through the net-
work, and setting some timer so that no network device will calculate a new
best path until the timer has expired.

Once all the topology information is received, each device calculates two
best paths: one from the local node based on the new topology information
and one from the affected node using the topology information from before
the change. The affected node is either the end of the failed link farthest
from the local node (D, from A’s perspective in Figure 14-7), or the actual
node that has failed. This can be discovered by examining the report of the
failure from both of the devices connected to the failure point (D and E in
Figure 14-7).

The number of devices relying on the local node to forward to the affected
device can be computed using the shortest path from the perspective of the
affected router. For the network in Figure 14-7, A and B rely on E to reach D, and
B relies on A to reach D. Given this information, the device can wait to install
any new forwarding information until after it is certain any devices that once

1. Bryant et al., Framework for Loop-Free Convergence Using the Ordered Forwarding Informa-
tion Base (oFIB) Approach.

Change Distribution 387

depended on it—who might still be using the local device to forward traffic
to the affected device—have installed their new forwarding information.
To do this, an installation wait time (called wait-time here) is agreed on
throughout the network (before the failure!). This wait time is how long, per
dependent node, any device should wait before installing any new forwarding
information after a failure. It is best, of course, to base this wait time on real
measurements of how long it takes to compute and install a new best path in
the slowest node in the network.

Given this wait time, E can note that two devices were (potentially) for-
warding traffic to E to reach D. Hence, when the [D,E] link fails, E should
wait 2*wait-time before installing any new path to D. A can note that one
device was (potentially) forwarding traffic to A to reach D; hence it should
wait 1*wait-time before installing any new path to D. This process will ensure
the new forwarding information is installed in the correct order to prevent the
microloop.

What is interesting about oFIB is it not only prevents microloops in
the case of link or node failures, but it also prevents microloops in the
case of metric increases at one or more links in the network, and even the
microloops that form in the case of metric decreases, or the insertion of
new links or nodes in the network. The tradeoff is the two additional wait
times that must be introduced to allow oFIB to operate: The computa-
tion of the new best paths must not take place until all the reports of the
topology change are received by every node in the network, including the
additional time each device must wait before installing new forwarding
information.

Hop by Hop

In hop-by-hop distribution, each device computes a local best path and sends just the
best path to its neighbors. Figure 14-8 illustrates.

In Figure 14-8, each device advertises information about what it can reach to each
of its neighbors. D, for instance, advertises reachability to E, and B advertises reach-
ability to C, D, and E toward A. It is interesting to consider what happens when
A advertises its reachability toward E through the link along the top of the net-
work. Once E receives this information, it will have two paths to B, for instance:
one through D and one through A. In the same way, A will have two paths to B: one

Chapter 14 Reacting to Topology Changes388

directly to B and another through E. Any of the shortest path algorithms discussed
in previous chapters can determine which of these paths to use, but is it possible for
microloops to form with a flooded distribution mechanism? Consider:

 1. E chooses the path through A to reach B.

 2. The [A,B] link fails.

 3. A detects this failure, and switches to the path through E.

 4. A then advertises this new path to E.

 5. E receives the changed topology information and calculates a new best path
through D.

During the time between steps 3 and 5, A will point to E as its best path to B, while
E will point to A as its best path to B—a microloop. Most hop-by-hop distribution sys-
tems resolve this through split horizon or poison reverse. Defined, these are as follows:

 • The split horizon rule states: a device should not advertise reachability toward
a destination it is using to reach the destination.

 • The poison reverse rule states: a device should advertise destinations toward
the adjacent device it is using to reach the destination with an infinite metric.

A B C D E

I can reach E

I can reach E

I can reach D

I can reach C

I can reach E

I can reach D

I can reach C

I can reach B

I can reach E

I can reach D

Figure 14-8 Hop-by-Hop Distribution

Change Distribution 389

If split horizon is implemented in Figure 14-8, E would not advertise reachability
to B, as it is using the path through A to reach B. Alternatively, E could poison the
route to B through A, which would have the effect of ensuring A has no path through
E to B.

A Centralized Store

In a centralized system, each network device reports information about changes to
the topology and reachability to a controller, or rather some collection of off box
services and devices acting as a controller. While centralization often evokes the idea
of a single device (or virtual device) to which all information is reported, and which
feeds the correct forwarding information to all the packet processing devices in the
network, this is an oversimplification of what a centralized control plane really
means. Figure 14-9 illustrates.

A

B

D

Y

X

F

E

Figure 14-9 Topology Changes and Centralized Control Planes

Chapter 14 Reacting to Topology Changes390

In Figure 14-9, when the link between D and F fails:

 1. D and F both report the topology change to the controller, Y.

 2. Y forwards this information to the other controller, X.

 3. Y computes the best path to each destination without the [D,F] link and sends
it to each affected device in the network.

 4. Each device installs this new forwarding information into its local table.

A specific instance of step 3 is Y computing a next best path to E without the
[D,F] link, and sending it to D to install in its local forwarding table. Can microloops
form in a centralized control plane?

 • The databases in X and Y need to be synchronized for both controllers to com-
pute the same loop-free paths through the network.

 • Synchronizing these databases will involve the same challenges, and (probably)
use the same solutions, as the solutions discussed thus far in this chapter.

 • There will be some time required for the connected devices to discover the
change in topology and report the change to the controller.

 • There will be some time required for the controller to compute new loop-free paths.

 • There will be some time required for the controller to notify the affected
devices of the new loop-free paths through the network.

During the timing intervals described here, it is still possible for the network to
form microloops. A centralized control plane most often translates to the control
plane is not running on the devices forwarding traffic. Although they may seem radi-
cally different, centralized control planes actually use many of the same mechanisms
to distribute topology and reachability, and the same algorithms to compute loop-
free paths through the network, as distributed control planes.

Sharding and Control Planes

One interesting idea to reduce the state carried on any individual device, whether
using a distributed or centralized control plane, is to shard the information in
the topology table (or database). Sharding is splitting up the information in a
single table based on some property of the data itself, and storing each resulting
shard, or piece of the database, on a separate device. Figure 14-10 illustrates.

Change Distribution 391

A

B

Y
X

F

E

2001:db8:3e8:100::/64

2001:db8:3e8:101::/64

2001:db8:3e8:110::/64

2001:db8:3e8:111::/64

2001:db8:3e8:111::/64

2001:db8:3e8:112::/64

2001:db8:3e8:102::/64

2001:db8:3e8:103::/64

2001:db8:3e8:104::/64 2001:db8:3e8:104::/64

Figure 14-10 Sharding Reachability Information

In the network in Figure 14-10, assume both controllers, X and Y, have
topology information for all the nodes (devices) and edges (links) in the net-
work. However, to scale the size of the network, the reachable destinations
have been sharded across the two controllers. There are many possible shard-
ing schemes—anything able to divide the database (or table) into somewhat
equally sized pieces will work. A hash is often used, as hashes can be quickly
modified on every device where a shard is stored to rebalance the shard sizes.

In this case, assume the sharding scheme is something a bit simpler: a
range of Internet Protocol (IP) addresses. Specifically, there are two ranges
of IP addresses represented in the illustration: 2001:db8:3e8:100::/60, which
contains 100::/64 through 10f::/64; and 2001:db8:3e8:110::/60, which con-
tains 110::/64 through 11f::/64. Each of these address ranges is sharded onto
a single controller; X will hold information about 2001:db8:3e8:100::/60,
and Y will hold information about 2001:db8:3e8:110::/64. It doesn’t matter
where these reachable destinations are attached to the network. For instance,
the information that 2001:db8:3e8:102::/64 is connected to F will be held at
controller X, and the information that 2001:db8:3e8:110::/64 is connected
to A will be held at controller Y. To build reachability information about
2001:db8:3e8:102::/64, Y will need to retrieve the information about where
this destination is connected from X. This will be less efficient in terms of
calculating shortest paths, but it will be more efficient in terms of storing
the information needed to calculate the shortest paths. In fact, it is possible,

Chapter 14 Reacting to Topology Changes392

if the information is stored correctly (rather than in the trivial way used in
this example), for several devices to calculate different parts of the shortest
path and then exchange just the resulting tree with one another; this would
distribute not only the storage, but also the processing.

There are a number of ways in which control plane information can be
split up, stored, and calculations run across it to find a set of loop-free paths
through a network. All of these systems face the same challenges discussed
in the chapters in this section: discovering the topology, calculating a set of
loop-free paths, distributing topology and reachability information, and
reacting to changes in the topology.

Consistency, Accessibility, and Partitionability

In all three distribution systems discussed in this chapter—flooding, hop by hop, and
centralized stores—the problem of microloops arises. Protocols implementing these
techniques have various systems, such as split horizon and Loop-Free Alternates, to
work around these microloops, or they allow the microloop to occur, assuming the
results will not be too great on the network. Is there a unifying theory or model that
will allow engineers to understand the problems inherent in the distribution of data
through a network and the various tradeoffs involved?

There is: the CAP theorem.
In 2000, Eric Brewer, working on both theoretical and practical pursuits, postu-

lated there are three qualities to a distributed database: Consistency, Accessibility,
and Partition tolerance (CAP). Between these three, there is always a tradeoff such
that you can choose two of the three in any system design. This conjecture, later
proved true mathematically, is now known as the CAP theorem. The three terms are
defined as

 • Consistency: Every reader sees a consistent view of the contents of the data-
base. If some device C writes to the database moments before two other
devices, A and B, read from the database, the two readers will receive the same
information. In other words, there is no lag between the writing of the data-
base and both of the readers, A and B, being able to read the information that
was just written.

Consistency, Accessibility, and Partitionability 393

 • Accessibility: Every reader has access to the database when required (in near
real time). The response to a read may be delayed, but every read will receive a
response. Another way to put this is every reader has access to the database all
the time; there is no time during which a reader would receive the answer “you
cannot query this database right now.”

 • Partition tolerance: The ability of the database to be copied, or partitioned
onto multiple devices.

It is simpler to see the CAP theorem in a small network; Figure 14-11 is used
for this.

Assume A contains a single copy of a database that both C and D must access.
Assume C writes some information to the database and then immediately after C
and D both read the same information. The only processing that must take place to
make certain C and D receive the same information is on A itself. Now, replicate the
database, so there is a copy on E and another copy on F. Now assume K writes to the
replica on E, and L reads from the replica on F. What will happen?

 • F could return the value it currently has, even though it is not the same value K
just wrote. This means the database returns an inconsistent reply, so consist-
ency has been sacrificed by partitioning the database.

A E F

B G

C KD L

Figure 14-11 The CAP Theorem Illustrated

Chapter 14 Reacting to Topology Changes394

 • If the two databases are synchronized, the reply will eventually be the same, of
course, but it will take some time to package the change up (marshal the data),
transfer it to F, and integrate the change into F’s local copy. F could lock the
database, or a specific part of the database, while the synchronization is taking
place. In this case, when L reads the data, it may receive a reply that the record
is locked. In this case, accessibility is lost, but consistency and the partitioning
of the database are preserved.

 • If the two databases are merged, then consistency and accessibility can be pre-
served, at the cost of partitioning.

There is no way to work it out so all three are preserved because of the time
required to synchronize the information between the two copies of the database. The
same problem holds true for a sharded database.

How does this apply to control planes? In a distributed control plane, the database
from which the control plane draws information to calculate loop-free paths is parti-
tioned across the entire network. Further, the database is locally readable at any time
in order to calculate loop-free paths. Given the partitioning and accessibility required
of the distributed database used in a control plane, you should expect consistency to
suffer—and it does, resulting in microloops during convergence. A centralized control
plane does not “solve” this problem; rather it just moves the problem around, or allows
the designer to make different choices in the tradeoffs. A centralized control plane run-
ning on a single device will always be consistent, but it will not always be accessible,
and the lack of partitioning will present an issue in the resilience of the network.

The three poles—consistency, accessibility, and partition tolerance—are not as
clear-cut as they have been presented here, of course. There are often situations
where less partitioning can result in more consistency, or short-term losses in avail-
ability will yield large increases in consistency. In other words, the CAP theorem does
not really describe a set of three absolute poles, but rather a set of extreme points
across a range of possibilities. In this way it is much like the state, optimization,
 surface triad found in an analysis of network complexity.2

The CAP theorem is a useful way to think about the performance of the database
used in control planes.

Final Thoughts

The problem of detecting and distributing information about topology changes is
second only to the problem of calculating shortest paths over a network in the space

2. For more information on complexity theory and control planes, see White and Tantsura, Navigating
Network Complexity.

Further Reading 395

of network engineering. Breaking the problem down into four steps—detection,
reporting, calculation, and installation—provides a framework you can use to assess
the various options and think through the way a network really converges. Two
broad classes of solutions are available, event driven and polling, each with a differ-
ent set of tradeoffs; control planes normally use some form of record-level replica-
tion to carry topology information through the network in the case of a change.

The problems of loops and microloops have been particularly thorny in link state
protocols, mirrored by dropped packets in distance vector protocols. These prob-
lems have occasioned years of research on the part of the best minds in protocol
design; ultimately, however, all these solutions run up against the three-way tradeoff
of the CAP theorem. The CAP theorem will show up again when considering cen-
tralized control planes.

The next two chapters will consider the three basic kinds of widely deployed con-
trol planes—distance vector, link state, and path vector. The material in this chapter
and the two chapters on unicast loop-free paths should enable you to more readily
understand the operation of the examples given in the following chapters. Overall,
understanding what problems a control plane needs to solve, and the solutions avail-
able, will help you ask the right questions of any control plane and quickly under-
stand its operation.

Further Reading

Bhatia, Manav, Carlos Pignataro, Sam Aldrin, and Trilok Ranganath. OSPF Exten-
sions to Advertise Seamless Bidirectional Forwarding Detection (S-BFD) Tar-
get Discriminators. Request for Comments 7884. RFC Editor, 2016. https://
rfc- editor.org/rfc/rfc7884.txt.

Bryant, Stewart, Stefano Previdi, Clarence Filsfils, Pierre Francois, Mike Shand,
and Olivier Bonaventure. Framework for Loop-Free Convergence Using the
Ordered Forwarding Information Base (oFIB) Approach. Request for Com-
ments 6976. RFC Editor, 2013. https://rfc-editor.org/rfc/rfc6976.txt.

Gilbert, Seth, and Nancy A. Lynch. “Perspectives on the CAP Theorem.” Computer
45 (2011): 30–36. doi:doi.ieeecomputersociety.org/10.1109/MC.2011.389.

Huang, Peng, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. “Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems.” In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, 150–155. HotOS ’17. New York, NY, USA: ACM, 2017.
doi:10.1145/3102980.3103005.

Katz, Dave, and David Ward. Bidirectional Forwarding Detection (BFD). Request for
Comments 5880. RFC Editor, 2010. https://rfc-editor.org/rfc/rfc5880.txt.

https://rfc-editor.org/rfc/rfc7884.txt
https://rfc-editor.org/rfc/rfc7884.txt
https://rfc-editor.org/rfc/rfc6976.txt
http://doi:doi.ieeecomputersociety.org/10
https://rfc-editor.org/rfc/rfc5880.txt

Chapter 14 Reacting to Topology Changes396

Pignataro, Carlos, David Ward, Manav Bhatia, Nobo Akiya, and Juniper Networks.
Seamless Bidirectional Forwarding Detection (S-BFD). Request for Comments
7880. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7880.txt.

White, Russ, and Jeff Tantsura. Navigating Network Complexity: Next-Generation
Routing with SDN, Service Virtualization, and Service Chaining. Indianapolis,
IN: Addison-Wesley Professional, 2015.

Review Questions

 1. Consider the concept of information overload in reporting topology changes
within the context of the State/Optimization/Surface (SOS) model. What are
some of the tradeoffs in sending information more quickly versus slow topol-
ogy change information more slowly, in terms of optimization versus state?

 2. Consider polling and event-driven notification within the context of the state,
optimization, surface model. List at least one or two, more if possible, positive
and negative aspects of each kind of solution in each of the three realms of the
model (SOS).

 3. Read the paper “Gray Failure: The Achilles’ Heel of Cloud-Scale Systems.” Do
you think a polling-based or event-driven solution would be best for solving
the kinds of problems described in the paper? Why?

 4. Explain why jitter is introduced in BFD sessions.

 5. One alternative to record-level replication is binary-level replication of two
files. For instance, rsynch uses binary replication to synchronize two files or
databases. Why would network control planes not use binary replication?

 6. What is the relationship between network topology and microloops? Will
microloops form in any topology or only rings? Does the size of the ring
impact whether or not microloops will form?

https://rfc-editor.org/rfc/rfc7880.txt

397

Chapter 15

Distance Vector
Control Planes

Learning Objectives

After reading this chapter, you should understand:

 0 The classification of control planes into link state and distance vector

 0 The operation of the Spanning Tree Protocol

 0 The operation of the Routing Information Protocol

 0 How the Routing Information Protocol reacts to topology changes

 0 The operation of the Enhanced Interior Gateway Protocol

 0 How the Enhanced Interior Gateway Routing Protocol reacts to
topology changes

The previous several chapters have considered three broad areas of problems every
control plane for a packet switched network must solve and a range of solutions for
each of those problems. The first problem considered was discovering the network
topology and reachability. The second was calculating loop-free (and, in some cases,
disjoint) paths through the network. The final problem, reacting to topology
changes, is really a set of problems, including detecting and reporting changes to the
network across the control plane.

This chapter will consolidate these problems and solutions by examining a few
implementations of distributed control planes used for unicast forwarding in packet
switched networks. The implementations here are not chosen because they are
widely used, but rather because they represent a range of implementation choices
among the solutions outlined in the previous chapters. The basic operation of each

Chapter 15 Distance Vector Control Planes398

protocol is considered in each case; later chapters in this part of the book will delve
into information hiding and other more advanced topics in control planes, so they
will not be covered here.

Rather than diving directly into protocol operation, the first section of this
chapter will begin by defining various broad classes of control planes. Once these
broad definitions are out of the way, six distributed unicast control planes will be
considered.

Control Plane Classification

Control planes are typically classified by two characteristics. First, they are divided
based on where the loop-free paths are calculated, whether on the forwarding device
or off. Control planes in which the actual switching devices directly participate in the
calculation of loop-free paths are then divided up based on the kind of information
they carry about the network. There is no classification based on the algorithm used
to calculate loop-free paths, although this is often intimately tied to the kind of
information carried by the control plane.

While centralized control planes are often related to a few (or one, conceptually)
controllers gathering the reachability and topology information from each switching
device, calculating the set of loop-free paths, and downloading the resulting forward-
ing table to the switching devices, the concept is much less strict. A centralized control
plane more generally just means calculating some part of the forwarding information
someplace other than the actual forwarding device. This may mean a single device or
a set of devices; it may mean a set of processes running in a virtual machine; it may
mean calculating all of the required forwarding information or (perhaps) most of it.

Distributed control planes are generally marked by three general characteristics:

 • A protocol running on each device, and that implements the various mecha-
nisms required to transport reachability and topology information between
devices

 • A set of algorithms implemented on each device, used to compute a set of
loop-free paths to known destinations

 • The ability to detect and react to changes in reachability and topology locally
at each device

Control Plane Classification 399

In distributed control planes, not only is each packet switched hop by hop, but
each hop determines the set of loop-free paths to reach any particular destination
locally. Distributed control planes are generally divided into three broad classes of
protocols: link state, distance vector, and path vector.

In link state protocols, each device advertises the state of each connected link,
including reachable destinations and neighbors attached to the link. This informa-
tion forms a topology database containing every link, every node, and every reach-
able destination in the network, across which an algorithm such as Dijkstra’s or
Suurballe’s can be used to calculate a set of loop-free or disjoint paths. Link state
protocols typically flood their databases so each forwarding device has a copy that is
synchronized with every other forwarding device.

In distance vector protocols, each device advertises a set of distances to known
reachable destinations. This reachability information is advertised by a particular
neighbor that provides the vector information, or rather the direction through which
the destination can be reached. Distance vector protocols typically implement either
Bellman-Ford, Garcia-Luna’s DUAL, or some similar algorithm to calculate loop-
free paths through the network.

In path vector protocols, the path to reach the destination is recorded as the
routing advertisement passes through the network, on a node-by-node basis. Other
information may be added, such as metrics, to express some form of policy, but the
primary loop-free nature of each path is calculated based on the actual paths adver-
tisements take when passing through the network.

Figure 15-1 illustrates these three kinds of distributed control planes.
In Figure 15-1:

 • In the link state example, at the top, each device advertises what it can reach to
every other device in the network. Hence, A advertises reachability to B, C, and
D; at the same time, D advertises reachability to 2001:db8:3e8:100::/64 and to
C, B, and A.

 • In the distance vector example, in the middle, D advertises reachability to
2001:db8:3e8:100::24 to C with its local cost, which is 1. C adds the [D,C] cost
and advertises reachability to 2001:db8:3e8:100::64 with a cost of 2 to B.

 • In the path vector example, at the bottom, D advertises reachability to
2001:db8:3e8:100::/24 through itself. C receives this advertisement and adds
itself to [D,C].

Chapter 15 Distance Vector Control Planes400

Control planes do not always neatly fit into one category or another, particularly
when you move into various forms of information hiding. Some link state proto-
cols, for instance, use distance vector principles with aggregated information, and
path vector protocols often use some form of distance vector metric arrangement to
augment the path in calculating loop-free paths. These classifications—centralized,
distance vector, link state, and path vector—are important for understanding and
encountering the network engineering world.

A B C D
2001:db8:3e8:100::/64

I can reach B
I can reach A
I can reach C

I can reach B
I can reach D

I can reach C
I can reach 100::/64

100::/64
cost 1

100::/64
[D]

100::/64
cost 2

100::/64
[C,D]

100::/64
cost 3

100::/64
[B,C,D]

100::/64
cost 4

100::/64
[A,B,C,D]

Li
nk

 S
ta

te
D

is
ta

nc
e

Ve
ct

or
Pa

th
 V

ec
to

r

Figure 15-1 Distributed Control Plane Classifications

Control Plane Classification 401

Packets Don’t Follow Advertisements

A common mistake in assessing and understanding path vector protocols, a
mistake that can be easily expanded to distance vector protocols, is to associ-
ate the path of an advertisement to the path of a packet through the network.
Not only does the traffic flow in the opposite direction of the advertisement.
This mistake shows up particularly in design when thinking through traffic
engineering, in troubleshooting when trying to understand why a particular
flow of packets is acting a particular way, and in securing the control plane to
provide greater data plane security. The key point to remember is the control
plane provides a loop-free path, but each forwarding device chooses which
among a number of possible loop-free paths to use when forwarding traffic.
Figure 15-2 illustrates one situation where the path of the packet does not fol-
low the path of the update in a path vector system.

Assume, in the network shown in Figure 15-2, D and E are advertising
/64’s. At C, the /64 being advertised by D is being aggregated into a covering
/60. This /60, plus the /64 being advertised by E, are both being advertised
to B. At B, there is some policy in place that recognizes the overlapping
prefixes, passing the /60 through to A, and blocking the /64. Forwarding is
not impacted by this configuration; traffic transmitted through A toward
either 2001:db8:3e8:100::/64 or 2001:db8:3e8:101::/64 will be delivered
correctly.

A

B

C

D

E

2001:db8:3e8:100::/64

2001:db8:3e8:101::/64

2001:db8:3e8::/60

2001:db8:3e8::/60

Figure 15-2 Update versus Packet Path through a Network

Chapter 15 Distance Vector Control Planes402

Spanning Tree Protocol

The Spanning Tree Protocol (STP) was originally designed by Radia Perlman, and
first described in 1985 in An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN.1 STP is unique in the list of control planes considered here
because it was originally designed to support switching rather than routing. In other
words, STP was designed to support forwarding on packets without a Time to Live
(TTL), and without a per hop header swap by the switching device. Packets switched
based on the STP are carried through the network without change.

Building a Loop-Free Tree

The process of building a loop-free tree is as follows:

 1. Each device places all ports in blocked mode so that no port will forward any
traffic, and begins advertising Bridge Protocol Data Units (BPDUs) out each
port. This BPDU contains

a. The ID of the advertising device, which is a priority combined with a local
interface Media Access Control (MAC) address.

1. Perlman, “An Algorithm for Distributed Computation of a Spanningtree in an Extended LAN.”

Assume the path vector system in place treats an aggregate in the
same way it treats any other reachable destination. At C, then, when the
2001:db8:3e8::/60 aggregate route is created, C advertises the route toward
B with a path originating at C itself. Hence, when A receives this aggre-
gated route, the path through the network is [A,B,C]. From A’s perspec-
tive, then, traffic being transmitted toward 2001:db8:3e8:100::/64 and
2001:db8:3e8:101::/64 will both leave the network at C. This is not true.

Looking at the routing (or topology) table at A, then, will give you appar-
ently wrong information about how the traffic is forwarded through the net-
work to reach either of these destinations. While routing is still correct, using
the routing table to see how traffic will be forwarded through the network—
either for troubleshooting, design, or security—is of limited value. This kind
of situation can arise with any routing protocol; forwarding is performed hop
by hop through the network, with each device making an independent deci-
sion about where to send each individual packet.

Spanning Tree Protocol 403

b. The ID of the candidate root bridge. This is the bridge with the lowest ID
the local device knows about. If every device on the network starts at the
same moment, then each device would advertise itself as the candidate root
bridge until it learned of other bridges with a lower bridge ID.

 2. On receiving a BPDU on an interface, the root bridge ID contained in the
BPDU is compared with the locally stored lowest root bridge ID. If the root
bridge ID contained in the BPDU is lower, then the locally stored root bridge
ID is replaced with the newly discovered bridge with a lower ID.

 3. After a few rounds of advertisements, every bridge should have discovered the
bridge with the lowest bridge ID in the network and declared this bridge to be
the root bridge.

a. This should occur while all the ports on all the devices are still in a blocked
state (not forwarding traffic).

b. To make certain this does happen while all the ports are still blocked, a
timer is set long enough to allow the root bridge to be elected.

 4. Once the root bridge is elected, the shortest path to the root bridge is
determined.

a. Each BPDU also contains a metric to reach the root bridge. This metric may
be a hop count, but the cost of each hop can vary based on administrative
variables as well, such as the bandwidth of the link.

b. Each device determines the port through which it has the lowest cost path to
the root bridge; this is marked as the root port.

c. If there is more than one path to the root bridge with the same cost, a tie
breaker is used; this is normally the port identifier.

 5. For any link on which two bridges are connected

a. The bridge with the lowest cost path to the root bridge is elected to forward
traffic off the link toward the root bridge.

b. The port connecting the elected forwarder to the link is marked as the desig-
nated port.

 6. Ports marked as either root or designated ports are allowed to forward traffic.

The result of this process is a single tree over which every destination in the
network is reachable. Figure 15-3 is used to show how STP works in an actual
topology.

Chapter 15 Distance Vector Control Planes404

Assume all the devices in Figure 15-3 were turned on at the same moment. There
are a number of variations possible in timing, but the process of building a set of loop-
free paths through the network would look, from F’s perspective, something like this:

 1. Elect the root bridge:

a. F advertises a BPDU to E and D with an ID and a candidate root bridge of
32768.0200.0000.6666.

b. D (assuming D has not received any BPDUs) advertises a BDPU with an ID
and a candidate root bridge of 28672.0200.0000.4444.

c. E (assuming E has not received any BPDUs) advertises a BPDU with an ID
and a candidate root bridge of 32768.0200.0000.5555.

d. At this point, F will elect D as the root bridge, and start advertising BPDUs
with its local ID and the candidate root bridge set to D’s ID.

e. At some point, D and E will both receive BPDUs from C, which has a lower
bridge ID (24576.0200.0000.3333). On receiving this BPDU, they will both
set their candidate root bridge ID to C’s ID and send new BPDUs to F.

A: 32768.0200.0000.1111
B: 32768.0200.0000.2222

E: 32768.0200.0000.5555

F: 32768.0200.0000.6666

C: 24576.0200.0000.3333

D: 28672.0200.0000.4444

Figure 15-3 Spanning Tree Protocol Operation

Spanning Tree Protocol 405

f. On receiving these new BPDUs, F will note the new candidate root bridge
ID is lower than its previous candidate root bridge ID, and it will then elect
C as the root bridge.

g. After several rounds of BDPUs, all the bridges in the network will elect C as
the root bridge.

 2. Mark the root ports by finding the shortest path to the root:

a. Assume each link is a cost of 1.

b. D will receive a BDPU from C with a local ID and root bridge ID of
24576.0200.0000.3333 and a cost of 0.

c. D will add the cost of reaching C, a single hop, advertising it can reach the
root bridge with a cost of 1 to F.

d. E will receive a BDPU from C with a local ID and root bridge ID of
24576.0200.0000.3333 and a cost of 0.

e. E will add the cost of reaching C, a single hop, advertising it can reach the
root bridge with a cost of 1 to F.

f. F now has two advertisements toward the root bridge with equal cost; it
must break the tie between these two available paths. To do so, F examines
the bridge ID of the advertising bridges. D’s bridge ID is lower than E’s, so F
will mark its port toward D as its root port.

 3. Marking the designated ports on each link:

a. F’s only other port is toward E. Should this port be blocked?

b. To determine this, F compares its local bridge ID with E’s bridge ID. The
priorities are the same, so the local port addresses must be compared to
make the decision. F’s local ID ends in 6666, while E’s ends in 5555, so E’s is
lower.

c. F does not mark the interface toward E as a designated port; instead, it
marks this port as blocked.

d. E does the same comparison and marks its port toward F as a designated
port.

e. D compares its cost toward the root with F’s cost toward the root.

f. D’s cost is lower, so it will mark its port toward D as a designated port.

Chapter 15 Distance Vector Control Planes406

Figure 15-4 illustrates the blocked, designated, and root ports once these calcula-
tions are completed.

The ports in Figure 15-4 are marked with bp for blocked port, rp for root port, and
dp for designated port. The result of the process is a tree that can reach any segment
in the network, and hence the hosts connected to any segment in the network. One
interesting point about STP is the result is a single tree across the entire topology,
anchored at the root bridge. If some host connected to E sends a packet to a host con-
nected to B or F, the packet must travel through C, the root bridge, because one of the
two ports on the [F,E] and [E,B] links is blocked. This is not the most efficient use of
bandwidth, but it does prevent looping packets during normal forwarding.

How is neighbor discovery handled in STP? Neighbor discovery is not addressed
from the perspective of the reliable transport of information through the network
at all. Each device in the network builds its own BPDUs; these BPDUs are not car-
ried through any device, so there is no need for end-to-end reliable transport in the
control plane. Neighbor discovery is used, however, to elect a root bridge and to
build a loop-free tree across the entire topology using BPDUs. What about dropped
and missed packets? Any device running STP retransmits its BPDUs on every link
periodically (according to a retransmission timer); it takes a few dropped packets
(according to a dead timer) for a device running STP to assume its neighbors have

A: 32768.0200.0000.1111
B: 32768.0200.0000.2222

E: 32768.0200.0000.5555

F: 32768.0200.0000.6666

C: 24576.0200.0000.3333

D: 28672.0200.0000.4444

dp

dp

dp

dp dp

dpdp

rp

rp
bp

bp

rp

rp

rp

Figure 15-4 The Result of the Spanning Tree Process

Spanning Tree Protocol 407

failed, and hence to restart calculating the root bridge and port statuses. There is no
two-way connectivity check in STP, either on a per neighbor basis or across the entire
path. Nor is there any Maximum Transmission Unit (MTU) check of any kind. STP
learns about the topology by combining BPDUs with local link information on a per
node basis; there is no single node in the network with a table describing the entire
topology, however.

Learning about Reachable Destinations

How does STP enable forwarding? More specifically, how do devices running STP
learn about reachable destinations? Figure 15-5 is used to explain.

Figure 15-5 shows the state of the network with the spanning tree calculated and
each port marked as a designated or root port. There are no blocked ports in this
topology because there are no loops. Assume B, C, and D have no information about
attached devices; A sends a packet toward E. What happens at this point?

 1. A transmits the packet onto the [A,B] link. As B has a designated port on this
link, it will accept the packet (switches accept all packets on designated ports)
and examine the source and destination addresses.

 2. B can determine that A is reachable through this designated port because it
has received a packet from A on this port. Based on this, B will insert A’s MAC
address as reachable in its forwarding table through its interface onto the
[A,B] link.

 3. B does not have any information about E; therefore it will flood this packet
out every one of its nonblocked ports. In this case, the only other port B has
is its root port, so B will forward this packet toward C. This flooding is called
Broadcast, Unknown, and Multicast (BUM) traffic; BUM traffic is something
every control plane that learns destinations during the forwarding process
must manage in some way.

 4. When C receives this packet, it will examine the source address and discover
that A is reachable through the designated port attached to [B,C]. It will insert
this information into its local forwarding table.

A B C D E

root bridge

dp dp dpdp rp rp

Figure 15-5 STP Reachability Discovery

Chapter 15 Distance Vector Control Planes408

 5. C also has no information about where E is located on the network, so it will
simply flood the packet on all nonblocked ports. In this case, the only other
port C has is onto the [C,D] link.

 6. D repeats the same process B and C have followed, learning that A is reach-
able through its root port onto the [C,D] link and flooding the packet onto the
[D,E] link.

 7. When E receives the packet, it processes the information and sends a reply back
toward A.

 8. When D receives this reply packet from E, it will examine the source address
and discover E is reachable on its designated port onto the [D,E] link. D does
know the path back to A, as it discovered this information in processing the
first packet in the flow traveling from A to E. It will look up A in its forwarding
table and transmit the packet onto the [C,D] link.

 9. C and B will repeat the process D and C have used to discover the location of E
and to forward the return traffic back to A.

In this way—learning the source address from incoming packets, and either flood-
ing or forwarding packets onto outgoing links—every device in the network can
learn about every reachable destination. Because STP relies on learning reachable
destinations in reaction to packets being transmitted on the network, it is classified
as a reactive control plane. Note this learning process is at the host level; subnets and
Internet Protocol (IP) addresses are not learned, but rather the physical address of
the host interface. If a single host has two physical interfaces onto the same wire, it
will appear as two different hosts to the STP control plane.

How is information removed from the forwarding tables on each device? Through
a timeout process. If a forwarding entry has not been used in a specific time (a hold
timer), the entry is removed from the table. Hence, STP relies on cached forwarding
information.

Concluding Thoughts on the Spanning Tree Protocol

STP is clearly not a link state protocol, nor is it a path vector protocol. Is it a distance
vector protocol? Any confusion over how to classify the protocol stems from the ini-
tial selection of a root bridge before the shortest paths are calculated. Removing this
first step, it is easier to classify STP as a distance vector protocol using a distributed
form of the Bellman-Ford algorithm to calculate loop-free paths across the topology.
What should be done with the initial root bridge calculation? This part of the pro-
cess ensures there is just one Shortest Path Tree across the entire network. So STP can

Spanning Tree Protocol 409

be classified as a distance vector protocol that uses the Bellman-Ford algorithm to
compute a single set of shortest paths for all destinations across the entire network.
Another way to put this is STP computes a Shortest Path Tree across the topology,
rather than across the destinations.

Why is it important that a single tree be calculated across the entire network? This
is related to the way in which STP learns reachability information: STP is a reactive
control plane, learning reachability in response to actual packets flowing through the
network. If each device built a separate tree rooted at itself, this reactive process would
lead to an inconsistent view of the network topology and hence to forwarding loops.

STP and Broadcast Storms

Broadcasts are an important part of service discovery in most applications.
For instance, in Figure 15-6, how can A discover the presence of a particular
service on F?

The easiest thing for A to do in this situation is to send some sort of packet
that will be delivered to each host connected to the network and await a reply
from the host running the service in question. So A sends a broadcast ask-
ing about a particular service or device. How should B, C, D, and E treat
this broadcast? As the broadcast is not a “learnable” address (every device on

A B

C

D

E F

root bridge

dp

dp

dp

bp

dpdp dp dp

rp rp

Figure 15-6 Broadcast Storms and the Spanning Tree Protocol

Chapter 15 Distance Vector Control Planes410

every segment should receive the broadcast), the best thing for the switches to
do is to forward the packet on every nonblocked port.

What happens if A sends a lot of broadcasts? What happens if a host sends
enough broadcasts to cause BPDUs to be dropped? In this case, STP itself
will become confused and will likely create a forwarding loop in the topology.
Such a forwarding loop will, of course, forward broadcast packets forever;
there is no TTL to drop packets after they have traversed the network a spe-
cific number of times. Each broadcast transmitted by A, in this situation, will
remain in the network forever, looping, perhaps, among the switches B, C, D,
and E. And each broadcast added to the load of the network will, of course,
prevent BPDUs from being successfully transmitted or received, preventing
STP from converging.

Hence, the traffic on the network prevents STP from converging, and the
lack of convergence increases the traffic load on the network itself—a positive
feedback loop causing havoc throughout the network. These events are called
broadcast storms, and are common enough in STP-based networks to cause
wise network designers and operators to limit the scope of any STP domain.
The existence of broadcast storms has also driven a number of modifications
to the operation of STP, such as simply replacing the base protocol with a
true link state control plane.

The Routing Information Protocol

The Routing Information Protocol (RIP) was originally specified in RFC1058,
 Routing Information Protocol, published in 1998.2 The protocol was updated in a
series of more recent RFCs, including RFC2435, RIP version 2,3 and RFC2080, RIP
Next Generation for IPv6.4 Figure 15-7 is used to explain RIP operation.

The operation of RIP is deceptively simple. In Figure 15-7:

 1. A discovers 2001:db8:3e8:100::/64 because it is configured on a directly
attached interface.

 2. A adds this destination to its local routing table with a cost of 1.

2. Hendrick, Routing Information Protocol.

3. Malkin, RIP Version 2.

4. Malkin and Minnear, RIPng for IPv6.

The Routing Information Protocol 411

 3. As 100::/64 is installed in the local routing table, A will advertise this reachable
destination (route) to B and C.

 4. When B receives this route, it will add the cost of the inbound interface so
that the path through A has a cost of 2, and examine its local table for any
lower-cost routes to this destination. As B has no other path to 100::/64, it will
install the route in its routing table and advertise the route to E.

 5. When C receives this route, it will add the cost of the inbound interface so
that the path through A has a cost of 2, and examine its local table for any
lower-cost routes to this destination. As C has no other path to 100::/64, it will
install the route in its routing table and advertise the route to D and E.

 6. When D receives this route, it will add the cost of the inbound interface from C
so that the path through C has a cost of 3, and examine its local table for any
lower-cost routes to this destination. As D has no other path to 100::/64, it will
install the route into its routing table and advertise the route to E.

 7. E will now receive three copies of the same route; one through C with a cost of
3, one through B with a cost of 4, and one through D with a cost of 5. E will
choose the path through C with a cost of 2, installing this path to 100::/64 into
its local routing table.

 8. E will not advertise any path to 100::/64 toward C, because it is using C as its
best path to reach this specific destination. Thus, E will split horizon its adver-
tisement of 100::/64 toward C.

A

C

B

D

E
20

01
:d

b8
:3

e8
:1

00
::/

64
1

1

1
2

2

1

1

Figure 15-7 RIP Operation Example

Chapter 15 Distance Vector Control Planes412

 9. While E will advertise its best path, through C, to both D and B, neither will
choose the path through E, as they already have better paths available toward
100::/64.

RIP advertises a set of destinations and costs one hop at a time through the net-
work; hence it is considered a distance vector protocol. The process that RIP uses to
find a set of loop-free paths through the network is considered a distributed form of
the Bellman-Ford algorithm, but it is not obvious how the process that RIP is using is
related to Bellman-Ford.

Tying Bellman-Ford to RIP

To see the connection, it is best to think of each hop in the network as a single row in
the topology table; this is illustrated in Figure 15-8.

Chapter 12, “Unicast Loop-Free Paths (1),” describes Bellman-Ford operating
across a topology table, arranged as a set of columns and rows. Using the row num-
bers indicated in Figure 15-8, you can build a similar topology table for this network,
as shown in Table 15-1.

Table 15-1 A Topology Table Built from the Network in Figure 15-8

Row Source (s) Destination (d) Distance (cost)

1 100::/64 A 1

2 A B 1

3 B C 2

4 C D 2

Assume each row of the table is run through the Bellman-Ford algorithm by a
different node. For instance, A computes Bellman-Ford across the first row and
passes the result on to B. Likewise, B computes Bellman-Ford across the relevant
rows and passes the result on to C. Bellman-Ford would still be the algorithm
used to compute the set of loop-free paths through the network; it would simply
be distributed across the nodes in the network. This, in fact, is how RIP operates.
Consider the following:

 1. A computes the first row in the table, setting the predecessor for 100::/64
to A and the cost to 1. A passes this result on to B for the second round of
processing.

The Routing Information Protocol 413

 2. B processes the second row in the table, setting the predecessor for 100::/64 to B
and the cost to 2. B passes this result on to C for the third round of processing.

 3. C processes the second row in the table, setting the predecessor for 100::/64 to
C and the cost to 2. C passes this result on to D.

The Bellman-Ford distributed processing is more difficult to see in more complex
topologies, because there is more than one “result table” being passed around the
network. These “result tables” will eventually merge at the source node, however.
Figure 15-9 illustrates.

In Figure 15-9, A would compute a provisional result table as the first “round” of the
Bellman-Ford algorithm, passing the result on to both B and E. B would compute a provi-
sional result based on local information, passing this on to C, and then C to D. In the same
way, E would compute a provisional result table based on local information, passing this
on to F, and then F to D. At D, the two provisional results are combined into a final table
from D’s perspective. Of course, the provisional table is considered final for the device at
each hop. From E’s perspective, the table it computes based on locally available informa-
tion plus the advertisement from A is the final table of loop-free paths to reach 100::/64.

The entire distributed process has the same effect as walking across every row in
the topology table the same number of times as entries in the topology table itself,
slowly sorting the predecessor and cost fields for each entry based on newly set pre-
decessors in the previous round of computation.

A CB D20
01

:d
b8

:3
e8

:1
00

::/
64

row 1 row 2 row 3 row 4

Figure 15-8 RIP and Bellman-Ford

Chapter 15 Distance Vector Control Planes414

Reacting to Topology Changes

How does RIP remove reachability information from the network in the case of a
node or link failure? Figure 15-10 is used to explain.

A C

F

B

E

D20
01

:d
b8

:3
e8

:1
00

::/
64

row 1 row 2 row 3 row 4

Figure 15-9 Distributed Bellman-Ford in Parallel

A CB D

20
01

:d
b8

:3
e8

:1
00

::/
64

Figure 15-10 Link Failure in a RIP Network

The Routing Information Protocol 415

There are two different possible reactions to the loss of the [A,B] link, depending
on the version and configuration of RIP running in this network. The first possible
reaction is to simply let the information about 100::/64 time out. Assuming the inva-
lid timer (a form of hold timer) for any given route is 180 seconds (a common setting
in RIP implementations):

 • B would notice the failed link immediately, as it is directly connected, and
remove 100::/64 from its local routing table.

 • B would stop advertising reachability to 100::/64 toward C.

 • C will remove reachability to this destination from its local routing table and
stop advertising reachability toward 100::/64 to D 180 seconds after B stops
advertising reachability to 100::/64.

 • D will remove reachability to this destination from its local routing table 180
seconds after C stops advertising reachability to 100::/64.

At this point, the network has converged on the new topology information. This
is obviously a rather slow process, as each hop must wait for every router closer to
the destination to time the destination out before discovering the loss of connectivity.

To speed up this process, most RIP implementations also include triggered
updates. If triggered updates are implemented and deployed in this network, when
the [A,B] link fails (or is removed from service), B will remove reachability to 100::/64
from its local table and send a triggered update to C, informing C of the failed reach-
ability toward the destination. This triggered update generally takes the form of an
advertisement with an infinite metric, or rather what is known as a poison reverse.
Triggered updates are often paced, so a flapping link will not cause the triggered
updates themselves to overwhelm either a link or a neighboring router.

Two other timers are specified in RIP for use during convergence: the flush timer
and the hold-down timer. When a route times out (as described above), it is not
immediately removed from the local routing table. Rather, another timer is set that
determines when the route will be flushed from the local table. This is the flush timer.
Further, there is a separate time period during which any route with a worse metric
than the previously known metric will not be accepted. This is the hold-down timer.

Concluding Thoughts on RIP

RIP carries information about locally reachable destinations to neighbors, along
with a cost for each destination; hence it is a distance vector protocol. Reachable
destinations are learned through local information at each device, and carried

Chapter 15 Distance Vector Control Planes416

through the network by the protocol regardless of traffic flow; hence RIP is a
 proactive control plane.

RIP does not form adjacencies for the reliable transmission of data through the
network; rather, RIP relies on periodically transmitted updates to ensure informa-
tion has not become out of date or has been accidentally dropped. The amount
of time any piece of information is kept is based on a hold timer, and the frequency
of transmissions is based on an update timer; the hold timer is normally set to three
times the value of the update timer.

As RIP has no true adjacency process, it does not detect whether or not two-way
connectivity exists; hence there is no Two-Way Connectivity Check (TWCC). No
method to check the MTU between two neighbors is built into RIP, either.

The Enhanced Interior Gateway Routing Protocol

The Enhanced Interior Gateway Routing Protocol (EIGRP) was originally released in
1993 to replace Cisco’s Interior Gateway Routing Protocol (IGRP). The primary reason
for replacing IGRP was its inability to carry classful routing information; specifically,
IGRP could not carry subnet masks. Rather than rebuild the protocol to support prefix
lengths, engineers at Cisco (specifically Dino Farinacci and Bob Albrightson) decided to
build a new protocol based on Garcia-Luna’s Diffusing Update Algorithm (DUAL).
Dave Katz rebuilt the transport to resolve some widely encountered problems in the
mid-1990s. Based on this initial implementation, a team led by Donnie Savage modified
the operation of the protocol heavily in the 2000s, adding a number of scaling features,
and rewriting key parts of EIGRP’s reaction to topology changes. EIGRP was released,
along with virtually all of these enhancements, in the informational RFC7868 in 2013.

While EIGRP is not often considered for active deployment in most service pro-
vider networks (most operators prefer a link state protocol instead), DUAL intro-
duces some important concepts into the conversation around loop-free paths. DUAL
is also used in other protocols, such as BABEL (specified in RFC6126, and used in
lightweight radio and home network environments).

EIGRP Metrics

EIGRP was originally designed to read the bandwidth, delay, error rate,
and other factors off links in near real time and carry them as metrics.
This would allow EIGRP to react to changing network conditions in real
time, and hence allow networks running EIGRP to more efficiently use the

The Enhanced Interior Gateway Routing Protocol 417

available network resources. At the time EIGRP was originally designed and
deployed, however, there were no “guard rails” put in place to prevent feed-
back loops between, for instance, the reaction of the protocol to changes
in available bandwidth and the shifts in traffic based on the available band-
width. If a pair of links with near real time available bandwidth were placed
parallel to one another, traffic will shift to the one with the most available
bandwidth, causing the protocol to react by showing more available band-
width on the other link, improving its metric, and hence traffic to shift
to the other link. This process of traffic shifting back and forth between
links can be solved in various ways, but it caused enough problems in early
EIGRP deployments for this near-real-time capability to be removed from
the code. Instead, EIGRP reads the characteristics of an interface at specific
times and advertises these metrics for the interface regardless of the network
conditions.

EIGRP carries five different route attributes, including bandwidth, delay,
load, reliability, and the MTU. Four of the metrics are combined using the
formula shown in Figure 15-11.

The default K values in this formula cause the entire formula to collapse
to (107/throughput) * delay. Replacing throughput with minimum bandwidth
along the path yields the version most engineers are familiar with, (107/band-
width) * delay.

The bandwidth and delay values are, however, scaled in more recent ver-
sions of EIGRP to account for links with a bandwidth higher than 107 kbps.

Note

Throughout this discussion of EIGRP, the bandwidth of every link is assumed to
be set to 1,000, and the K values set to their default values, leaving the delay as the
only component impacting the metric. Given this, the delay value alone is used as
the metric in these examples to simplify the math.

K1 * min throughput + K3 * Σ (delays) K6 * ext attribute+ + *
K2*min throughput K5

256 - load K4 - reliability

Figure 15-11 The EIGRP Metric Calculation Formula

Chapter 15 Distance Vector Control Planes418

Figure 15-12 is used to describe the operation of EIGRP.
The operation of EIGRP in this network is very simple on the surface:

 1. A discovers 2001:db8:3e8:100::/64 because it is directly attached (this could be
through the interface configuration, for instance).

 2. A adds the inbound interface cost, here shown as a delay of 100, to the route,
and installs it in its local routing table.

 3. A advertises 100::/64 to B and C through the two other connected interfaces.

 4. B receives this route, adds the inbound interface cost (for a total delay of 200),
and examines its local table for any other (or better) routes to this destination; B
does not have a route to 100::/64, so it installs the route in its local routing table.

 5. B advertises 100::/64 to D.

 6. C receives this route, adds the inbound interface cost (for a total delay of 200),
and examines its local table for any other (or better) routes to this destination;
C does not have a route to 100::/64, so it installs the route in its local routing
table.

 7. C advertises 100::/64 to D.

 8. D receives the route to 100::/64 from B, adds the inbound interface cost (for a
total delay of 300), and examines its local table for any other (or better) routes
to this destination; D does not have a route to this destination, so it installs the
route in its local routing table.

A

C

B

D E

20
01

:d
b8

:3
e8

:1
00

::/
64 D: 100

D
: 1

00

D: 100

D: 100

D: 100
D: 200

Figure 15-12 Sample Network for EIGRP Operation

The Enhanced Interior Gateway Routing Protocol 419

 9. D receives the route to 100::/64 from C, adds the inbound interface cost (for
a total delay of 400), and examines its table for any other (or better) routes to
this destination; D does have a better route to 100::/64, through B, so it inserts
the new route into its local topology table (see below for the additional pro-
cessing D does on this alternate path).

 10. D advertises the route to 100::/64 to E.

 11. E receives the route to 100::/64 from D, adds the inbound interface cost (for a
total delay of 400), and examines its local table for any other (or better) routes
to this destination; E does not have a route to this destination, so it installs the
route in its local routing table.

Thus far, this is very similar to the operation of RIP. Step 9, however, needs a good
bit more detail. After step 8, D has a path to 100::/64 with a total cost of 300; this is
the feasible distance to the destination, and B is the successor, as it is the path with
the lowest-cost path. At step 9, D receives a second path to this same destination.
In RIP, or other Bellman-Ford implementations, this second path would either be
ignored or discarded. EIGRP, being grounded in DUAL, however, will examine this
second path to determine if it is loop free or not. Can this path be used if the primary
path fails?

To determine whether this alternate path is loop free or not, D must compare
the feasible distance with the distance C has reported as its cost to reach 100::/64—
the reported distance. This information is available in the advertisement D receives
from C (remember that C advertises the route with its cost to the destination; D adds
the cost of the [B,D] link to this to find the total cost through C to reach 100::/64).
The reported distance through C is 200, which is less than the local feasible distance,
which is 300. Hence, the route through C is loop free and is marked as a feasible
successor.

Reacting to a Topology Change

How are these feasible successors used? Assume the [B,D] link fails, as illustrated in
Figure 15-13.

When this link fails, D will examine its local topology table to discover if it has
another loop-free path to the destination. Since the path through C is marked as a
feasible successor, D does have an alternate path. In this case, D can simply switch
to using the path through C to reach 100::/64. D will not recalculate the feasible
distance in this case, as it has not received any new information about the network
topology.

Chapter 15 Distance Vector Control Planes420

What if the link between C and A fails, instead, as illustrated in Figure 15-14?
In this case, before the failure, C has two paths to 100::/64: one through A with

a total delay of 200 and a second through D with a total delay of 500. The feasible
distance at C will be set to 200, as this is the cost of the best path available when con-
vergence is complete. The reported distance at D, 300, is greater than the feasible dis-
tance at C, so C will not mark the path through D as a feasible successor. Once the
[A,C] link fails, since C does not have an alternate path, it will mark the route active

A

C

B

D E

20
01

:d
b8

:3
e8

:1
00

::/
64 D: 100

D
: 1

00

D: 100
D: 100

D: 100
D: 200

Figure 15-13 Using the Feasible Successor

A

C

B

D E

20
01

:d
b8

:3
e8

:1
00

::/
64 D: 100

D
: 1

00

D: 100

D: 100

D: 100

D: 200

Figure 15-14 Reacting to Failure Without a Feasible Successor in EIGRP

The Enhanced Interior Gateway Routing Protocol 421

and send a query to each of its neighbors requesting updated information about any
available path to 100::/64.

When D receives this query, it will examine its local topology table and find
that its best path toward 100::/64 is still available. Because this path still exists, the
EIGRP process on D can assume that the current best path, through B, has not been
impacted by the failure of the [A,C] link. D replies to this query with its current met-
ric, which indicates this path is still available, and is loop free from D’s perspective.

On receiving this reply, C will note it is not waiting on any other neighbors to
respond (as it has just one neighbor, D). As C has received all the replies it is waiting
on, it will recalculate the available loop-free paths, choosing D as the successor, and
the cost through D as the feasible distance.

What happens if D never responds to C’s query? In older EIGRP implementa-
tions, C would set a timer, called the Stuck in Active Timer; if D does not respond to
C’s query within this time, C will declare the route Stuck in Active (SIA) and reset its
neighbor adjacency with D. In newer implementations of EIGRP, C will set a timer
called the SIA Query timer. When this timer expires, it will resend the query to D.
So long as D responds that it is still working on answering the query, C will continue
to wait for a response.

Where do these queries terminate? How far will an EIGRP query propagate in a
network? EIGRP queries terminate at one of two points:

 • When a router has no other neighbors to send queries to

 • When the router receiving the query does not have any information about the
destination referenced by the query

This means either at the “end of the EIGRP network” (called an Autonomous
System), or one router beyond any sort of policy or configuration that hides infor-
mation about specific destinations; for instance, one hop beyond the point where a
route is aggregated.

EIGRP Query Range and Network Design

EIGRP has always been known as the “protocol that will work on any net-
work,” because of its large scaling properties (on the order of BGP in many
cases) and apparent capability to run on “any” topology without a lot of con-
figuration. The primary determinant of EIGRP scaling, however, is the query

Chapter 15 Distance Vector Control Planes422

Neighbor Discovery and Reliable Transport

EIGRP checks two-way connectivity between neighbors, the link MTU, and provides
for the reliable transport of control plane information through the network by form-
ing neighbor relationships. Figure 15-15 illustrates the EIGRP neighbor formation
process.

The steps illustrated in Figure 15-15 are as follows:

 1. A sends a multicast hello onto the link shared between A and B.

 2. B places A in pending state; while A is in pending state, B will not send stan-
dard updates or queries to A, nor will it accept anything other than a specially
formatted update from A.

 3. B transmits an empty update with the initialization bit set to A; this packet is
sent to A’s unicast interface address.

 4. On receiving this update, A responds with an empty update with the initial-
ization bit set and containing an acknowledgment; this packet is sent to B’s
unicast interface address.

 5. On receiving this unicast update, B places A into the connected state and
begins sending updates containing individual topology table entries toward A;
piggy-backed onto each packet is an acknowledgment for the previous packet
received from the neighbor.

range; the primary task of network design in an EIGRP network is bounding
the scope of queries through the network. First, the query range impacts the
speed at which EIGRP converges; each additional hop of query range adds
some small amount of time to the overall convergence time of the network
(around 200ms in most cases). Second, the query range impacts the stability
of the network. The farther queries must pass through the network, the more
likely it is some router along the way will not be able to answer the query
immediately. Hence, the most important point in designing a network around
EIGRP as a protocol is bounding queries through aggregation or filtering of
some type.

The Enhanced Interior Gateway Routing Protocol 423

Because EIGRP does not form adjacencies with sets of neighbors, only individual
neighbors, this process ensures that both unicast and multicast reachability are avail-
able between the two routers forming an adjacency. To ensure that the MTU is not
mismatched on either end of the link, EIGRP pads a specific set of packets during
the neighbor formation; if these packets are not received by the other router, the
MTU is mismatched, and no neighbor relationship should be formed.

Note

EIGRP sends multicast hellos for neighbor discovery by default but will use
 unicast hellos if neighbors are manually configured.

A B

1. multicast hello

4. unicast update + init + ack

7. unicast update + ack

3. unicast update + init

6. unicast update + ack

8. unicast update + ack

2. A in pending state

5. A in connected state

. . .

Figure 15-15 EIGRP Neighbor Formation

Chapter 15 Distance Vector Control Planes424

Concluding Thoughts on EIGRP

EIGRP presents a number of interesting solutions to the problems that routing pro-
tocols encounter when sending information across a network, calculating loop-free
paths, and reacting to topology changes. EIGRP is classified as a distance vector pro-
tocol using DUAL to calculate loop-free paths, and alternate loop-free paths,
through the network. EIGRP advertises routes without reference to traffic flows
through the network, so it is a proactive protocol.

Distance Vector Protocols and the Routing Table

In most discussions about distance vector protocols (including this one),
these protocols are explained in a way that implies they operate completely
separate from the routing table and any other routing processes running on
the device. This, however, is not the case; distance vector protocols interact
with the routing table in a way that link state protocols do not. Specifically, a
distance vector protocol will not advertise a route to a destination it has not
installed in the local routing table.

For instance, assume EIGRP and RIP are running on the same router.
EIGRP learns about some destination and installs a route to the same desti-
nation in the local routing table. RIP learns about the same destination and
attempts to install the route it has learned into the local routing table, but
it fails to do so—the EIGRP route overwrites (or overrides) the RIP learned
route. In this case, RIP will not advertise this specific route to any of its
neighbors.

There are two reasons for this behavior. First, the route learned through
EIGRP might point to a completely different next hop than the route learned
through RIP. If the metrics are not set correctly, the two protocols could form
a permanent forwarding loop in the network. Second, RIP has no way of
knowing just how valid the EIGRP route is. It could be that RIP advertises
the route, causing other routers to send the local device traffic destined to the
advertised destination, and then the local device actually drops the packet,
rather than forwarding it. This is one instance of a routing black hole.

To prevent either of these situations from occurring, distance vector pro-
tocols will not advertise routes that the protocol itself has not in the local
routing table. If a distance vector protocol’s route is overwritten for any rea-
son, it will stop advertising reachability to the destination.

Further Reading 425

 Further Reading

Bellman, Richard. “On a Routing Problem.” Quarterly of Applied Mathematics 16
(1958): 87–90.

Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs.” Numerische
Mathematik 1, no. 1 (1959): 269–71. doi:10.1007/BF01386390.

Envedi, Gabor Sandor, Andras Csaszar, Alia Atlas, Chris Bowers, and Abishek
Gopalan. An Algorithm for Computing IP/LDP Fast Reroute Using Maximally
Redundant Trees (MRT-FRR). Request for Comments 7811. RFC Editor, 2016.
https://rfc-editor.org/rfc/rfc7811.txt.

“eRSTP—Enhanced Rapid Spanning Tree Protocol—Industrial Communication—
Siemens.” WCMS3Article. Accessed September 25, 2017. http://w3.siemens.
com/mcms/industrial-communication/en/rugged-communication/technology-
highlights/pages/erstp-enhance-rapid-spanning-tree-protocol.aspx.

Ford, L. R. Network Flow Theory. Santa Monica, CA: RAND Corporation, 1956.

Garcia-Luna-Aceves, J. J. “Loop-Free Routing Using Diffusing Computations.”
IEEE/ACM Transactions on Networking 1, no. 1 (February 1993): 130–41.

Hendrick, C. Routing Information Protocol. Request for Comments 1058. RFC
Editor, 1988. https://rfc-editor.org/rfc/rfc1058.txt.

Malkin, Gary S. RIP Version 2. Request for Comments 2453. RFC Editor, 1998.
https://rfc-editor.org/rfc/rfc2453.txt.

Malkin, Gary S., and Robert E. Minnear. RIPng for IPv6. Request for Comments
2080. RFC Editor, 1997. https://rfc-editor.org/rfc/rfc2080.txt.

Moore, Edward F. “The Shortest Path through a Maze.” In Proceedings of the Inter-
national Symposium on Switching Theory 1957, Part II. Cambridge, MA:
 Harvard University Press, 1959.

Perlman, Radia. “An Algorithm for Distributed Computation of a Spanningtree in
an Extended LAN.” SIGCOMM Computer Communication Review 15, no. 4
(September 1985): 44–53, doi:10.1145/318951.319004.

Retana, Alvaro, Russ White, and Don Slice. EIGRP for IP: Basic Operation and
Configuration. 1st edition. Boston, MA: Addison-Wesley Professional, 2000.

Savage, Donnie, Steven Moore, James Ng, Russ White, Donald Slice, and Peter
 Paluch. Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP). Request
for Comments 7868. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7868.txt.

Schrijver, Alexander. “On the History of the Shortest Path Problem.” Documenta
Mathematica Extra (2012): 155–67.

https://rfc-editor.org/rfc/rfc7811.txt
http://w3.siemens.com/mcms/industrial-communication/en/rugged-communication/technology-highlights/pages/erstp-enhance-rapid-spanning-tree-protocol.aspx
http://w3.siemens.com/mcms/industrial-communication/en/rugged-communication/technology-highlights/pages/erstp-enhance-rapid-spanning-tree-protocol.aspx
http://w3.siemens.com/mcms/industrial-communication/en/rugged-communication/technology-highlights/pages/erstp-enhance-rapid-spanning-tree-protocol.aspx
https://rfc-editor.org/rfc/rfc1058.txt
https://rfc-editor.org/rfc/rfc2453.txt
https://rfc-editor.org/rfc/rfc2080.txt
https://rfc-editor.org/rfc/rfc7868.txt

Chapter 15 Distance Vector Control Planes426

Shimbel, A. “Structure in Communication Nets.” In Proceedings of the Symposium
on Information Networks, 199–203. New York: Polytechnic Press of the
 Polytechnic Institute of Brooklyn, n.d.

Suurballe, J. W. “Disjoint Paths in a Network.” Networks 4, no. 2 (1974): 125–45.
doi:10.1002/net.3230040204.

“Understanding Rapid Spanning Tree Protocol (802.1w).” Cisco. Accessed
September 25, 2017. https://www.cisco.com/c/en/us/support/docs/lan-switching/
spanning-tree-protocol/24062-146.html.

Review Questions

 1. Go through some specific protocols, describing each in terms of Protocols:

 • How the protocol would be broadly classified

 • Which problems they address out of the set described in the book

 • Which solutions they chose for each problem

 • Which problems the protocol does not address

 0 What does this tell you about the convergence characteristics of the
protocol?

 0 Is there a particular use case for each protocol?

 0 How does each one overlap with/differ from the ones described in the
book?

 • AODV

 • TRILL

 • BABEL

 • OLSR

 2. What is the specific method used by STP to prevent loops after a topology
change has occurred? Can you relate this to the CAP theorem?

 3. The text only describes the handling of unicast packets flowing through an
STP domain. How are broadcasts and multicasts handled? What is a broadcast
storm, and why is it so dangerous in a network running STP?

https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/24062-146.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/24062-146.html

Review Questions 427

 4. Examine STP from a complexity perspective. What simplifying assumptions
are made, and how do these simplifying assumptions impact the optimization
of using network resources?

 5. Research the operation of the Rapid Spanning Tree Protocol (RSTP; see the
“Further Reading” section for resources). What are the advantages of RSTP
over the Spanning Tree Protocol?

 6. Consider the VLAN extensions to STP. What are these extensions? Do they
make the protocol more complex or less? Do they increase or decrease the opti-
mal use of network resources?

 7. Consider the RIP hold-down timer described in the text. Construct a network
where RIP could potentially form a loop if the implementation does not sup-
port the hold-down timer.

 8. Analyze triggered RIP, as described in the text, within the complexity model
of state/optimization/surface. Is there an additional interaction surface intro-
duced into RIP by triggered updates? Is there additional state? What is the
optimization tradeoff?

 9. EIGRP can carry two different kinds of metrics—narrow and wide. Why do
these two kinds of metrics exist? What is the relationship between them?

 10. EIGRP can carry two different kinds of metrics—narrow and wide. Describe
the narrow to wide transition mechanism. Is this effective? Are there any prob-
lems inherent in the process? What happens if one router is never upgraded?

 11. Consider the EIGRP stuck-in-active process before the SIA query was inserted
in the code. Describe the process. Construct a network where EIGRP will reset
an adjacency several hops away from a router that is not answering queries
without the SIA query.

This page intentionally left blank

429

Chapter 16

Link State and Path Vector
Control Planes

Learning Objectives

After reading this chapter, you should understand:

 0 OSI Addressing, used with IS-IS

 0 The basic operation of IS-IS, including topology discovery and flooding

 0 The basic operation of OSPF, including topology discovery and flooding

 0 Designated Routers and Designated Intermediate Systems

 0 The validation of two-way connectivity and link MTU in OSPF and IS-IS

 0 The basic operation of the Border Gateway Protocol

This chapter continues the discussion on distributed control planes, addressing three
more routing protocols. Two of these are link state protocols, and the third is the
only widely deployed path vector protocol, the Border Gateway Protocol (BGP)
 version 4.

Throughout this chapter, it is important to consider why each of these protocols
is implemented the way it is. While it is always easy to become lost in the finer details
of protocol operation, it is far more important to remember the problems that these
protocols were designed to address and the range of possible solutions. Each proto-
col you study will be some combination of a moderately restricted set of available
solutions; there are very few new solutions available; there are different combina-
tions of solutions implemented in sometimes unique ways to solve specific sets of
problems.

Chapter 16 Link State and Path Vector Control Planes430

When reading through these high-level overviews of protocol operation, you
should try to pick out the common solutions they implement and then reflect these
common solutions back into the set of problems any distributed control plane must
solve in order to succeed in real networks.

A Short History of OSPF and IS-IS

The Intermediate System to Intermediate System (IS-IS, or IS to IS) protocol is
unique among the routing protocols in several ways. The work on IS-IS began in
1978, with the acceptance of the seven-layer networking model proposed by Honey-
well Labs to the British Standards Institute, which then proposed the idea of forming
a working group within the International Organization for Standardization (ISO) to
standardize the communications between computers. The idea was so good that the
forerunner of the International Telecommunications Union (the ITU) formed a par-
allel working group to work with the ISO in building these standards. These commit-
tees, their subcommittees, and sub-subcommittees, ad infinitim, created a suite of
standard protocols. Among these protocols was IS-IS.

Open Shortest Path First (OSPF) was originally conceived as an alternative to
IS-IS, designed specifically to interact with IPv4 networks. In 1989, the first OSPF
specification was published by the Internet Engineering Task Force, and OSPFv2,
a much improved specification, was published in 1998 as RFC2328. OSPF was
certainly the more widely used protocol, with early implementations of IS-IS
being barely exercised in the real world. There were some back-and-forth argu-
ments, and many features were “stolen” from one protocol into the other (in both
directions).

In 1993, Novell, a heavyweight in the networking world at the time, used IS-IS as
the basis for a replacement to the Netware native routing protocol. Novell’s trans-
port layer, Internet Packet Exchange (IPX), ran on a large number of devices at
the time, and the ability for a single protocol to route multiple transport protocols
was a definitive advantage in the networking market (the Enhanced Interior Gate-
way Routing Protocol, or EIGRP, can also route IPX). This replacement protocol
was based on IS-IS; to implement the Novell’s new protocol, many vendors sim-
ply rewrote their implementations of IS-IS, greatly improving them in the process.
This rewrite made IS-IS attractive to large-scale Internet service providers, so as they
moved off the Routing Information Protocol (RIP), they would often move onto
IS-IS instead of OSPF.

The Intermediate System to Intermediate System Protocol 431

Note

Parts of this history rely on Dave Katz’s presentation at the North American Net-
work Operators’ Group (NANOG) in the summer of 2000.1 Other parts rely on
the history given in IS-IS: Deployment in IP Networks.2

1. Katz, “OSPF and IS-IS: A Comparative Anatomy.”

2. White and Retana, IS-IS: Deployment in IP Networks.

The Intermediate System to Intermediate System
Protocol

In the Intermediate System to Intermediate System (IS-IS) protocol, a router is called an
Intermediate System (IS), and a host is called an End System (ES). The original design
of the suite was for each device, rather than interface, to have a single address. Services
and interfaces on a device would then have a Network Service Access Point (NSAP),
used to direct traffic to a specific service or interface. From an IP perspective, then, IS-IS
was originally designed within a host routing paradigm; Intermediate and End Systems
communicated directly using the End System to Intermediate System (ES-IS) protocol,
allowing IS-IS to discover the services available on any connected End System, as well as
to match lower interface addresses with higher layer device addresses.

Another interesting aspect of the design of IS-IS is it runs at the link layer; it did
not make a lot of sense to the designers of the protocol to run the control plane to
provide reachability for a transport system over the transport system itself. Routers
will not forward IS-IS packets, as they are parallel to IP in the protocol stack and
transmitted to link local addresses. When IS-IS was developed, most links were very
low speed, so the extra encapsulation was also thought to be wasteful. Links also
failed quite often, losing and corrupting packets; hence the protocol was designed to
withstand errors in transmission and packet loss.

OSI Addressing

As IS-IS was developed for a different transport protocol suite, it does not use Inter-
net Protocol (IP) addresses to identify devices. Instead, it uses an Open Systems
Interconnect (OSI) address to identify both Intermediate and End Systems. The OSI

Chapter 16 Link State and Path Vector Control Planes432

addressing scheme is somewhat complex, including identifiers for the authority allo-
cating the address space, a two-part domain identifier, an area identifier, a system
identifier, and a service selector (the N Selector); many of these parts of the OSI
address are variable length, making the system even more difficult to understand.
Within the IP world, however, only three parts of this address space are used.

 • The Authority Format Identifier (AFI), Initial Domain Identifier (IDI), High-
Order Domain Specific Part (HO-DSP), and the area are all treated as a single
field called the area.

 • The System Identifier is still treated as the system identifier.

 • The N Selector, or NSAP, is generally ignored (although there is an interface
identifier that is similar to the NSAP used in some specific situations).

Intermediate system addresses, then, normally take the form illustrated in
Figure 16-1.

In Figure 16-1:

 • The dividing point between the system identifier and the remainder of the
address is at the sixth octet, or twelve hexadecimal digits from the right
side; everything to the left of the sixth octet is considered part of the area
address.

A: 49.0011.2222.0000.0000.000A
B: 49.0011.2222.0000.0000.000B
C: 49.0011.3333.0000.0000.000C
D: 49.0011.3333.0000.0000.000A

This is set by the intermediate
system based on a local
physical interface address

Any two devices sharing the same address
from here to the left are considered to be

in the same flooding domain by
intermediate systems

Always use 49 here
to indicate private addressing

Use this for internal network organization
(almost always set to the same numbers

in real deployments) This is normally used to indicate
the flooding domain (or the area)

Figure 16-1 An Overview of the OSI Addressing Scheme Used in IS-IS

The Intermediate System to Intermediate System Protocol 433

 • If the N Selector is included, it is a single octet, or two hexadecimal digits, to
the right of the system identifier; for instance, if an N Selector were included
for address A, it might be 49.0011.2222.0000.0000.000A.00.

 • If an N Selector is included in the address, you need to skip the N Selector
when counting over six octets to find the start of the area address.

 • A and B are in the same flooding domain because they share the same digits
from the seventh octet to the leftmost octet in the address.

 • C and D are in the same flooding domain.

 • A and D represent different systems, although their system identifier is the
same; this sort of addressing, however, can be very confusing, and so is not used
in real IS-IS deployments (at least not by thoughtful system administrators).

You may find this addressing scheme more difficult than IP to work with, even
if you work with IS-IS as a routing protocol on a regular basis. There is a major
advantage to using an addressing scheme that is different from the one being
used at the transport level in a network, however; it is much easier to differenti-
ate between the kinds of devices on the network, and it is much easier to sepa-
rate nodes from destinations when thinking through Dijkstra’s Shortest Path First
(SPF) algorithm.

Marshalling Data in IS-IS

IS-IS uses a fairly interesting mechanism to marshal data for transmission between
intermediate systems. Each IS generates three kinds of packets:

 • Hello packets

 • Sequence Number Packets (Partial, PSNPs; and Complete, CSNPs)

 • A single Link State Packet (LSP)

The single LSP contains all the information about the IS itself, any reachable
intermediate systems, and any reachable destinations attached to the IS. This single
LSP is formatted into Type Length Vectors (TLVs), which contain various bits of
information. Some of the more common TLVs include the following:

 • Types 2 and 22: Reachability to another intermediate system

 • Types 128, 135, and 235: Reachability to an IPv4 destination

 • Types 236 and 237: Reachability to an IPv6 destination

Chapter 16 Link State and Path Vector Control Planes434

There are multiple types because IS-IS originally supported 6-bit metrics (most
processors at the time of the protocol’s definition could hold only 8 bits at a time,
and two bits were “stolen” from this field size to carry information about whether
the route was internal or external as well as other information). Over time, as link
speeds increased, various other metric lengths were introduced, including 24- and
32-bit metrics, to support wide metrics.

The single LSP carrying all IS, IPv4, and IPv6 reachability information—as well
as, potentially, MPLS tags and other information—will not fit into a single MTU-
sized packet. To actually send information over the network, IS-IS breaks up the LSP
into fragments. Each fragment is treated as a separate entity in the flooding process.
If one fragment changes, just the changed fragment is flooded through the network,
rather than the entire LSP. Because of this scheme, IS-IS is very efficient at flooding
new topology and reachability information without using more than the minimum
amount of bandwidth required.

Neighbor and Topology Discovery

While IS-IS was originally designed to learn about network reachability through the
ES-IS protocol, when IS-IS is used to route IP, it “does as the IP protocols do,” and
learns about reachable destinations through the local configuration of each device,
and through redistribution from other routing protocols. Hence IS-IS is a proactive
protocol, learning about and advertising reachability without waiting on packets to
be transmitted and forwarded through the network.

Neighbor formation in IS-IS is fairly simple; Figure 16-2 illustrates the process.
In Figure 16-2:

 1. IS A transmits a hello toward B. This hello contains a list of neighbors heard
from, which will be empty; the hold time setting B should use for A; and it
is padded to the local interface Maximum Transmission Unit (MTU) for the
link. Hello packets are padded only until the adjacency formation process is
complete; not every hello packet is padded to the full MTU of the link.

 2. IS B transmits a hello toward A. This hello contains a list of neighbors heard
from, which would include A; the hold time setting A should use for B; and it is
padded to the local interface MTU.

 3. Because A is in B’s “heard neighbor” list, A will consider B up and move to the
next stage of neighbor formation.

 4. Once A has included B in the “heard neighbor” list in at least one hello, B will
consider A up and move to the next stage of neighbor formation.

The Intermediate System to Intermediate System Protocol 435

 5. B will send a complete list of all the entries it has in its local topology table
(B describes the LSPs it has in its local database). This list is sent in a Complete
Sequence Number Packet (CSNP).

 6. A will examine its local topology table, comparing it to the complete list sent
by B; any topology table entries (LSPs) it does not have, it will request from B
using a Partial Sequence Number Packet (PSNP).

 7. When B receives a PSNP, it will set the Send Route Message (SRM) flag on any
entry in its local topology table (LSPs) A has requested.

 8. The flooding process will later walk the local topology table looking for entries
with the SRM flag set; it will flood these entries, synchronizing the databases
at A and B.

Note

The process described here includes modifications made by RFC5303, which
specifies a three-way handshake, and hello padding, which was added to most
implementations around 2005.

A B

1. hello

6. PSNP

3. B is up

2. hello

5. CSNP

8. send LSP (fragment) and clear SRM
. . .

4. A is up

7. set SRM flags

Figure 16-2 IS-IS Neighbor Formation Process

Chapter 16 Link State and Path Vector Control Planes436

Setting the SRM flag marks the information for flooding, but how does flooding
actually take place?

Reliable Flooding

For Dijkstra’s SPF algorithm (or any other SPF algorithm) to work correctly, every IS
in the flooding domain must share a synchronized database. Any inconsistency in the
database between two intermediate systems opens the possibility of a permanent
routing loop. How does IS-IS ensure connected intermediate systems have synchro-
nized databases? This section describes the process on point-to-point links; the fol-
lowing section will describe the modifications made to the flooding process on
multiaccess (such as Ethernet) links.

IS-IS relies on a number of fields in the LSP header to ensure two intermediate
systems have synchronized databases; Figure 16-3 illustrates these fields.

In Figure 16-3:

 • The packet length contains the total length of the packet in octets. For instance,
if this field contains 15, the packet is 15 octets in length. The packet length field
is 2 octets, so it can describe a packet up to 65,536 octets long—longer than
even the largest link MTUs.

 • The remaining lifetime field is also two octets and contains the number of
seconds for which this LSP is valid. This forces the information carried in
the LSP to be refreshed occasionally, an important consideration on older
transmission technologies, where bits can be flipped, packets can be trun-
cated, or information carried through the link can otherwise be corrupted.
The advantage of having a timer that counts down, rather than up, is each
IS in the network can determine how long its information should remain
valid independently of every other IS. The disadvantage is there is no clear
way to disable the functionality described. However, 65,536 seconds is a long
time—1,092 minutes, or around 18 hours. Reflooding every LSP fragment in
the network every 18 hours or so poses very little burden on the operation of
the network.

packet
length

remaining
lifetime LSP ID TLVs

Sequence
Number

P/ATT/OL/
Type bitsChecksum

Figure 16-3 IS-IS LSP Header Fields

The Intermediate System to Intermediate System Protocol 437

 • The LSP ID describes the LSP itself. Actually, this field describes the fragment,
as it contains the originating system identifier, the pseudonode identifier (the
function of this identifier is described later), and the LSP number, or rather
the LSP fragment number. The information contained in a single LSP frag-
ment is treated as “one unit” throughout the entire network; a single LSP frag-
ment is never “refragmented” by some other IS. This field is normally 8 octets.

 • The Sequence Number describes the version of this LSP. The sequence num-
ber ensures every IS in the network has the same information in its local copy
of the topology table. It also ensures an attacker (or broken implementation)
 cannot replay older information to replace new.

 • The Checksum ensures the information carried in the LSP fragment has not
been modified during transmission.

Note

The term LSP is often used for two different things: the complete LSP describing
all the connectivity and other information about a particular IS, and each frag-
ment of the LSP as it is transmitted through the network. Hence, an LSP is split
into LSPs, each of which is transmitted through the network. This can be con-
fusing; this book will always call the LSP as it is transmitted the LSP fragment or
fragment, and the LSP as generated by the IS, describing its entire connectivity,
simply an LSP.

Flooding is described using Figure 16-4.
In Figure 16-4:

 1. A is connected to 2001:db8:3e8:100::/64. A builds a new fragment describing
this newly reachable destination.

 2. A sets the SRM flag on this fragment toward B.

 3. The flooding process, at some point in the future (usually a matter of milli-
seconds), will examine the topology table and flood any entries with the SRM
flag set.

 4. Once the new entry is placed in its topology table, B will create a CSNP
describing its entire database and send this to A.

Chapter 16 Link State and Path Vector Control Planes438

 5. On receiving this CSNP, A clears its SRM flag toward B.

 6. B verifies the checksum and compares the received fragment to existing entries
in its topology table. As there is no other entry matching this system and frag-
ment identifier, it will place the new fragment in its local topology table. Given
this is a new fragment, B will initiate the flooding process toward C.

What about removing information? There are three ways information can be
removed from the IS-IS flooding system:

 • The originating IS can originate a new fragment without the relevant informa-
tion and with a higher sequence number.

 • If the entire fragment no longer contains any valid information, the originating
IS can flood the fragment with a remaining lifetime of 0 seconds. This causes
each IS in the flooding domain to reflood the zero age fragment and remove it
from consideration for future SPF calculations.

A

C

B

3. Flood fragment

2. Set SRM flag

5. Clear SRM flag

4. CSNP with fragment included

6. Determine if this is a new fragment

20
01

:d
b8

:3
e8

:1
00

::/
64

1. link connected

Figure 16-4 IS-IS Flooding

The Intermediate System to Intermediate System Protocol 439

 • If the remaining lifetime timer in a fragment times out at any IS, the fragment
is flooded with a zero age remaining lifetime. Each IS receiving this zero-aged
fragment will verify it is the most recent copy of the fragment (based on the
sequence number), set the remaining lifetime to its local copy of the fragment
to zero seconds, and reflood the fragment. This is called flushing a fragment
from the network.

When an IS sends a CNSP in reply to a fragment it has received, it actually verifies
the entire database, rather than just the one fragment it received. Each time a frag-
ment is flooded through the network, the entire database is checked between each
pair of intermediate systems.

Concluding Thoughts on IS-IS

IS-IS can be described as

 • Using flooding to synchronize the database at every intermediate system in the
flooding domain (a link state protocol).

 • Calculating loop-free paths using Dijkstra’s SPF algorithm.

 • Learning about reachable destinations through configuration and local infor-
mation (a proactive protocol).

 • Validating two-way connectivity in neighbor formation by carrying a list of
“neighbors seen” in its hello packets.

 • Removing information from the flooding domain through a combination of
sequence numbers and remaining lifetime fields in each fragment.

 • Verifying the MTU of each link by padding the initially exchanged hello
packets.

 • Validating the correctness of the information in the synchronized database
through checksums, periodic reflooding, and database descriptions exchanged
between intermediate systems.

IS-IS is a widely deployed routing protocol that has proven capable in a wide
range of network topologies and operational requirements.

Chapter 16 Link State and Path Vector Control Planes440

The Open Shortest Path First Protocol

In 2013, a version of OSPF was published for routing IPv6. Known as OSPFv3, it was
originally specified in RFC2740, which was later replaced by RFC5340, and updated
by later standards. OSPFv3 is the version assumed for any specific details of OSPF
operation in this chapter.

Marshalling Data in OSPF

Like many of the other protocols developed in the early days of network engineering,
OSPF was designed to minimize the processing power, memory, and bandwidth
required to carry routing information for IPv4 through the network. Two specific
choices made early on in the OSPF design process reflect this concern with resource
utilization:

 • OSPF relies on fixed length fields to marshal data, rather than TLVs. This saves
the overhead of carrying the additional metadata in the form of Type Length
Value (TLV) headers, reduces processing requirements by allowing fixed sized
in memory data structures to be matched with packets as they are received off
the wire, and reduces the size of OSPF data on the wire.

 • OSPF breaks the topology database up into multiple kinds of data, rather than
relying on a single LSP with TLVs. This means each kind of information—
reachability, topology, etc.—is carried in a unique packet format.

Note

More recent work in OSPFv3 replaces specific fields in the current fixed field LSAs
with TLV-based LSAs. See OSPFv3 LSA Extendibility for more information.3

3. Mirtorabi et al., “OSPFv3 LSA Extendibility.”

Each type of information OSPF can carry is carried in a different type of Link
State Advertisement (LSA). Some of the more notable types of LSAs are as follows:

 • Type 1: code 0x2001, Router LSA

 • Type 2: code 0x2002, Network LSA

 • Type 3: code 0x2003, Inter-Area Prefix LSA

The Open Shortest Path First Protocol 441

 • Type 4: code 0x2004, Inter-Area Router LSA

 • Type 5: code 0x4005, AS-external LSA

 • Type 7: code 0x2007, Type-7 (NSSA) LSA

There are a number of other types of LSAs, including opaque data, multicast
group membership, and scoped flooding LSAs (such as to a single neighbor, a single
link, or a single flooding domain).

Each OSPF router generates precisely one Router LSA (type 1); this LSA describes
any neighbors adjacent to the advertising router, as well as any connected reachable
destinations. The state of the links to these neighbors and destinations is inferred
from the advertisement of the neighbors and destination; in spite of the name “link
state,” links are not advertised as a separate “thing” (this is often a point of confu-
sion). If the Router LSA becomes too large to fit within a single IP packet (because
of the link MTU), it will be split into multiple IP fragments for transmission router
to router. Each router reassembles the entire Router LSA before processing it locally
and floods the entire Router LSA if it changes.

OSPF uses a few different packet types, as well—these are not the same as the LSA
types. Rather, these can be thought of as different “services” within OSPF or, per-
haps, as different “port numbers” running on top of User Datagram Protocol (UDP)
or the Transmission Control Protocol (TCP).

 • The hello is a type 1. These are used for neighbor discovery and liveness.

 • The Database Descriptor (DBD) is a type 2. These are used to describe the
local topology table.

 • The Link State Request (LSR) is a type 3. These are used to request specific
Link State Advertisements from an adjacent router.

 • The Link State Update (LSU) is a type 4. These are used to carry the Link
State Advertisements described in this section.

 • The Link State Acknowledgment is a type 5. This is simply a list of LSA head-
ers; any LSA listed in this packet is acknowledged as being received by the
transmitting router.

Neighbor and Topology Discovery

As a link state protocol, OSPF must ensure every router within an area (a flooding
domain) has the same database to calculate loop-free paths from. Any variation in
the shared topology database can result in a routing loop that will last as long as the

Chapter 16 Link State and Path Vector Control Planes442

variation in the shared topology database exists. One purpose for OSPF neighbor
formation, then, is to ensure the reliable flooding of topology information through
the network. A second reason for OSPF neighbor formation is to discover the
 network topology, by determining which routers are adjacent to the local router.
 Figure 16-5 illustrates the OSPF neighbor formation process.

In Figure 16-5:

 1. B sends a hello packet to A.

 2. Since B’s hello contains an empty neighbors seen list, A places B into init state
and adds B to its neighbors seen list.

 3. A sends a hello with B in its neighbors seen list.

 4. B receives A’s hello and sends a hello with A in its neighbors seen list.

 5. A receives this hello; as A itself is in the neighbors seen list, A places B into
the two-way state. This means that A has verified two-way connectivity exists
between itself and B.

 6. If there are a DR and BDR being elected on this link (the function of the DR
and BDR is considered in a moment), the election takes place after step 5.
Once the election is completed, the DR and BDR are placed in the exstart
state. During this state, the master and slave are elected for the exchange of
DBDs and LSAs. Essentially, the master controls the flow of DBDs and LSAs
between the newly adjacent routers. Adjacent routers on a point-to-point link
technically skip directly to full state at this point.

 7. B is moved to the exchange state.

 8. A sends a set of DBDs describing its database to B; B sends a set of DBDs
describing its database to A.

 9. A sends a link state request to B for each LSA B describes, and A does not have
a copy of it in its local topology table.

 10. B sends an LSA for each Link State (LS) request from A.

 11. Once the databases are synchronized, B is moved to full state.

The OSPF neighbor formation process verifies the MTUs on both ends of the
link match by carrying the MTU of the outbound interface in the hello; if the two
hello packets do not match in MTU size, the two OSPF routers will not form an
adjacency.

The Open Shortest Path First Protocol 443

Reliable Flooding

OSPF must not only ensure the initial exchange of topology information is com-
pleted, but it must also ensure ongoing changes in the network topology are flooded
to every router in the flooding domain. Figure 16-6 illustrates the OSPF LSA header;
examining this header will yield some important clues about the way OSPF reliably
floods topology and reachability information through the network.

In Figure 16-6:

 • The LS Age is (roughly) the number of seconds since this Link State Advertise-
ment was generated. This number counts up, rather than down. When the LS Age
reaches the MAXAGE setting (on any router, not just the originating router), the
router will increment the sequence number by 1, set the LS Age to the maximum

A B

3. hello

9. LS requests

8. DBD

2. B moved to init state

5. B moved to 2-way state

7. B moved to exchange state

11. B moved to full state

6. DR/BDR election; B moved to exstart state

1. hello

4. hello

10. LSA
. . .

Figure 16-5 OSPF Neighbor Formation

Chapter 16 Link State and Path Vector Control Planes444

age, and reflood the LSA throughout the network. This removes older topology
and reachability information that has not been refreshed in a while. The router
that originates any particular LSA will refresh its LSAs some number of seconds
before this LSA Age field reaches the maximum; this is the LS refresh interval.

 • The Link State Identifier is a unique identifier assigned by the originating
router to describe this LSA. It is normally the link address, or some local link
layer address (such as an Ethernet Media Access Control, or MAC, address).

 • The Advertising Router is the router ID of the originating router. This is often
confused with an IP address, as it is often derived from a locally configured
IP address—but it is not an IP address.

 • The Link State Sequence Number indicates the version of the LSA. Generally,
higher numbers mean newer versions, although there are earlier versions of
OSPF that use a circular number space, rather than an absolutely increment-
ing one. Implementations that use an absolutely incrementing number space
restart the OSPF process if the end of the number space is reached.

 • The Link State Checksum is a checksum computed across the LSA used to
catch errors in transmission or storage of the information.

Figure 16-7 is used to examine the flooding process.
In Figure 16-7:

 1. The link to 2001:db8:3e8:100::/64 is configured, brought up, connected, etc.,
at A.

 2. A rebuilds its Router LSA (type 1) to contain this new reachability informa-
tion, packages it into an LSU (which may be fragmented while being placed
into IP packets), and floods it to B.

LS Age

LS Checksum Length

LS TypeOptions

LS Sequence Number

Link State Identifier

Advertising Router

Figure 16-6 OSPF LSA header

The Open Shortest Path First Protocol 445

 3. B receives this LSA and acknowledges its receipt with a link state acknowledg-
ment. A will resend the LSA if B does not acknowledge it quickly enough.

 4. B will now examine its topology table to determine if this LSA is new or a copy
of one it already has. B determines this primarily by examining a sequence
number included in the LSA itself. If this is a new (or updated) LSA, B will
 initiate the same process to flood the changed LSA to C.

Concluding Thoughts on OSPF

OSPF can be described as

 • Learning about reachable destinations through configuration and local infor-
mation (a proactive protocol)

 • Using flooding to synchronize the database at every intermediate system in the
flooding domain (a link state protocol)

 • Calculating loop-free paths using Dijkstra’s SPF algorithm

 • Validating two-way connectivity in neighbor formation by carrying a list of
“neighbors seen” in its hello packets

A B

C

2. Flood LSA

1. Bring link up

3. LS acknowledgment

4. Determine if LSA is new

20
01

:d
b8

:3
e8

:1
00

::/
64

Figure 16-7 OSPF Flooding

Chapter 16 Link State and Path Vector Control Planes446

 • Validating the MTU at adjacency formation by carrying the MTU in the hello
packet

OSPF is widely used in small- and large-scale networks, including retail, service
provider, financial, and many other businesses.

Common Elements of OSPF and IS-IS

The preceding sections have considered those aspects of OSPF and IS-IS that are dif-
ferent enough to warrant separate explanations. There are, however, a number of
things OSPF and IS-IS have implemented in similar enough ways to consider their
solutions as simple variants. These include the handling of multiaccess links, the way
the Shortest Path Tree is conceptualized, and the way two-way connectivity checks
are handled.

Multiaccess Links

Multiaccess links, such as Ethernet, are links where attached devices “share” the
available bandwidth, and each device can send packets directly to any other device
connected to the same link. Multiaccess links pose special challenges for protocols
that synchronize a database across the link; Figure 16-8 is used to explain.

One option a protocol could use when running over a multiaccess link is to simply
form adjacencies as it normally would over a point-to-point link. For instance, in
Figure 16-8:

 • A can form an adjacency with B, C, and D.

 • B can form an adjacency with A, C, and D.

 • C can form an adjacency with A, B, and D.

 • D can form an adjacency with A, B, and C.

If this pattern of adjacency formation is used, when A receives a new LSP frag-
ment (IS-IS) or LSA (OSPF) from some router not connected to the shared link:

 • A will transmit the new fragment or LSA to B, C, and D separately.

 • When B receives the fragment or LSA, it will transmit the new fragment or LSA
to C and D separately.

 • When C receives the fragment or LSA, it will transmit the new fragment or
LSA to D.

Common Elements of OSPF and IS-IS 447

Given the transmission of each fragment or LSA, and the following CSNP or
acknowledgment to ensure the local database is synchronized at each router, a large
number of packets must cross the shared link to ensure every device’s database is
synchronized. To reduce the flooding on multiaccess links, IS-IS and OSPF elect a
single device that is responsible for ensuring every device connected to the link has a
synchronized database. In Figure 16-8, for IS-IS:

 • A single device is elected to manage flooding on the link. In IS-IS, this device is
called the Designated Intermediate System (DIS).

 • Each device with new link state information sends the fragment to a multicast
address so every device on the shared link will receive it. None of the devices
connected to the link send acknowledgments of any kind when they receive the
updated fragment.

 • The DIS sends out a copy of its CSNP on a regular basis to the same multicast
address, so every device on the multiaccess link receives a copy of it.

 • If any device on the shared link finds it is missing some specific fragment,
based on the description of the DIS’s database in the CSNP, it will send a PSNP
onto the link requesting the missing information.

 • If any device on the shared link finds it has information the DIS does not have,
based on the description of the DIS’s database in the CSNP, it will flood the
missing fragment onto the link.

In this way, new link state information is flooded across the link a minimal num-
ber of times. In Figure 16-8, for OSPF:

 • A single device is elected to manage flooding on the link, called the Designated
Router (DR). A backup device is elected, as well, called the Backup Designated
Router (BDR—creative, right?).

DB

CA
2001:db8:3e8:100::/64

Figure 16-8 Multiaccess Network to Explain IS-IS Operation

Chapter 16 Link State and Path Vector Control Planes448

 • Each device with new link state information floods it to a special multicast
address monitored by the DR and BDR (all-DR-routers).

 • The DR receives this LSA, examines it to determine if it contains new informa-
tion, and then refloods it to a multicast address that all the OSPF routers on the
link listen to (all-SPF-routers).

The election of a DIS or DR does not, however, just impact the flooding of infor-
mation on the multiaccess link; it also impacts the way SPF is calculated through the
link. Figure 16-9 illustrates.

A

p

A

B C D

B C D

2001:db8:3e8:100::/64

2001:db8:3e8:101::/64

2001:db8:3e8:102::/64

10
2:

:/6
4

10
2:

:/6
4

10
1:

:/6
410

1:
:/6

4

10
1:

:/6
4

10
1:

:/6
4

100::/64

Figure 16-9 The DIS, DR, and SPF Calculation

Common Elements of OSPF and IS-IS 449

In Figure 16-9, A is elected as the DIS or DR for the multiaccess circuit. A not
only ensures every device on the link has a synchronized database, but it also creates
a pseudonode, or p-node, and advertises it as if it were a real device attached to the
network. Each of the routers connected to the shared link advertises connectivity to
the p-node, rather than to each of the other connected systems.

In IS-IS, A creates an LSP for the p-node; this p-node advertises a zero-cost link
back to each device attached to the multiaccess link. In OSPF, A creates a Network
LSA (type 2).

Without this p-node, the network looks like a full mesh to the other intermediate
systems in the flooding domain, as shown on the left side of Figure 16-9. With the
p-node, the network appears to be a hub-and-spoke network, with the p-node as the
hub. Each device advertises a link toward the p-node, with the link cost being set to
the local interface cost onto the shared link. The p-node, in return, advertises a zero-
cost link back to each device connected to the shared link. This reduces the complex-
ity of calculating SPF across large-scale multiaccess links.

Conceptualizing Links, Nodes, and Reachability
in Link State Protocols

One confusing aspect of link state protocols is how the nodes, links, and reachability
interact with one another. Figure 16-10 illustrates.

In both OSPF and IS-IS, the nodes and links are used to be a Shortest Path Tree, as
shown in the darker, solid lines. The dashed lines show how reachability information
is attached to each node. Every node connected to a particular reachable destination
advertises the destination—not just one of the two nodes connected to a point-to-
point link, but both of them. Why is this?

The primary reason is this is just the easiest solution to advertising the reach-
able destinations. If you wanted to build a routing protocol that only advertised
each reachable destination as connected to a single device, you would need to find
some way to elect which of the connected devices should advertise the reachable
destination. Further, if the elected device fails, then some other device must take
over advertising the reachable destination, which can take time and impact con-
vergence in a negative way. Finally, by allowing each device to advertise reachabil-
ity to all connected destinations, you can actually find the shortest path to each
destination.

That each device advertises each locally reachable destination is difficult for some
engineers to wrap their minds around, however.

Chapter 16 Link State and Path Vector Control Planes450

Validating Two-Way Connectivity in SPF

Two-way connectivity is a problem for control planes in two distinct places: between
adjacent devices and when calculating loop-free paths through the network. Both
IS-IS and OSPF also ensure two-way connectivity is in place when computing loop-
free paths.

The essential element is a backlink check. Figure 16-11 illustrates.
In Figure 16-11, the direction of each link is labeled with an arrow (or set of

arrows). The [A,B] link is unidirectional toward A; the remaining links are two-way
connected (bidirectional). When computing SPF, D will do the following:

 • When processing C’s link state information, note C claims to be connected
to B. D will find B’s link state information and check to make certain B also
claims to be connected to C. In this case, B does claim to be connected to C, so
D will use the [B,C] link.

D D

B B

C C

A A

49.0011.2222.0000.0000.000A 49.0011.2222.0000.0000.000A

49.0011.2222.0000.0000.000A.01

p

Figure 16-10 Conceptualizing Nodes, Links, and Reachability in Link State Protocols

Border Gateway Protocol 451

 • When processing B’s link state information, note B claims to be connected to
A. Examining A’s link state information, however, the D cannot find any infor-
mation from A claiming to be connected to B. Because of this, D will not use
the [A,B] link.

This check is normally done either before a link is moved to the TENT or before a
link is moved from the TENT onto the PATH.

Border Gateway Protocol

In January 1989 at the 12th Internet Engineering Task Force (IETF) meeting in Aus-
tin, Texas, Yakov Rekhter and Kirk Lougheed sat down at a table and in a short time
a new exterior gateway routing protocol was born, the BGP. The initial BGP design
was recorded on a napkin rumored to have been heavily spattered with ketchup. The
design on the napkin was expanded to three handwritten sheets of paper from which
the first interoperable BGP implementation was quickly developed.

BGP was originally designed to be an Exterior Gateway Protocol (EGP), which
means it was intended to connect networks, or Autonomous Systems (ASes), rather
than devices. If BGP is an EGP, this must mean that the other routing protocols, like
RIP, EIGRP, OSPF, and IS-IS, must be Interior Gateway Protocols (IGPs)—a designa-
tion that “stuck.” Clearly defining interior and exterior gateways has proven useful
in designing and operating large-scale networks. BGP is unique among the widely
deployed protocols in its loop-free path calculation. There are three widely used dis-
tance vector protocols (Spanning Tree, RIP, and EIGRP). There are two widely used
link state protocols (OSPF and IS-IS). And there are many more examples of these
two types of protocols developed and deployed in what might be considered niche
markets. BGP, however, is the only widely deployed path vector protocol.

A B C D

20
01

:d
b8

:3
e8

:1
00

::/
64

20
01

:d
b8

:3
e8

:1
01

::/
64

Figure 16-11 Computing the Back Link to Test for Two-Way Connectivity

Chapter 16 Link State and Path Vector Control Planes452

What are the most important goals for an EGP? The first is obviously select-
ing loop-free paths, but this clearly does not mean the shortest path. The reason
the shortest path is not as important in an EGP as it is in an IGP is that EGPs are
used to connect entities, such as service providers, content providers, and corporate
networks. Connecting networks at this level means focusing on policy, rather than
efficiency—in complexity terms, increasing state through policy mechanisms while
reducing overall network optimization in pure traffic-carrying terms.

BGP policy mechanisms will not be considered here in any depth; some basic
policy concepts are considered in Chapter 17, “Control Plane Policy.” This section
focuses on transport, peering, advertisement, and the BGP decision process.

BGP Peering

BGP does not provide any sort of reliable transport. Instead, BGP relies on TCP to
carry information between BGP peers. Using TCP ensures

 • MTU detection is handled, even for connections crossing several hops (or
routers).

 • Flow control is taken care of by the underlying transport, so BGP does not
need flow control directly (although most BGP implementations do inter-
act with the TCP stack on the local host to improve throughput for BGP
specifically).

 • Two-way connectivity between peers is ensured by the three-way handshake
implemented in TCP.

Even though BGP relies on an underlying TCP connection for many of the func-
tions control planes must solve in building adjacencies, there are still a number of
functions TCP cannot provide. Therefore, a fuller look at the BGP peering process is
still in order; Figure 16-12 illustrates.

In Figure 16-12:

 1. The BGP peering session begins in the idle state.

 2. A sends a TCP open on port 179; B responds to an ephemeral port on A. After
the TCP three-way handshake is completed (the TCP session is successful),
BGP moves the peering state to connect. If the peering session is being formed
across some type of state-based filtering, such as a firewall, it is important that
the TCP open be transmitted from the “inside” of the filtering device.

Border Gateway Protocol 453

 3. If the TCP connection fails, the BGP peering state is moved to active.

 4. A sends a BGP open to B and moves B to the opensent state. At this point, A is
waiting on B to send a keepalive. If B does not send a keepalive within a spe-
cific period, A will move the session back to the idle state. The open message
contains a number of parameters, such as which address families the two BGP
speakers support and the hold timer. This is called capabilities negotiation.
The lowest (minimum) hold timer of the two advertised is selected as the hold
timer for the peering session.

 5. When B sends A a keepalive, A moves B to the openconfirm state.

 6. At this point, A will send B a keepalive to verify the connection. When A and B
receive one another’s keepalives, the peering session will move to the estab-
lished state.

 7. The two BGP speakers exchange routes, so their tables are up to date. A and B
only exchange their best paths, unless some form of BGP multipath is sup-
ported and configured on the two speakers.

 8. To notify A it has finished sending its entire local table, B sends A an End of
Table (EOT) or End of RIB (EOR) signal.

A B

2. send TCP open (port 179)

4. send BGP Open

6. keepalive

7. exchange routes

5. keepalive

6. keepalive

8. End of Table

2. open TCP (ephemeral port)

1. idle state

connect state

opensent state

openconfirm state

established state

3. If failed, m
ove to active state

idle

connect active

opensent

openconfirm

established

Figure 16-12 The BGP Peering Process

Chapter 16 Link State and Path Vector Control Planes454

There are two kinds of BGP peering relationships: BGP peers within the same
Autonomous System (AS, which generally means the set of routers within a single
administrative domain, though this is a rather loose definition) are called internal
BGP (iBGP) peers, and BGP peers between autonomous systems are called external
(or exterior) BGP (eBGP) peers. While the two kinds of BGP peering relationships
are built the same way, they have different advertisement rules.

The BGP Best Path Decision Process

As BGP is designed to interconnect autonomous systems, the best path algorithm is
focused primarily on policy, rather than loop free-ness. In fact, if you examine any
standard explanation of the BGP best path process, whether or not a particular
path is loop free is not included in the decision process at all. How, then, does BGP
determine a particular peer is advertising a loop-free route? Figure 16-13 illustrates.

In Figure 16-13, each router is in a separate AS, so every pair of BGP speakers
will form an eBGP peering session. A, which is connected to 2001:db8:3e8:100::/64,
advertises this route toward B and C. BGP route advertisements carry a number of
attributes, one of which is the AS Path (others will be discussed later in describing
the best path selection process). Before A advertises 100::/64 to B, it adds its AS num-
ber into the AS Path attribute. B receives the route and advertises it to D; before
advertising the route to D, it adds AS65001 to the AS Path. The AS Path then, tracing
from A through C, looks something like this at every hop:

 • As received by B: [AS65000]

 • As received by C: [AS65000, AS65001]

 • As received by D: [AS65000, AS65001, AS65003]

AS65000

AS65001

AS65002

AS65003

2001:db8:3e8:100::/64

B

A

D

C

Figure 16-13 BGP and Loop-Free Paths

Border Gateway Protocol 455

When D received the route from B, it will advertise it back to C (there is no split
horizon in BGP). Assume C, in turn, advertises the route back to A for some reason
(it would not in this situation, because the path through A would be a better path to
the destination, but just to illustrate loop prevention), A will examine the AS Path
and discover its local AS is in the AS Path. This is clearly a loop, so A simply ignores
the route. Since this route is ignored, it is never placed in the BGP topology table;
hence only loop-free routes are compared using the BGP best path process.

The BGP best path process consists of 13 steps in most implementations (the
first step is not always implemented, as it is a local decision on the part of the BGP
speaker):

 1. The route with the highest weight is chosen. Some implementations do not
implement a route weight.

 2. The route with the highest local preference (LOCAL PREF) is chosen. The local
preference represents the exit policy of the local AS—which exit point out of
the available exit points would the owner of this AS like the BGP speaker prefer.

 3. Prefer the locally originated route, which means on this BGP speaker. This step
is rarely used in the decision process.

 4. Prefer the path with the shortest AS Path. This step is intended to prefer the
most efficient path through the internetwork, by choosing the path that will
pass through the smallest number of autonomous systems to reach the desti-
nation. Operators often prepend AS Path entries to influence this step in the
decision process.

 5. Prefer the path with the lowest origin type. Routes that are redistributed from
an IGP are preferred over routes with an unknown origin. This step rarely has
any impact on the decision process.

 6. Prefer the path with the lowest multiexit discriminator (MED). The MED rep-
resents the entrance policy of the remote AS. As such, the MED is only com-
pared if multiple routes have been received from the same neighboring AS; if
the same route is received from two different neighboring autonomous sys-
tems, the MED is ignored.

 7. Prefer eBGP routes over iBGP routes.

 8. Prefer the route with the lowest IGP cost to the next hop. If no local exit policy
is set (in the form of the local preference), and the neighboring AS has not set
an entrance policy (in the form of the MED), then the path with the closest exit
from the local router is chosen as the exit point.

 9. Determine if multiple paths should be installed in the routing table (some form
of multipath is configured).

Chapter 16 Link State and Path Vector Control Planes456

 10. If comparing two external routes (learned from an eBGP peer), prefer the old-
est route, or the route learned first. This rule prevents route churn just because
routes are refreshed.

 11. Prefer the route learned from the peer with the lowest router ID. This is simply
a tiebreaker to prevent churn in the routing table.

 12. Prefer the route with the shortest cluster length (see the next section for an
explanation of the cluster).

 13. Prefer the route learned from the peer with the lowest peering address. This is,
again, simply a tie breaker, chosen arbitrarily to prevent ties and cause churn
in the routing table, and would normally be used when two BGP peers are con-
nected over two parallel links.

While this seems like a long process, almost every best path decision in BGP
comes down to four factors: the local preference, the MED, the AS Path length, and
the IGP cost.

Note

If this process isn’t complex enough, BGP has been extended to support almost
any best path decision scheme an operator can think of. See BGP Custom Decision
Process for more information.4 These custom decision capabilities can determine
which path is the best path before, or after, any of the decision points described
here.

4. Retana and White, “BGP Custom Decision Process.”

BGP Advertisement Rules

BGP has two simple rules to determine where to advertise a route:

 • Advertise the best path to every destination to every eBGP peer.

 • Advertise the best path learned from an eBGP peer to every iBGP peer.

Another way to put these two rules is this: never advertise a route learned from an
iBGP to another iBGP peer. Figure 16-14 illustrates.

In Figure 16-14, A and B are eBGP peers, while B and C, and C and D, are iBGP
peers. Assume A advertises 2001:db8:3e8:100::/64 to B. Since B received this route

Border Gateway Protocol 457

advertisement from an eBGP peer, it will advertise 100::/64 to C, which is an iBGP
peer. C, on learning this route, will not advertise the route to D, however, as C
received the route from an iBGP peer, and D is also an iBGP peer. In this illustra-
tion, then, D will not learn about 100::/64. This does not seem very useful in the real
world; however, the restriction is there for a reason.

Consider how BGP prevents routing loops from forming—by carrying a list of the
autonomous systems through which the route has passed in the route advertisement
itself. When advertising a route from one iBGP speaker to another, there is no change
in the AS Path. If iBGP speakers advertised routes learned from iBGP peers to iBGP
peers, routing loops can easily be formed. One solution to this problem is simply to
build a multihop peering relationship between B and D (remember that BGP runs on
top of TCP; so long as there is IP connectivity between two BGP speakers, they can
build a peering relationship). Assume that B builds a peering relationship with D
across C, and neither B nor D builds a peering relationship with C. What will happen
when traffic is switched toward 100::/64 by D toward C? What will happen to packets
in this flow at C? C will not have a route to 100::/64, so it will drop the traffic. This
can be solved in a number of ways—for instance, B and D could tunnel the traffic
across C, so C does not need to have reachability to the external destination. BGP
could also be configured to redistribute routes into whatever underlying IGP is run-
ning (this is a bad idea!—do not do this).

BGP route reflectors were standardized to resolve this problem. Figure 16-15 illus-
trates the operation of route reflectors.

In Figure 16-15, E is configured as a route reflector; B, C, and D are con-
figured as route reflector clients (specifically, as clients of E). A advertises the
2001:db8:3e8:100::/64 route to B; B advertises this route to E, because it was received
from an eBGP peer, and E is an iBGP peer. E adds a new attribute to the route, a
 cluster list, which indicates the path of the update within the AS through the route
reflector clusters. E will then advertise the route to each of its clients. Loop preven-
tion, in this case, is handled by the cluster list.

A B C D

AS65000 AS65001

eBGP iBGP iBGP

2001:db8:3e8:100::/64

Figure 16-14 BGP Advertisement Rules

Chapter 16 Link State and Path Vector Control Planes458

Concluding Thoughts on BGP

While BGP was originally designed to interconnect autonomous systems, its use has
spread to data center fabrics, network cores, and carrying information about virtual
private networks. The uses to which BGP has been put are, in fact, almost limitless;
hence, you will encounter BGP in a number of future chapters. Along the way, BGP
has become a very complex protocol; this section barely begins to sketch the opera-
tion of the protocol.

BGP can be described as

 • A proactive protocol that learns about reachable destinations through configu-
ration, local information, and other protocols

 • A path vector protocol that advertises only the best path to each neighbor and
does not prevent loops within an autonomous system (unless route reflectors
or some additional feature is deployed)

 • Selecting loop-free paths by examining the path through which the destination
can be reached

 • Validating two-way connectivity and MTU through its use of TCP as a
transport

Final Thoughts

It is only possible to scratch the surface of distributed control planes in two short
chapters. Hopefully, however, these chapters give you a sense of how complex the
problem of calculating loop-free paths really is and how many possible solutions to

A B C

E

D

AS65000 AS65001

eBGP

iBGP

iBGP
iBGP

2001:db8:3e8:100::/64

RR

RRC RRC RRC

Figure 16-15 BGP Route Reflectors

Further Reading 459

this problem set there are. So long as you remember the basic classifications, how-
ever, you can quickly grasp the basic operation of any routing protocol:

 • How does it learn about and advertise information about topology and reach-
able destinations? Is the protocol reactive or proactive?

 • How do devices running the protocol discover other devices running the same
protocol? How does it form neighbors?

 • How does the protocol detect MTU mismatches?

 • How does the protocol distribute routing information reliably through the
network?

 • How does the protocol marshal data?

 • How does the protocol remove topology and reachability information?

 • How does the protocol ensure two-way connectivity, both at the neighbor level
and when calculating loop-free paths?

 • How does the protocol calculate loop-free paths?

You should consider the resources in the “Further Reading” section if you would
like to understand each or any of these protocols in greater depth.

Further Reading

Chandra, Ravi, and John Scudder. Capabilities Advertisement with BGP-4. Request
for Comments 5492. RFC Editor, 2009. https://rfc-editor.org/rfc/rfc5492.txt.

Chen, Enke, Tony J. Bates, and Ravi Chandra. BGP Route Reflection: An Alternative
to Full Mesh Internal BGP (IBGP). Request for Comments 4456. RFC Editor,
2006. https://rfc-editor.org/rfc/rfc4456.txt.

Chen, Enke, John Scudder, Alvaro Retana, and Daniel Walton. Advertisement of
Multiple Paths in BGP. Request for Comments 7911. RFC Editor, 2016. https://
rfc-editor.org/rfc/rfc7911.txt.

Chen, Enke, and Quaizar Vohra. BGP Support for Four-octet AS Number Space.
Request for Comments 4893. RFC Editor, 2007. https://rfc-editor.org/rfc/
rfc4893.txt.

Chunduri, Uma, Wenhu Lu, Albert Tian, and Naiming Shen. IS-IS Extended
Sequence Number TLV. Request for Comments 7602. RFC Editor, 2015.
https://rfc-editor.org/rfc/rfc7602.txt.

https://rfc-editor.org/rfc/rfc5492.txt
https://rfc-editor.org/rfc/rfc4456.txt
https://rfc-editor.org/rfc/rfc7911.txt
https://rfc-editor.org/rfc/rfc7911.txt
https://rfc-editor.org/rfc/rfc4893.txt
https://rfc-editor.org/rfc/rfc4893.txt
https://rfc-editor.org/rfc/rfc7602.txt

Chapter 16 Link State and Path Vector Control Planes460

Doyle, Jeff, and Jennifer DeHaven Carroll. Routing TCP/IP, Volume 1. 2nd edition.
Indianapolis, IN: Cisco Press, 2005.

Ferguson, Dennis, Acee Lindem, and John Moy. OSPF for IPv6. Request for Com-
ments 5340. RFC Editor, 2008. https://rfc-editor.org/rfc/rfc5340.txt.

Ginsberg, Les, Stephane Litkowski, and Stefano Previdi. IS-IS Route Preference for
Extended IP and IPv6 Reachability. Request for Comments 7775. RFC Editor,
2016. https://rfc-editor.org/rfc/rfc7775.txt.

Heitz, Jakob, Keyur Patel, Job Snijders, Ignas Bagdonas, and Nick Hilliard. “BGP
Large Communities.” Internet-Draft. Internet Engineering Task Force, January
2017. https://tools.ietf.org/html/draft-ietf-idr-large-community-12.

“Intermediate System to Intermediate System Intra-Domain Routing Information
Exchange Protocol for Use in Conjunction with the Protocol for Providing
the Connectionless-Mode Network Service.” Standard. Geneva, CH: Inter-
national Organization for Standardization, 2002. http://standards.iso.org/ittf/
PubliclyAvailableStandards/.

Katz, Dave. “OSPF and IS-IS: A Comparative Anatomy.” Presented at the
NANOG19, Albuquerque, NM, June 12, 2000. https://nanog.org/meetings/
abstract?id=1084.

McPherson, Danny R., and Keyur Patel. Experience with the BGP-4 Protocol.
Request for Comments 4277. RFC Editor, 2006. https://rfc-editor.org/rfc/
rfc4277.txt.

Meyer, David, and Keyur Patel. BGP-4 Protocol Analysis. Request for Comments
4274. RFC Editor, 2006. https://rfc-editor.org/rfc/rfc4274.txt.

Mirtorabi, Sina, Abhay Roy, Acee Lindem, and Fred Baker. “OSPFv3 LSA Extend-
ibility.” Internet-Draft. Internet Engineering Task Force, October 2016. https://
tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13.

Moy, John T. OSPF Version 2. Request for Comments 2328. RFC Editor, 1998.
https://rfc-editor.org/rfc/rfc2328.txt.

Parker, Jeff. Recommendations for Interoperable Networks Using Intermediate Sys-
tem to Intermediate System (IS-IS). Request for Comments 3719. RFC Editor,
2004. https://rfc-editor.org/rfc/rfc3719.txt.

Przygienda, Dr. Antoni B. Optional Checksums in Intermediate System to Interme-
diate System (ISIS). Request for Comments 3358. RFC Editor, 2002. https://
rfc-editor.org/rfc/rfc3358.txt.

Ramachandra, Srihari S., and Yakov Rekhter. BGP Extended Communities Attri-
bute. Request for Comments 4360. RFC Editor, 2006. https://rfc-editor.org/rfc/
rfc4360.txt.

https://rfc-editor.org/rfc/rfc5340.txt
https://rfc-editor.org/rfc/rfc7775.txt
https://tools.ietf.org/html/draft-ietf-idr-large-community-12
http://standards.iso.org/ittf/PubliclyAvailableStandards/
http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://nanog.org/meetings/abstract?id=1084
https://nanog.org/meetings/abstract?id=1084
https://rfc-editor.org/rfc/rfc4277.txt
https://rfc-editor.org/rfc/rfc4277.txt
https://rfc-editor.org/rfc/rfc4274.txt
https://tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13
https://tools.ietf.org/html/draft-ietf-ospf-ospfv3-lsa-extend-13
https://rfc-editor.org/rfc/rfc2328.txt
https://rfc-editor.org/rfc/rfc3719.txt
https://rfc-editor.org/rfc/rfc3358.txt
https://rfc-editor.org/rfc/rfc3358.txt
https://rfc-editor.org/rfc/rfc4360.txt
https://rfc-editor.org/rfc/rfc4360.txt

Further Reading 461

Raszuk, Robert, Christian Cassar, Bruno Decraene, Stephane Litkowski, Kevin
Wang, and Erik Aman. “BGP Optimal Route Reflection (BGP-ORR).” Inter-
net-Draft. Internet Engineering Task Force, January 2017. https://tools.ietf.org/
html/draft-ietf-idr-bgp-optimal-route-reflection-13.

Rekhter, Yakov, Susan Hares, and Tony Li. A Border Gateway Protocol 4
(BGP-4). Request for Comments 4271. RFC Editor, 2006. https://rfc-editor.org/
rfc/rfc4271.txt.

Retana, Alvaro, and Russ White. “BGP Custom Decision Process.” Internet-Draft.
Internet Engineering Task Force, February 2017. https://tools.ietf.org/html/
draft-ietf-idr-custom-decision-08.

Roy, Abhay, Yi Yang, and Alvaro Retana. Hiding Transit-Only Networks in OSPF.
Request for Comments 6860. RFC Editor, 2013. https://rfc-editor.org/rfc/
rfc6860.txt.

Shand, Mike, Stefano Previdi, Les Ginsberg, and Danny R. McPherson. Simplified
Extension of Link State PDU (LSP) Space for IS-IS. Request for Comments
5311. RFC Editor, 2009. https://rfc-editor.org/rfc/rfc5311.txt.

Vohra, Quaizar, and Enke Chen. BGP Support for Four-Octet Autonomous System
(AS) Number Space. Request for Comments 6793. RFC Editor, 2012. https://
rfc-editor.org/rfc/rfc6793.txt.

Walton, Daniel, Alvaro Retana, Enke Chen, and John Scudder. Solutions for BGP
Persistent Route Oscillation. Request for Comments 7964. RFC Editor, 2016.
https://rfc-editor.org/rfc/rfc7964.txt.

Wang, Lili, Zhaohui (Jeffrey) Zhang, and Nischal Sheth. OSPF Hybrid Broadcast
and Point-to-Multipoint Interface Type. Request for Comments 6845. RFC
Editor, 2013. https://rfc-editor.org/rfc/rfc6845.txt.

White, Russ. Intermediate System to Intermediate System (IS-IS) Rout-
ing Protocol LiveLessons. Video. LiveLessons. Cisco Press, 2016. http://
www.ciscopress.com/store/ intermediate-system-to-intermediate-
system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_
RussWhiteVideo.

White, Russ, Danny McPherson, and Srihari Sangli. Practical BGP. Boston, MA:
Addison-Wesley Professional, 2004.

White, Russ, and Alvaro Retana. IS-IS: Deployment in IP Networks. 1st edition.
 Boston, MA: Addison-Wesley, 2003.

https://tools.ietf.org/html/draft-ietf-idr-bgp-optimal-route-reflection-13
https://tools.ietf.org/html/draft-ietf-idr-bgp-optimal-route-reflection-13
https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc4271.txt
https://tools.ietf.org/html/draft-ietf-idr-custom-decision-08
https://tools.ietf.org/html/draft-ietf-idr-custom-decision-08
https://rfc-editor.org/rfc/rfc6860.txt
https://rfc-editor.org/rfc/rfc6860.txt
https://rfc-editor.org/rfc/rfc5311.txt
https://rfc-editor.org/rfc/rfc6793.txt
https://rfc-editor.org/rfc/rfc6793.txt
https://rfc-editor.org/rfc/rfc7964.txt
https://rfc-editor.org/rfc/rfc6845.txt
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo

Chapter 16 Link State and Path Vector Control Planes462

Review Questions

 1. Why does IS-IS send interface addresses as “neighbors seen” on multiaccess
links like Ethernet, and IS identifiers on point-to-point links? What is the rea-
soning behind the different forms of two-way connectivity checks?

 2. IS-IS carries two kinds of metrics—narrow and wide. Describe the mechanism
used to transition between these two metric types. Is it effective? How does it
compare to the solution adopted by EIGRP? Does it suffer from the same sorts
of failure modes as the EIGRP transition mechanism?

 3. It is possible that an IS-IS LSP might become longer than the maximum size
allowed based on the “size of LSP” field in the LSP header. Describe how
RFC5311 solves this problem. Are there any other ways you can think of to
solve this same problem?

 4. IS-IS and OSPF rely on sequence numbers to indicate which piece of informa-
tion being flooded through the network is the most recent. Read RFC7602 and
RFC5310. Describe the problem caused by this reliance and how IS-IS resolved
this problem. Are there problems with the solution standardized in RFC7602?

 5. Compare OSPF and IS-IS data marshalling using the complexity model
described earlier in the book (state/optimization/surface). Where do you think
these two protocols have traded off state for optimization? Do the multiple
LSA types and reliance on IP fragmentation represent an interaction surface
that increases the complexity of OSPF?

 6. Describe the security issue created by the link state age-out and reflood behav-
ior of both OSPF and IS-IS. Find and describe the solution proposed in the
IETF.

 7. Consider DIS/DR election on a point-to-point link that is considered a broad-
cast medium (such as a point-to-point Ethernet link). Will electing a DR/DIS
and creating a pseudonode reduce overall complexity or increase it? What fea-
tures have been implemented in commercial implementations of OSPF and
IS-IS to mitigate the result?

463

Chapter 17

Policy in the Control Plane

Learning Objectives

After reading this chapter, you should understand:

 0 How to define control plane policy

 0 Hot and cold potato routing as examples of control plane policy

 0 How to create virtual topologies as a policy implementation mechanism

 0 Basic traffic engineering concepts, such as flow pinning

The last several chapters have considered the many variations on finding a set of
loop-free paths through a network. In the explanation of the Border Gateway Proto-
col (BGP), however, you might have noticed the emphasis on various policies, rather
than strictly finding loop-free paths. This chapter, then, will continue the emphasis
on policy begun in the preceding chapter.

The first question to answer is: what is policy? Unfortunately, there is no simple
answer. The best way to answer this question is through examples; these will be con-
sidered in the following section. The second section of this chapter will draw lessons
from these examples, and then consider problems and solutions in the control plane
policy space.

Chapter 17 Policy in the Control Plane464

Note

Control policy is often difficult to separate conceptually from data plane policy,
such as packet filtering and Quality of Service (QoS). In fact, the two overlap
in many places, such as the control plane carrying QoS markings that are then
applied to packets, or drawing packets into a null interface, effectively dropping
them. These sorts of corner cases are avoided here for clarity.

Control Plane Policy Use Cases

Often the best way to understand a concept is through examples. This section examines
three examples of policy being used in the control plane to fulfill business requirements:
determining where traffic should exit a provider network, optimizing application per-
formance by pinning elephant flows, and increasing or providing security through net-
work segmentation. The next section draws a set of lessons from these examples.

Routing and Potatoes

Service providers normally live within a world of tight budgets, application require-
ments, and business drivers. The mixture of these three can make for some strange
situations when routing between providers of various kinds. Specifically, cold potato
routing is designed to keep traffic inside the provider’s network for as long as possi-
ble, while hot potato routing is designed to push traffic to the closest exit point pos-
sible. The result of mixing these two is sometimes called (tongue in cheek) mashed
potato routing. Figure 17-1 is used to explain.

A

AS65000

AS65001

AS65002

AS65003

B

C
D

E

F
G

H K

AS65004

Figure 17-1 Routing and Potatoes

Control Plane Policy Use Cases 465

Assume AS65000 is an edge provider, or perhaps an “enterprise” network con-
nected to two upstream providers, AS65001 and AS65003. AS65001, AS65003, and
AS65004 are transit providers, and AS65002 is a content provider. Some of the poli-
cies and business drivers for those policies in this collection of networks might be

 • AS65001 wants to draw as much traffic from AS65000, across link C, as pos-
sible. The more this link is filled up, the more likely AS65000 is to purchase
an upgraded link. There is actually little AS65001 can do to attract traffic, of
course, other than perhaps trying to convince the administrators in AS65000 to
ship more traffic their direction, or trying to improve the performance of the
link from the perspective of some sort of traffic engineering system AS65000
might have configured on their end of the link.

 • AS65001 wants to forward any traffic entering at link C to the closest exit with a
route to the destination. For instance, if AS65003 is advertising a route to K, on
the right side of the diagram, AS65001 will prefer the exit through link D, even
though it might not be the shortest overall path to the destination. Normally,
AS65001 would implement this sort of policy using BGP’s local preference, or by
relying on the underlying Interior Gateway Protocol (IGP) metric to draw traf-
fic to the closest exit point out of the Autonomous System (AS). This is called
hot potato routing. Why does AS65001 want to push the traffic to the nearest
exit point with a route to the destination? Because carrying the traffic along the
path to link H, for instance, consumes network resources. AS65001 is being paid
based on the usage of link C, rather than for actually carrying the traffic as close
as possible to the destination. Hence, AS65001 will draw as much traffic as pos-
sible off its paying customers but then push the traffic to the nearest exit point.

 • AS65002, on the other hand, generally wants to control its user’s experience
as tightly as possible, because it is selling a service. If the network between
the service and the user has poor quality, then the service itself is perceived
to be poor quality, and the content provider’s overall business will suffer. The
longer the traffic stays in AS65002’s network, the more control the content
provider has over the Quality of Service delivery. Keeping the customer’s traf-
fic inside the network is essentially bringing the customer’s eyeballs closer to
the service itself. This is a form of cold potato routing. Instead of tossing the
traffic out of your network as quickly as possible (as you would with a hot
potato), you hold on to the traffic as long as possible (like a cold potato). In
this case, AS65002 is going to perceive the closest exit point to the customer as
being through AS65001 at link H because the path through H has the shortest
AS path. Although the internal path is longer, AS65002 will choose the path
through link H to control the traffic as long as possible.

Chapter 17 Policy in the Control Plane466

 • When traffic is received at link H, AS65001 needs to decide whether to send
the traffic to some nearby exit point, say link F, or to carry the traffic along the
entire network so it exits at link C. In this case, AS65001 will almost always
decide to carry the traffic along its entire network. Again, the primary selling
point AS65001 has toward AS65000 is to increase the average utilization along
link C. To do this, AS65001 needs traffic to send toward AS65000; the only way
to get this traffic is to carry traffic from every entry point into the network to
the connection to the customer, if the destination is a customer. This is again
cold potato routing.

Forwarding traffic over the fewest number of links (and therefore through the few-
est number of network devices) would consume the smallest amount of resources, but
cold and hot potato routing both choose some longer-length path in order to satisfy a
policy constraint. This trades the efficient use of resources for the efficient operation of
a protocol or service in order to increase revenue. Other policies may be applicable to
routing systems, as well, such as choosing the path with the highest bandwidth, or the
path that takes traffic to the geographic exit point closest to the user. Whatever the pol-
icy, it will generally represent a tradeoff between one kind of optimization over some
other kind of optimization, and require additional state of some sort to implement.

Resource Segmentation

Many times networks are logically divided to control access to specific resources.
The network shown in Figure 17-2 will be used to illustrate.

Figure 17-2 shows three different networks:

 • Network A shows the base (routed) topology.

 • Network B shows one set of devices and links that must be connected to one
another.

 • Network C shows a second set of devices and links that must be connected to
one another.

In Figure 17-2, host B must only be able to connect to server L, and host A must
only be able to connect to H. It is simple enough to provide this kind of segmen-
tation through simple packet filters configured at G and K, of course, but further
requirements may rule out using simple packet filters. For instance:

 • There may be a requirement for traffic passing between A and H to use the
path [C,E,F,K,G]; this mixes a traffic engineering requirement with a service
access requirement.

Control Plane Policy Use Cases 467

 • There may be a requirement for servers H and L to not even be able to see
routes and other information from the other topology. This might be very diffi-
cult if the two servers are participating in the routed control plane, as might be
the case if they are hosting many virtual machines (VMs), each of which needs
to advertise its own IP address into the control plane.

When you reach this level of requirement, a common solution is to create an over-
lay network, often using tunnels to do the heavy lifting of separating the network

A

B

C

E F

D

K

G

L

H

A

B

C

E F

D

K

G

L

H

A

B

C

E F

D

K

G

L

H

Network A
Network B

Network C

Figure 17-2 Overlays as a Form of Segmentation

Chapter 17 Policy in the Control Plane468

into several virtual topologies. In Figure 17-2, these requirements are met with an
overlay. In network B, a tunnel would be built starting at the inbound interface of
D facing host B (the tunnel headend). This tunnel would be carried across G and
K, finally terminating on the interface on K that connects to L (the tunnel tailend).
To draw traffic from B to L, there must be some routed control plane to pull traffic
into the tunnel headend so it is routed across the tunnel toward L. In network C, a
tunnel would be built starting at the inbound interface of C, facing A. The tunnel is
carried across C, E, F, K, and G, and terminates at the outbound interface at G fac-
ing H. Again, there must be some control plane to draw data across this tunnel, so
traffic sourced from A is pulled into the tunnel at C and is presented to G as a “raw IP
packet” (without the tunnel headers) so that G can switch the packet to H.

The routing information that draws traffic through these two tunnels may actu-
ally be carried in a separate control plane. In this case, the underlay control plane
will provide reachability to the tunnel endpoints, while the overlay control plane will
draw traffic through the tunnel. This separation of control planes allows the differ-
ent topologies, the underlay and the overlay, to be completely separated; reachability
and topology information is not shared between these two control planes.

The same is true of the traffic being drawn through the network; the two flows are
separated by being tunneled. Not only is the traffic being separated by tunneling, but
the path of the flow is also being engineered through the network. Tunneling, and
the fuller concept of an overlay, is useful in meeting a lot of different policy require-
ments; this is why overlays are so widely used in network engineering.

Flow Pinning for Application Optimization

Elephant flows and mouse flows are two classes of flows that engineers often encoun-
ter. An elephant flow is typically a large, persistent data flow. Any flow taking up
more than around 20% of the available bandwidth of a single link and persisting for
more than two or three minutes might, for instance, be classified as an elephant flow.
Mouse flows, on the other hand, are much lower bandwidth, say less than 1% of the
available bandwidth on any link, and tend to last for very short periods of time.
Most flows of traffic can be divided into elephant and mouse flows. What should be
done about elephant and mouse flows?

One solution is to interleave the packets from each flow, which allows each flow
fair access to the available bandwidth. While Quality of Service (QoS) is one solu-
tion, another solution is to pin particular traffic flows to particular paths, or path
pinning. Figure 17-3 is used to explain further.

In Figure 17-3, A begins a flow that will last several hours, and consumes 20%
of the available bandwidth on a link (assume all links are the same bandwidth,
100Mbps), and terminates at H. At about the same moment, B sends a series of

Control Plane Policy Use Cases 469

short-term small flows terminating at H. Given just one path will be chosen as the
best between C and G, both flows will follow the same path, say along the path
[C,E,G]. Mixing the two flows in this way can cause both to suffer from a perfor-
mance perspective. To understand the problem, it is best to consider the rate at which
packets can be serialized onto the wire:

 • 64-byte packet onto a 100Mbps link: .05ms

 • 1,500-byte packet onto a 100Mbps link: .12ms

 • 9,000-byte packet onto a 100Mbps link: .72ms

Assume the entire network is capable of 9,000-byte packet sizes (the Maximum
Transmission Unit, or MTU is 9,000 bytes end to end), and the elephant flow is
actually shipping 9,000-byte packets. For the mouse flow, assume the packet size is
64-byte packets (at least in one direction). If a single mouse flow packet is trapped
behind a single elephant flow packet, the mouse flow packet will be held for .72ms
before it can be serialized onto the physical interface. If there is always one packet
from each flow alternating, there can be some significant performance reduction, but
both applications would likely still work well enough.

But what happens if the interleaving between the two flows is less than optimal?
For instance, what if there is a series something like the sequence of packets shown
in Figure 17-4?

A

B

C

D F

E

G H

Figure 17-3 Pinning an Elephant Flow in a Network

Elephant Elephant Elephant

M
ou

se
M

ou
se

M
ou

se
M

ou
se

Elephant Elephant ElephantElephant

Figure 17-4 A Problematic Mixture of Packets from Elephant and Mouse Flows

Chapter 17 Policy in the Control Plane470

The difference between the shortest and longest spacing between mouse flow
packets is .05ms and .288ms. The difference between the shortest and longest spac-
ing between elephant flow packets is .05ms and .15ms. These variations might seem
to be minimal, but even minimal variations show up as jitter end to end. This kind
of jitter, particularly on a larger scale, is problematic for flow control and error cor-
rection. In this case, even though the elephant flow is overwhelmingly larger than the
mouse flow, both are still negatively impacted. This same sort of problem is common
in data center fabrics, as well. Figure 17-5 illustrates.

In Figure 17-5, A has two flows: an elephant flow to G and a set of mouse flows to
H. While there is plenty of bandwidth to support both flows across the fabric, if both
flows happen to be hashed onto the [B,C] link by the equal cost multipath (ECMP)
algorithm, the interaction of the two flows can cause jitter for the supported applica-
tions, reducing performance.

Pinning the elephant flow to the [B,C] link and keeping other traffic off this
link so that the traffic to F follows the [A,B,D,F,H] path can resolve these per-
formance problems. Elephant flows tend to be more common in the data center
environment.

A

F

H

E

G

Leaf 1

Leaf 2

SpineC

B

D

Figure 17-5 Traffic Engineering in a Data Center Fabric

Control Plane Policy Use Cases 471

How can the problems caused by mixing two different kinds of traffic on a single
link be prevented? One obvious way in a two-connected network, such as the ones
illustrated in Figure 17-3 and Figure 17-5, is to somehow pin one of the flows onto
one path and remove the other flows from the link the elephant flow is pinned to. For
instance:

 • In Figure 17-3, if one of the two flows is pinned to the longer [C,D,F,G] link,
while leaving the other flow on the shorter [C,E,G] link.

 • In Figure 17-5, if the elephant flow is pinned to one path, say [B,C,E], and the
mouse flows can be somehow directed to avoid [B,C,E] so they use some other
path, say [B,D,F].

Not only must the elephant flow be pinned to a particular path, but the mouse
flows must be prevented from flowing along the path the elephant flow has been
pinned to. Sometimes just allowing one flow to follow the shortest loop-free path
while pinning the other flow to some longer (but still loop-free) path will be suffi-
cient. This does not, however, often work in data center fabrics and other networks
where the available paths across which the traffic must be engineered are equal cost.
Pinning the elephant flow to one path is not useful if the mouse flows can still be
placed on the same path as the elephant flow through the operation of a router ran-
domly choosing among a set of equal cost paths.

To separate the two flows in the example in Figure 17-3, there must be some way
to differentiate the flows during the switching process. There are a number of ways
to differentiate the flows, including

 • The destination address. In Figure 17-3, both flows are destined to H, so the
destination address would not be useful for differentiating between the two
flows. This is not always the case.

 • The source address. In Figure 17-3, the source of the first flow is A, and the
source of the second is B. The source address could be used in this situation
to differentiate between the flows at C. However, because hosts normally send
packets (or open sessions) with a number of servers in a network, the source
and destination addresses are normally used together, rather than just the
source address.

 • The port number. Port numbers and protocol numbers are normally associ-
ated with a single application on a host or a server. The source and destination
port numbers can often be combined to pick out traffic from a specific flow,
rather than one or the other.

Chapter 17 Policy in the Control Plane472

These differentiators can be combined into a set of markers uniquely identifying
every flow in a network running the Internet Protocol (IP) suite, the five tuple. The
five tuple consists of

 • The source IP address

 • The destination IP address

 • The protocol number

 • The source port number

 • The destination port number

Because of the way each protocol operates, either the source or destination port
will be an ephemeral port, or a port assigned to this specific host. There are alter-
native ways for traffic to be identified other than examining the various fields that
identify a flow. For instance, host A could be configured to mark all the packets in an
elephant flow with a particular number in an IPv6 extension header, or with specific
QoS bits. In this case, C could simply check for the specified information in the IP
header, determining which link traffic should be switched to based on the contents
of the correct field.

Given the traffic flows can be differentiated from one another, what techniques
are available to draw (or push) the traffic in each flow along a different link? Several
methods are often used.

A statically configured packet filter, sometimes called a policy route, or a filter-
based forwarding rule, can be configured at C and G in Figure 17-3. This rule would
contain logic that matches on the fields differentiating the flows and sets the cor-
rect next hop. This solution (obviously) requires manual configuration; this con-
figuration must be managed over time, including adjusting where the packet filter
is applied, what traffic is matched by the filter, and where the matching traffic is
forwarded. This kind of filter can seem simple when first deployed, but can become
difficult to maintain over time. For instance, in Figure 17-3, examining the traffic
pattern at F would give you no clues about why one of the flows was traveling over
the longer path. You would need to trace the traffic back to C to discover why this
traffic is passing along this particular path. Because of the additional management
and maintenance issues, automated solutions are often preferred.

Metric manipulation can sometimes be used to draw each flow along a different
path. In Figure 17-3, if H is sending traffic to A and B, the path through [C,D,F,G]
could be manipulated to have a lower cost toward A, while the path through [C,E,G]
could be manipulated to have a lower cost toward B. One problem with this solution

Defining Control Plane Policy 473

is obvious from the example. Consider the situation from the perspective of A and B;
these two hosts are, in fact, sending both the elephant and the mouse flows to the
same destination, so there is no way to use metrics to draw traffic from these two
hosts along the two available paths. A second problem with this solution is similar
to the one described previously with a packet filter. If you examine the routing table
at F, there would be no obvious reason why the metrics for the two different destina-
tions are different. Again, you would need to trace back the difference in metrics to
some configuration on either C or G to discover why two destinations that appear to
be on either end of the same set of links have two different metrics.

The packets in one flow may be tunneled through the network, or drawn into a
virtual overlay topology. A tunnel would more likely be used to solve an elephant flow
problem than a virtual overlay topology in most networks; a tunnel can be directed
along a single path, but a virtual overlay topology is likely to have many paths that
traffic could take, so the flow isn’t pinned to a specific path.

Defining Control Plane Policy

The three use cases (or examples) given in the previous section are examples of traf-
fic engineering, which simply means manipulating the control plane to specify the
path that specific flows take through the network. The first point to observe in these
examples is for every case, some traffic is removed from the shortest—and hence pre-
sumably the most efficient—path through the network and somehow made to follow
a longer loop-free path. This common element is helpful in defining policy:

Control plane policy is anything that causes traffic to flow over a path longer
than the shortest path in order to provide some form of optimization.

One specific term needs to be considered further in this definition: what, precisely,
does optimization mean? While there are many possible optimizations, they can be
broken down into four broad categories:

 • Network utilization: Operators sometimes try to optimize the utilization of
a single link, such as a highly utilized path between two data centers. Network
utilization can also be optimized in a more global way, such as the average utili-
zation of every link in the network, or perhaps the available switching capacity
across devices and links versus the capacity required to support specific busi-
ness goals and/or applications.

Chapter 17 Policy in the Control Plane474

 • Application support: Applications and data are often the “real” heart of a busi-
ness. No matter what kind of work a business claims to do, it actually works
with information to connect buyers to sellers in some way, a process requiring
data and data processing (or data analytics). A network can be optimized to
support specific applications representing the primary business drivers by ensur-
ing this set of applications always has reachability or reduced jitter and delay.

 • Business advantage: The network can be optimized to increase the financial
advantage of the business in some way. Specifically, reducing the cost the busi-
ness pays to other companies to operate or increasing revenue by increasing
user engagement or opening up new markets by connecting to new geographi-
cal locations might be ways in which the network can create opportunities to
improve the business.

 • Cost: How can the business build and maintain a less expensive network? This
is not just a common question; it is often the only question the business that
relies on the network cares about.

Any particular network will rarely be optimized for a single class among these four.
Most networks will be optimized for all four of these in various parts of their topol-
ogy or even at various times. Optimizations will often cross over these categories; for
instance, improving support for a specific application may increase business advantage
by allowing information to be applied to a specific area of the business more quickly,
while also saving costs by reducing the application’s downtime.

Control Plane Policy and Complexity

Control plane policy is not exempt from the “choose two of three”—state, surface,
and optimization—complexity tradeoff described in Chapter 1, “Fundamental Con-
cepts.” What are the tradeoffs involved in the examples given in the first part of this
chapter? Each use case will be covered in the sections that follow.

Routing and Potatoes

In the first use case, various policy mechanisms are used to manage where traffic
exits an AS and, to some degree, where traffic enters an AS. It is easy to overlook the
complexity impacts of the attributes carried in BGP, as they are actually a part of
BGP. How can simply using something built into the protocol have an impact from a
complexity perspective?

First, the protocol itself must be more complex in order to support the attributes
being carried, and implementations build, test, and maintain the code required to

Control Plane Policy and Complexity 475

process these attributes. This might seem very minor, but consider the case of BGP
update packing. Figure 17-6 illustrates two sets of BGP packets.

The upper pair of packets in Figure 17-6, labeled A, is two different destinations
carried in BGP format; there is a set of attributes (in this example only one attribute
is shown, the LOCAL_PREF) and a reachable prefix. While the reachable destination
is different in the two packets, the LOCAL_PREF, or rather the set of attributes, is
the same. Hence, when actually advertising these to destinations, BGP can pack the
two prefixes into a single update. To do this, the two prefixes are simply combined
into a single update with the single set of attributes.

The lower pair of packets in Figure 17-6, labeled B, is two different destinations
carried in the BGP format. In this case, the reachable destinations and the attributes
are different, so they cannot be combined into a single BGP update.

Packing updates, as shown with packet A, represents a major space saving when
transmitting reachability information through a network in BGP. While the savings
will vary between networks, it is not surprising for efficient packing to reduce initial
convergence time and the number of packets sent by somewhere around 80%.

The goal of adding the policy information was to improve the utilization of the
network, or rather to move traffic to maximize revenue and minimize expenses. The
decision to add per route essentially trades state for optimization. More state is
injected into the control plane, both in terms of terms of the actual amount of state
and the efficiency of carrying the state across the network, so the state versus optimi-
zation tradeoff holds true.

What about interaction surfaces? There are two places where this solution inter-
acts with other systems in the network. First, the policy marker needs to be set on
the correct routes, and associated with some action someplace else in the network.
Largely, these settings are going to be made by a pair of human hands adding the
right configuration commands to instruct BGP to set and react to these route mark-
ers. The interaction surface between people and the network is often the most

LOCAL_PREF 100

LOCAL_PREF 100

2001:Db8:3e8:100::/64

2001:Db8:3e8:101::/64

LOCAL_PREF 100 2001:Db8:3e8:100::/64 2001:Db8:3e8:101::/64

LOCAL_PREF 100 2001:Db8:3e8:103::/64

LOCAL_PREF 100 2001:Db8:3e8:103::/64

LOCAL_PREF 101 2001:Db8:3e8:104::/64

LOCAL_PREF 101 2001:Db8:3e8:104::/64

A

B

packed

cannot be
packed

Figure 17-6 Complexity and BGP Policies

Chapter 17 Policy in the Control Plane476

difficult surface to manage. In the case of the multiple exit, or multiexit, discrimina-
tor (MED) and communities sent outside the AS, there is an interaction surface with
the neighboring autonomous systems.

Routing policy, in this case, definitely fits within the State/Optimization/ Surface
(SOS) model; increasing network utilization requires an increase in state and
surfaces.

Resource Segmentation

In resource segmentation, it would seem that by splitting the reachability and topology
state out of the underlay topology, the amount of state in the underlay topology has been
reduced, and hence the overall complexity has been reduced. At the same time, the net-
work appears to be more closely aligned with the business requirements, so it looks like
optimization has increased while state has decreased. This seems to go against the com-
plexity model; if the network is becoming more optimized, state should be increasing.

Welcome to the world of abstraction; this is one of those cases where you must
consider things more closely to really understand the impact on complexity. Remem-
ber: if you have not found the tradeoffs, you have not looked hard enough. What is
happening here is that there are now three different control planes with less informa-
tion about the overall topology; the total state in the system has increased, as there
are three pieces of state about a subset of the links (one for the underlying physi-
cal topology and one for each overlay virtual topology). There is definitely a larger
amount of state; it is just more “spread around.”

Further, there are now three control planes running in the network; there is defi-
nitely an interaction surface to consider between the protocols, even if the protocols do
not carry the same reachability information over the same links. Figure 17-7 illustrates.

Figure 17-7 represents the same network topology shown in Figure 17-2, with the
virtual overlay topologies collapsed into a single diagram. The physical topology is

A

B

C

E F

D

K

G

L

H

Figure 17-7 Interaction Surfaces between Multiple Overlay Control Planes

Control Plane Policy and Complexity 477

represented by the solid gray lines; the first overlay is represented by the black dashed
line; and the second overlay is represented by the black lines with intermixed dots and
dashes. When the physical and overlay topologies are illustrated in this way, it is easy
to see the single [G,K] link is shared across all three topologies. If the [G,K] link fails,
both of the overlay topologies will also fail; this is called fate sharing. The set of links
shared between more than one topology is called the Shared Risk Link Group (SRLG).

These three control planes may not initially appear to interact with one another.
They do, however, interact at the [G,K] link. Even if there is no actual link failure,
any failure in the underlay control plane will cause both of the virtual topologies to
fail to be able to forward traffic between their respective sources and destinations.
There is an interaction between the three control planes even though they do not
redistribute information between themselves.

What is perhaps worse, however, is that in a two-connected network such as the
one shown in Figure 17-7, there should always be two paths between any two points
in the network. A single link failure should not cause H to become unreachable from
A. Because the virtual topology [C,E,F,K,G] is not two connected, however, the net-
work has been converted to a design where a single link failure at the physical layer
can cause both virtual topologies to become disconnected.

This sort of shared fate interaction surface is often easy to miss when designing a
network with overlays. The abstraction removes details, making it easier to “see” each
topology separately, and reducing the state contained in each control plane, but it also
hides failure risks and modes that did not exist before virtualization was deployed.

Often the only way to solve this type of problem is to add state back into the three
control planes. For instance, in the network in Figure 17-7, there are a number of
ways state could be added back into the network to provide alternate paths in the
case of the [G,K] link failure. For instance:

 • Some outside process could calculate the topologies and then reach across the
layers to find SRLGs, or fate sharing points in the network. In this case, yet
another control needs to “ride on top” to at least alert the designer about the
SRLGs, so the network design can be modified to work around them. This
solution adds (in effect) a fourth control plane that must interact with the
other three, including any state carried in the fourth control plane.

 • The two virtual topologies could be configured to overlay the entire physical
topology, and some form of metric weights be placed on the link costs for each
overlay topology so traffic passes along the correct path. This adds the state
of carrying the entire control plane back to both topologies and potentially
adds more points at which the multiple control planes will interact. Further,
the overlay link metrics must be computed, configured, and managed.

Chapter 17 Policy in the Control Plane478

 • Secondary virtual overlays could be designed and deployed on the network so
each topology has a prebuilt backup topology. Multiprotocol Label Switch-
ing (MPLS) Traffic Engineering (TE) Fast Reroute (FRR) provides this type
of solution. To deploy this kind of solution, additional state for the backup
path and switching state at the tunnel headend to quickly switch to the backup
path must be added; the additional potential interaction surfaces between the
 operators and the network, the various control planes now running in the net-
work, and even the various switching paths available at each device, all add
complexity back into the network.

There is, in the end, no such thing as a free lunch. Network segmentation is often
an effective way to provide separation between customers and workloads—it is often
the only way to go, given application and security requirements—but there will
always be added complexity someplace in such a design.

Flow Pinning for Applications

What are the gains, from a complexity perspective, in the flow pinning example? The pri-
mary point of flow pinning is, of course, to optimize the performance of both the ele-
phant and mouse flow applications. The network may also operate more efficiently, at
least from a switching perspective, and QoS settings may well be simpler with the two
kinds of flows separated. So there is an increase in optimization, and potentially a decrease
in state and interaction surfaces (due to the simpler QoS configurations and processing).

To get these improvements, there must be a corresponding increase in complexity
someplace else. In this case, the increase in complexity is in control plane state. The ele-
phant flow must somehow be pinned to a specific link, and the mouse flows must some-
how be removed from the link to which the elephant flow has been pinned. There must
also be some “backup plan” in case the path to which the elephant flow is pinned fails.

Final Thoughts on Control Plane Policy

Control plane policy is often hiding in plain sight in the form of segmentation, flow
pinning, traffic engineering, and other forms. Generally, it will take the form of
directing traffic away from the shortest path, and onto a path that might appear less
than optimal from a lowest metric or hop count perspective, but is more optimal in
some other way, such as application support. In fact, this is as good of a definition of
control plane policy as any other:

Control plane policy is any modification to the path that packets take through
a network off the shortest path in order to implement some specific business or
application requirement.

Further Reading 479

There is one more form of control plane policy not considered here: the aggrega-
tion and summarization of control plane information in order to reduce state and
divide (or create) failure domains.

Using the control plane to implement policy presents network engineers with a
set of tradeoffs. Distributed control planes, as considered in the previous chapters
in this book, often become very complex when they are tasked with discovering
topology, providing reachability information, and carrying policy. The next chapter
explores some alternative ways to solve these problems by centralizing all or part of
the functions of the control plane.

Further Reading

These sources consider a number of other interesting and useful control plane poli-
cies not discussed in this chapter and provide more information on the policies that
were discussed.

Agarwal, Sharad, A. Nucci, and Supratik Bhattacharyya. “Measuring the Shared
Fate of IGP Engineering and Interdomain Traffic.” In 13th IEEE International
 Conference on Network Protocols (ICNP’05), 10, 2005. doi:10.1109/
ICNP.2005.22.

Casado, Martin, and Justin Pettit. “Of Mice and Elephants.” Network Heresy, Novem-
ber 1, 2013. https://networkheresy.com/2013/11/01/of-mice-and-elephants/.

Das, V. V. “Honeypot Scheme for Distributed Denial-of-Service,” 497–501, 2009.
doi:10.1109/ICACC.2009.146.

Hinrichs, Tim, and Scott Lowe. “On Policy in the Data Center: The Policy Prob-
lem.” Network Heresy, April 22, 2014. https://networkheresy.com/2014/04/22/
on-policy-in-the-data-center-the-policy-problem/.

Justin Pettit, Kanna Rajagopal, and J. R. Rivers. “Elephant Detection in the vSwitch
with Performance Handling in the Underlay.” Network Heresy, May 16, 2014.
https://networkheresy.com/2014/05/16/elephant-detection-in-the-vswitch-with-
performance-handling-in-the-underlay/.

Karp, Brad Nelson. “Geographic Routing for Wireless Networks.” Harvard University,
2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.5738&
rep=rep1&type=pdf.

Kaur, Harminder, Harsukhpreet Singh, and Anurag Sharma. “Geographic Routing
Protocol: A Review.” International Journal of Grid and Distributed Comput-
ing 9, no. 2 (2016): 254.

McPherson, Danny R., and Keyur Patel. Experience with the BGP-4 Protocol. Request
for Comments 4277. RFC Editor, 2006. https://rfc-editor.org/rfc/rfc4277.txt.

https://networkheresy.com/2013/11/01/of-mice-and-elephants/
https://networkheresy.com/2014/04/22/on-policy-in-the-data-center-the-policy-problem/
https://networkheresy.com/2014/04/22/on-policy-in-the-data-center-the-policy-problem/
https://networkheresy.com/2014/05/16/elephant-detection-in-the-vswitch-with-performance-handling-in-the-underlay/
https://networkheresy.com/2014/05/16/elephant-detection-in-the-vswitch-with-performance-handling-in-the-underlay/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.5738&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.5738&rep=rep1&type=pdf
https://rfc-editor.org/rfc/rfc4277.txt

Chapter 17 Policy in the Control Plane480

Psounis, K., A. Ghosh, B. Prabhakar, and G. Wang. “SIFT: A Simple Algorithm for
Tracking Elephant Flows, and Taking Advantage of Power Laws.” In Proceed-
ings of the 43rd Allerton Conference on Communication, Control and Com-
puting, 2005. https://web.stanford.edu/~balaji/papers/05sifta.pdf.

Teixeira, Renata. “Hot Potatoes Heat Up BGP Routing.” Presented at the RIPE,
Amsterdam, October 2005. https://meetings.ripe.net/ripe-51/presentations/
pdf/ripe51-hot-potatoes.pdf.

Weiler, Nathalie. “Honeypots for Distributed Denial of Service Attacks.” IEEE,
2002. http://www.csl.mtu.edu/cs6461/www/Reading/Weiler02.pdf.

White, Russ. “Elephant Flows, Fabrics, and I2RS.” Rule 11 Reader, October 3, 2016.
http://rule11.tech/i2rs-elephant-flows/.

Review Questions

 1. The chapter mentions four broad classes of optimizations that operators may
optimize a network for. Think through the use case examples given in the chap-
ter, and explain which of these four classes of optimization each one could
fit into and why. Find three other use cases (need to find sources) and explain
which of the four classes of optimization each of them could fit into and why.
Are there use cases that do not fit into one of these four broad categories?
What category would you add to cover all the use cases?

 2. Besides hot and cold potato routing, there is also “mashed potato routing.”
What is the definition of mashed potato routing, and what is it used for?

 3. Elephant and mouse flows are described in the chapter as being large, per-
sistent flows, and short-duration small-volume flows. Name three applications
that would generate each kind of flow.

 4. In Figure 17-3, packet classification must be configured at both C and G to
support differentiating traffic flowing between A and H. Why would these
need to be configured in both places? Would the filters be the same? If not, how
would they be different?

https://web.stanford.edu/~balaji/papers/05sifta.pdf
https://meetings.ripe.net/ripe-51/presentations/pdf/ripe51-hot-potatoes.pdf
https://meetings.ripe.net/ripe-51/presentations/pdf/ripe51-hot-potatoes.pdf
http://www.csl.mtu.edu/cs6461/www/Reading/Weiler02.pdf
http://rule11.tech/i2rs-elephant-flows/

481

Chapter 18

Centralized Control Planes

Learning Objectives

After reading this chapter, you should understand:

 0 An overview of the interfaces between components in a network device
used in building the information needed to forward packets

 0 The four different control plane models

 0 Using BGP as a southbound interface for a centralized control plane

 0 Using fibbing to modify paths in a link state protocol

 0 The Interface to the Routing System as a southbound interface

 0 The Path Control Element Protocol

 0 OpenFlow’s origins and operation

 0 ACP Theorem and the subsidiarity principle

As much as it might seem otherwise, the information technology field is strongly
driven by egos and fashion. What was “in” last year will be “out” this year, often
with very little reason other than “this is new, and that is old.” Network engineering
is no different in this regard. For instance, network designs have swung between an
“ideal” of decentralized control planes to centralized control planes a number of
times over their history. Which is truly better?

Chapter 18 Centralized Control Planes482

The best way to cut through these pendulum swings, and their attendant hype
factor, is to be able to understand the underlying problems, the underlying solu-
tions, and the tradeoffs between the various solutions (as well as whether the prob-
lem at hand even needs to be solved at all—a point far too many designers and
architects tend to forget). Toward this end, this chapter will begin by explaining a
taxonomy of centralized control planes, developed on the model of a forwarding
device.

With this model in hand, several specific examples will be surveyed. Each of these
systems will be placed into the framework of the problems a control plane needs
to solve, and the tradeoffs against distributed control planes, examples of which
were considered in the preceding two chapters, will be examined. These solutions
all fit into the roughly defined categories of a Software-Defined Network (SDN) or
 Programmable Network (PN).

Considering the Definition of Software Defined

SDN is often presented as an either/or proposition: either you build a network
using distributed protocols, or you build a network with a centralized control
plane. The nebulous nature of the term SDN contributes to this way of seeing soft-
ware defined. Specifically, how is an implementation of Open Shortest Path First
(OSPF), for instance, not software defined? The general idea seems to be this: in
hardware-based networks the software is embedded in appliances; the software and
hardware are purchased, configured, and managed as one “thing.” In software
defined, the software is separate from the hardware. Hence, in the SDN model, the
software is seen as separate from the appliance; in the distributed model, the soft-
ware has traditionally been seen as part of (or embedded in) the hardware. This
brings us to a second false either/or divide. In reality, every distributed control
plane is implemented in software, and hence can always be separated from the
hardware.

Given software can always be separated from hardware, how can SDN be differ-
entiated from the “traditional” model? The primary idea revolves around separating
some part of the functionality of the control plane from the individual forwarding
devices, or rather, pulling some part of the functionality of the control plane into
a “centralized” control plane. It is important to note the term centralized control
plane, as it is used here, does not mean a single “god box” that controls the network.
Rather, it simply means a control plane that, in some way, does not run entirely on
the network devices.

Considering the Definition of Software Defined 483

A Taxonomy of Interfaces

The SDN and PN worlds, in many ways, have their own terminology; the most
important are the southbound interface and the northbound interface:

 • The southbound interface is the interface between the controller and the net-
work devices.

 • The northbound interface is the interface between the controller and applica-
tions (or business logic).

Within the realm of southbound interfaces, there are a number of different inter-
action points, or ways in which the controller interacts with the forwarding devices.

Figure 18-1 shows four different control plane models:

 • In the distributed model, the control plane software runs primarily on for-
warding devices. This does not mean the control plane software is embedded
in the forwarding device. In an appliance model, the software is treated as an
embedded part of the appliance itself. In a disaggregated model, however, the
software runs primarily on the forwarding device, but the software is clearly
delineated from the forwarding hardware.

 • In the augmented model, the control plane software runs primarily on for-
warding devices. Like the distributed model, the control plane is not neces-
sarily embedded in the forwarding device. In the augmented model, the local
control plane processes interact with the routing table (Routing Information
Base, or RIB). Off-box processes interact with the distributed control plane to
influence the set of loop-free paths installed in the RIB.

On Box
Control
Plane

On Box
Control
Plane

On Box
Control
Plane

RIB

Forwarding Engine Forwarding Engine Forwarding Engine Forwarding Engine

RIB RIB

Off Box
Process(es)

Off Box
Process(es)

Off Box
Process(es)

Distributed Augmented Hybrid Replace

Figure 18-1 Centralized control plane models

Chapter 18 Centralized Control Planes484

 • In the hybrid model, the centralized component of the control plane runs in
parallel with the distributed control plane. From the distributed control plane
process running on each device, the controller just appears to be another dis-
tributed control plane running in parallel (in effect). From the controller’s per-
spective, much the same is true; the distributed control plane is just another
control plane running in parallel with the controller.

 • In the replace model, there is no distributed control plane; the centralized con-
trol plane is the only source of loop-free paths for the local switching device.
One key marker of implementations using this model is the controller speaks
directly to the forwarding table (FIB) rather than the RIB.

Within this framework, it is important to ask which part of the control plane—
or more specifically, which functionality—is placed in the distribution control plane
and which is placed in the centralized control plane.

Considering the Division of Labor

Which part of the control plane is centralized is the crucial question when consider-
ing SDNs and PNs. What are the parts of a control plane?

There are three “things” a control plane must provide to support applications
and businesses: topology information, reachability information, and policy. Almost
every control plane implemented since the beginning of network engineering time
has assumed these three functions are part of a single “thing,” and hence they must
all be done in a single protocol.

Just as data planes are layered by function and location, however, it makes more
sense to consider the control plane as a set of functions that can be split into layers.
What would these layers look like?

 • Discovering topology and advertising reachability are inseparable in some
protocols, such as the Routing Information Protocol (RIP) and the Enhanced
Interior Gateway Routing Protocol (EIGRP). In other protocols, such as Inter-
mediate System to Intermediate System (IS-IS), the Shortest Path Tree (SPT) is
calculated based on the topology, and reachability is “hung off the tree” as leaf
nodes. Conceptually, then, it is difficult to see how topology and reachability
could be separated into layers; the interplay between the two pieces of infor-
mation is direct and immediate.

 • Policy, on the other hand, relies on the topology and reachability information,
but otherwise does not interact with topology and reachability. In fact, con-
trol plane policy is generally the process of overriding the basic topology and
reachability information calculated by the control plane.

BGP as an SDN 485

There appears to be a natural “split,” with topology and reachability on one side
of the divide, and policy on the other side of the divide. It is possible, then, to break
the control plane into two “layers,” with the bottom layer providing topology and
reachability information, and the upper layer providing modifications to the paths
calculated by the lower layer in order to implement specific policies.

BGP as an SDN

While the Border Gateway Protocol (BGP) was originally designed to interconnect
networks operated by different companies—particularly transit service provider
 networks—providers with large-scale data centers realized it could be used to scale
spine and leaf fabrics. Figure 18-2 is used for illustrating BGP as used in a data center.

Figure 18-2 shows a five-stage spine and leaf fabric using eBGP as a control plane;
as there are no “cross links” in a spine and leaf, there is no iBGP between (using the
row and column identifiers to label routers) routers 5a and 5b. Rows 1 and 5 are Top
of Rack (ToR) devices, connected to servers hosting the applications using the fabric.

To provide the example, assume some flow should be pinned between 5b and 1d.
It is always possible to manually configure each router in the network with static
routes to pin this one flow to a specific path, but this creates a lot of opportunities
for configuration mistakes.

AS65000

AS65001

AS65002

AS65003

AS65004

row
 1

row
 2

row
 3

row
 4

row
 5

col a col b col c col d

iBGP controller

Figure 18-2 BGP in a data center fabric

Chapter 18 Centralized Control Planes486

Note

Of course, you could always automate the configuration. But automation does
not really reduce the amount of complexity; it just relocates the complexity
from the human-to-device interface into a three-layer structure, human- to-
automation system, automation system to device. In other words, automating
a complex configuration does not make the configuration less complex; it just
makes the complexity less apparent. There is no doubt this can sometimes be
a good thing, but there is also no doubt automating a bad process does not
improve the process. Automation can solve many things, but network engi-
neers need to be careful in thinking automated configurations will “solve all
problems.”

Another option, particularly since BGP is already running on every router in the
network, is to use BGP as an SDN. Toward this end, an iBGP controller, shown at the
bottom of the diagram, is connected to every router in the fabric.

Note

Only a small number of the iBGP connections are shown so the illustration
remains readable.

Once the iBGP sessions are in place, the controller can “read” the entire topol-
ogy and use local policies to determine which path the flow should be pinned to, and
also which flows need to avoid the path over which the pinned flow is passing. For
instance, assume the flow should be pinned to the [5b,4a,3c,2b,1d] path. A lower-
cost path toward the destination (behind 1d) through 4a can be injected at 5b, and
again through 3c at 4a, and again through 2b at 3c, etc., until the best path at each
router along the path is through the selected path. The easiest way to accomplish this
in BGP would be to inject a route from the controller with a lower local preference—
but there are many ways to express such a policy in BGP.

This is an example of an augmented model; the centralized part of the control
plane interacts with the distributed control plane (eBGP) directly. This is a rather
interesting version of a hybrid model implementation, however, in that the protocol
used to push policy (the southbound interface) is the same as the protocol used to
discover and distribute topology and reachability information.

Fibbing 487

Fibbing

Link state protocols, unlike BGP, are focused on finding the shortest path to a given
destination; while most implementations do support tags that can be carried in the
protocol, these tags are rarely (actually never) used to modify traffic flow. The reason
for this is fairly simple: the link state database must be synchronized among all rout-
ers. If two routers have a different view of the network topology, it is possible they
will compute a looped path through the network.

Fibbing works within this set of constraints to allow traffic-engineered paths to
be computed without modifying the link state protocol, such as Open Shortest Path
First (OSPF) or Intermediate System to Intermediate System (IS-IS). Essentially, fib-
bing works by inserting false nodes, similar to pseudonodes, into the link state data-
base, causing OSPF and IS-IS to change the shortest path, and hence engineering
traffic flows through the network.

Note

This technique requires the route type used to create these fake nodes be able to
carry a third-party next hop; v1, for instance, must be able to set the next hop
for h1, which has the same address as H, to D, rather than to the fake node itself.
Among link state protocols, as of this writing, only one kind of route can carry
a third-party next hop: the OSPF external route. This means destinations for
which traffic is engineered using fibbing must be external routes, and the fake
nodes and other information the controller injects must also be OSPF external
routes.

Figure 18-3 illustrates one possible way in which such fake nodes can be inserted
into the network to modify traffic flow.

Figure 18-3 illustrates three stages in the same network: the first stage is the net-
work without fibbing, the second is with fibbing nodes included to alter the best path
chosen by OSPF, and the third is after the fibbing nodes have been optimized.

In 1, the top network illustrated in Figure 18-3, OSPF would choose the best path
from A to H along [A,B,C,F,H], as this path has a total cost of 40. The next shortest
path is through [B,D,E,F] or [B,D,E,G], both of which have a cost of 50. The policy to
be applied to this network is to force the A to H traffic along the path [A,B,D,E,G,H].
The first step is adding a controller that can consume the link state database by par-
ticipating in OSPF, and can also inject new LSAs into the network. This controller is
attached to F and is labeled K in the diagram.

Chapter 18 Centralized Control Planes488

To put the policy in place, the controller must convince

 • B that the shortest path toward H passes through D.

 • D that the shortest path toward H passes through E.

 • E that the shortest path toward H passes through G.

A B

C

D

E

F

G

H

10

10

10

10

10

10

101010

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

K

K

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

v1

v1

v2
v3

v3

h1

h1

h2 h3

h3

1: original network

2: with fibbing nodes

3: with optimized nodes

Figure 18-3 Fibbing traffic engineering process

Fibbing 489

To do this, the controller can inject three LSAs for fake nodes into the network,
v1, v2, and v3, each of which advertises the destination H as directly connected
(shown as h1, h2, and h3 on the diagram):

 • The advertisement for h1 from v1 has D set as the next hop, so that if B chooses
this path toward H, the traffic is forwarded to D rather than v1.

 • The advertisement for h2 from v2 has E set as the next hop, so that if B chooses
this path toward H, the traffic is forwarded to E rather than v2.

 • The advertisement for h3 from v3 has G set as the next hop, so that if B chooses
this path toward H, the traffic is forwarded to G rather than v3.

The controller must also advertise some new links—specifically:

 • [B,v1] with some cost lower than 40

 • [v1,B] with an infinite cost

 • [v1,D] with any cost

 • [D,v1] with an infinite cost

 • [D,v2] with any cost less than 30

 • [v2,D] with an infinite cost

 • [E,v2] with any cost

 • [v2,E] with an infinite cost

 • [E,v3] with any cost less than 20

 • [v3,E] with an infinite cost

 • [v3,G] with any cost

 • [G,v3] with an infinite cost

Given this set of nodes and links:

 • B will compute the path to H through v1, and forward the traffic toward H to
D (because the next hop advertised by v1 to h1 is through D).

 • D will compute the path to H through v2, and forward the traffic toward
H to E (because the next hop advertised by v2 to h2 is through E).

 • E will compute the path to H through v3, and forward the traffic toward H to
G (because the next hop advertised by v3 to h3 is through G).

Chapter 18 Centralized Control Planes490

These alternate best paths, then, will carry the traffic along the path [A,B,v1(to
D),v2(to E),v3(to G),H]. Adding a node per hop might seem inefficient; hence the
fibbing process includes an optimization step. At each hop along the calculated path,
the algorithm can compute where each router would forward traffic anyway. In the
case of B, the shortest path is normally through C, so the fake node is required to
redirect the traffic. In the case of D, however, the shortest path is normally through E,
which is the correct path; the fake node does not need to be created to convince D to
forward traffic toward H through E. In the case of E, there are two equal cost paths;
the fake node would be needed to force E to choose the correct path of the two. The
final network, 3, illustrated in Figure 18-3, shows the optimized set of fake nodes
inserted in the network.

I2RS

Work on the Interface to the Routing Systems (I2RS) began in the Internet Engi-
neering Task Force (IETF) in 2012. The original charter was to build an interface
into the RIB to act as an interface between the RIB and an off-device process or
application. To quote the problem statement RFC7920, directly:

Traditionally, routing systems have implemented routing and signaling (e.g., Mul-
tiprotocol Label Switching, or MPLS) to control traffic forwarding in a network.
Route computation has been controlled by relatively static policies that define
link cost, route cost, or import and export routing policies. Requirements have
emerged to more dynamically manage and program routing systems due to the
advent of highly dynamic data-center networking, on-demand Wide Area Net-
work (WAN) services, dynamic policy-driven traffic steering and service chaining,
the need for real-time security threat responsiveness via traffic control, and a par-
adigm of separating policy-based decision-making from the router itself. These
requirements should allow controlling routing information and traffic paths and
extracting network topology information, traffic statistics, and other network
analytics from routing systems.1

Figure 18-4 illustrates the architecture of I2RS.
In Figure 18-4, there are several critical components:

1. Atlas, Ward, and Nadeau, Problem Statement for the Interface to the Routing System.

I2RS 491

 • The application, which is normally some sort of network-level orchestration
package providing a “business policy” or “intent-focused” interface to the
user. This application is responsible for translating intent into some form of
input that the I2RS controller can understand, or translating the information
that the I2RS controller provides into some form of human-readable informa-
tion (such as an overlay view of all the topologies currently enabled on the
network).

 • The northbound Application Programming Interface (API), which is not
defined by the I2RS specifications.

 • The I2RS controller, which is a package executing on a server someplace (vir-
tual or otherwise). This translates the intent and “human readable” requests
from the application into the format of the southbound API.

 • The southbound API, which is YANG-modeled data carried over one of several
different transport mechanisms.

 • The I2RS agent, which does two things:

 • Translates the YANG-modeled data into local RIB API calls to install,
remove, and modify routes.

 • Translates local RIB and routing information into YANG models describing
the topology of the network (including overlay topologies).

It is possible to run only an I2RS agent on each router, replacing the distributed
control plane completely. In this case, the controller would take the connected inter-
face and destination information from the RIB, possibly using information from
other protocols (such as the Link Local Discovery Protocol, or LLDP), to verify
adjacent connected routers, to build a complete view of the network. Based on

Application I2RS Controller

I2RS Agent

RIB

FIB

Routing Protocol

packet flow packet flow

Northbound API

Southbound API

Figure 18-4 I2RS architecture

Chapter 18 Centralized Control Planes492

this information, the controller could use any one of the loop-free path calculation
mechanisms to calculate a set of loop-free routes through the network, modify them
based on the policy being fed to the controller by the application(s), and then distrib-
ute the resulting routes to the RIB at each router. Deploying I2RS in this way would
be an example of the replace model discussed in the first section of this chapter.

I2RS is not designed to be deployed in replace mode, however. The I2RS agent, which
interfaces with the RIB in the same way any distributed routing protocol running on
the device does, allows I2RS to act in parallel with other control planes; this would fall
under the hybrid mode considered in the first part of this chapter. Figure 18-5 illustrates.

In Figure 18-5, A and H are both sending large streams of data to two different
services residing on K. The shortest path, calculated by the routing protocol, from A
to K is along the path [B,E,G]; the shortest path calculated by the routing protocol
from H to K is [E,G]. If both of these flows are placed on the [E,G] link, it could
overwhelm the link, so the network operator would like to move A’s traffic to an
alternate path. This might be expressed as a policy something like “the differential
between the utilization of any two paths in the network should not be more than
20%,” or something similar.

The controller, C, can then monitor each link in the network; when both A and H
send traffic, the controller can note the [E,G] link is out of policy, and hence look for
some alternate path over which to send some part of the traffic. The obvious choice
will be the traffic originating at A; what is not so obvious is where to send this traffic.
There are a number of options available to the controller, depending on the capabili-
ties of each device in the network. For instance:

 • If the network supports MPLS label stacks, the controller could impose a label
stack on the traffic on the inbound port connecting B to A, causing the traf-
fic to follow the path [B,E,F,G]; this would be implementing segment routing
using I2RS to push the label stacks to network devices.

A
B

C

D

E

F

G

H

K

Figure 18-5 An I2RS use case

I2RS 493

 • If E supports forwarding based on the source and destination addresses, the
controller could push a forwarding rule stating all traffic sourced from A, and
destined to K, should be forwarded toward F instead of toward G; the control-
ler would need to calculate that F will not forward the traffic back to E, of
course, which would depend on the local link metrics.

 • If F, for some reason, would normally use the path through E to reach K, the
controller can set destination-based forwarding rules in B, D, F, and G to cause
the traffic sourced from A, and destined to K, to follow the path [B,D,F,G].

All other traffic in the network would continue to follow the routes calculated by
the distributed routing protocol running in parallel with I2RS. This means I2RS is
being used in a hybrid model programmable network mode in this example. This is
the operational role I2RS was designed to fill.

I2RS uses the YANG modeling language to describe forwarding and topology infor-
mation. For instance, a route is modeled as a set of objects, as shown in Figure 18-6.

The three kinds of objects in a route model shown in Figure 18-6 are as follows:

 • Route attributes, such as the metric.

 • The route match, which is the portion of the route that is matched to the des-
tination address; when being processed, the destination of the packet can be
matched on an IPv4 address, an IPv6 address, an MPLS label, a Media Access
Control (MAC) address, or an interface.

 • When the route and the attributes match, the packet is sent to what is con-
tained in the next hop field.

Route

Attributes Match

IPv4 IPv6 MPLS Label MAC Address Interface

Next Hop

Figure 18-6 The components of an I2RS route

Chapter 18 Centralized Control Planes494

Why not define this in a single structure, rather than as a set of related objects?
After all, this sort of structure appears to make the model of a single route more
complex. The advantage here, however, is the same as the advantages of encoding
information into a Type Length Vector (TLV); it is very easy to extend the model if
some new kind of match is needed, some new attribute is needed, or some new kind
of next hop is needed. One specific example is the idea of an equal cost multipath
(ECMP) group. The next hop object can be a single next hop, or a collection of next
hops in the form of an ECMP group, or even, perhaps, a next hop and a fast reroute
next hop (an alternate next hop).

The model of each route, expressed in YANG, looks like this:

+--rw route-list* [route-index]

 | +--rw route-index uint64

 | +--rw match

 | | +--rw (route-type)?

 | | +--:(ipv4)

 | | | ...

 | | +--:(ipv6)

 | | | ...

 | | +--:(mpls-route)

 | | | ...

 | | +--:(mac-route)

 | | | ...

 | | +--:(interface-route)

 | | ...

 | +--rw nexthop

 | | +--rw nexthop-id?uint32

 | | +--rw sharing-flag? boolean

 | | +--rw (nexthop-type)?

 | | +--:(nexthop-base)

 | | | ...

 | | +--:(nexthop-chain) {nexthop-chain}?

 | | | ...

 | | +--:(nexthop-replicates) {nexthop-replicates}?

 | | | ...

 | | +--:(nexthop-protection) {nexthop-protection}?

 | | | ...

 | | +--:(nexthop-load-balance) {nexthop-load-balance}?

 | | ...

 | +--rw route-status

 | | ...

 | +--rw route-attributes

PCEP 495

 | | ...

 | +--rw route-vendor-attributes

 +--rw nexthop-list* [nexthop-member-id]

 +--rw nexthop-member-id uint32

You can see each of the elements shown here in the diagram laid out in a human-
readable, textual format within the YANG model.

PCEP

The original Path Control Element Protocol (PCEP) work dates from the early 2000s,
with the first IETF RFC (4655) being made informational in 2006, which means
PCEP predates the time when SDNs were “cool.” PCEP was created because of the
increasingly complex nature of computing Traffic Engineering (TE) paths through
(primarily) Service Provider (SP) networks. Three specific developments drove the
design, standardization, and deployment of PCEP:

 • The complexity of calculating TE paths across large, dispersed networks with
a lot of different available paths

 • The complexity of calculating TE paths across multiple organizations and
internal network boundaries; for instance multiple flooding domains, multiple
interior gateway protocols stitched together with BGP, or multiple BGP auton-
omous systems

 • The complexity of computing TE paths through multiple levels of abstrac-
tion, such as computing an MPLS TE path on top of an optical path; this
includes the difficulty of computing Shared Risk Link Groups (SRLGs) where
a large set of virtual topologies cross a complex set of physical (primarily
optical) links

The state necessary to compute TE paths in each of these situations is either very
difficult or impossible to assemble in a single distributed control plane. All of these
functions require some sort of overlay controller-based network with visibility into
the entire network, including the physical through the application layers, and across
administrative and failure domain boundaries.

If this set of requirements is starting to sound familiar, it should be; many of the
SDN type overlays discussed in this chapter were created to solve some variant of this
problem set. Figure 18-7 illustrates the components of the PCEP ecosystem.

Chapter 18 Centralized Control Planes496

There are four crucial components of PCEP shown in Figure 18-7:

 • The PCC is the Path Computation Client; this is the application or service
requesting a new TE path be configured through the network.

 • The PCE is the Path Computation Element; this is the controller with the over-
all view of the network, and it computes the TE path through the network
(normally using some form of Constrained SPF).

 • The LER is the Label Edge Router; this is the head- and tailend of the TE Label
Switched Path (LSP) through the network.

 • The LSR is the Label Switch Router; these simply forward based on the labels
as they are configured by the PCE using PCEP.

In a single network (domain or autonomous system), there may be multiple PCEs
that may communicate in a number of different ways. For instance, PCEs may share
topology information using a link state protocol or BGP (particularly if BGP is carrying
topology information through BGP-LS). There may also be one or more PCCs. PCEP is
also designed to build paths across domains or autonomous systems; a set of PCCs may
communicate with one another to build a TE path across multiple provider networks,
instructing local PCEs to set up the correct LSPs through each LSR along the path.

The way a TE path is normally designed in PCEP is each device is configured
with a simple set of forwarding rules; any packet received with one label, say X, is
forwarded out the indicated interface with a new label Y. This is exactly the same as
any other MPLS technology that swaps the outer label at each hop.

LER

PCE

PCC

PCE

LERLSR LSR LSR LSR

A

HG

K

B C D E F

Figure 18-7 The elements of a PCEP deployment

OpenFlow 497

PCEP, as a protocol, is highly tuned to the process of inserting the inbound label,
outbound interface, and outbound label into the forwarding table at each LER and
LSR. While PCEP does encode information into TLVs, there is no specific capability
to insert filtering or traffic classification rules of any kind. The controller must be
able to configure the LER to channel the correct traffic into the LSP headend in some
way. It is possible, of course, to configure a label to be routed to the NULL0 inter-
face, which effectively filters the packet stream, so it is possible to do some forms of
packet filtering using PCEP.

PCEP falls into the hybrid model described in the first part of this chapter.

OpenFlow

OpenFlow made SDN technology “cool.” The project began in 2006 with two sets of
problems. The first was a project at Stanford built around centrally managing policy
in a network. The second was a group of projects in other universities where research-
ers wanted to try new ways of building routing protocols; however, the hardware
platforms available at the time were not something end users could modify by install-
ing new routing code on them. These requirements breathed new life into the con-
cept of separating the control and forwarding planes, driven by the idea of a standard
protocol to carry information between the control plane and the FIB. Figure 18-8
illustrates the basic concept.

Figure 18-8 illustrates the most basic OpenFlow configuration. The switching
device does not have any control plane at all, as the controller interacts directly with
the FIB. OpenFlow provides a packet format and a protocol over which these packets
can be carried that describes forwarding table entries in the FIB directly. The FIB, in
OpenFlow documentation, is referred to as the flow table, as it contains information
about each individual flow the switch needs to know about.

Note the wording here: each individual flow. This is because OpenFlow was
originally designed to operate on any and (possibly) every field in a packet header.

Application OpenFlow Controller

FIB
packet flow

switch

packet flow

Northbound API

Southbound API

Figure 18-8 Basic OpenFlow

Chapter 18 Centralized Control Planes498

The controller specifies a set of bits and an offset the switch is supposed to match,
and then a set of actions to take if a packet matches the specified pattern. The
switch, then, can just check each packet it processes to see if it matches this pat-
tern. The pattern might contain, for instance, the source and destination Internet
Protocol (IP) addresses, the source and destination media access addresses, pro-
tocol numbers, port numbers, and just about anything contained in the packet
header.

It is impossible to build hardware able to contain information on every flow pass-
ing through the device. It is impossible, as well, for the controller to know about
every flow being initiated by every host attached to the network. To resolve these
problems, OpenFlow is normally implemented as a reactive control plane. This
means processing a new stream takes several steps:

 1. The host starts sending packets in the new stream.

 2. The first hop switch receives these packets and finds it has no flow label match-
ing the new flow.

 3. The first hop switch will send the packets to the controller.

 4. The controller examines the packet, finds a matching policy (if there is one),
and computes a loop-free path through the network.

 5. The controller installs flow label information for this new flow in every switch
through which packets in this flow will pass.

 6. The switches now forward traffic normally.

Flow labels are cached, which means each flow label is held until it has not
been used for some time. OpenFlow, then, was originally designed as, and is often
deployed as, a reactive control plane, which means the control plane relies on infor-
mation dynamically (in near real time) supplied by the data plane to build forward-
ing information.

This kind of processing is generally not scalable in many environments, particu-
larly in the environment OpenFlow is considered ideal for—hyperscale data center
fabrics for building private and public clouds. Because of this, many implementa-
tions rely on wildcard flow labels, which work much like IP routes; if a subset of
the information is matched, the packet is processed based on the rules given for the
partial match. Much like more traditional IP routing, the partial match is often the
destination subnet.

While OpenFlow is often shown with an off-device controller, this is not the only
deployment pattern where OpenFlow has been used. Figure 18-9 illustrates.

CAP Theorem and Subsidiarity 499

In Figure 18-9, two chassis devices are represented. In each one, there is a pro-
cessor (or compute engine) running a standard distributed routing protocol. This
routing engine communicates with an OpenFlow controller within the device, per-
haps running on the same processor. This controller then uses OpenFlow to send
routes to individual line cards, each of which acts as a sort of independent switch.
The entire unit might appear to be a fairly standard chassis switch, with OpenFlow
being used as a sort of Interprocess Communication (IPC) system between the com-
ponents. The advantage in such a design is that line cards with different sorts of pro-
cessors can be used; so long as each kind of processor has an OpenFlow interface,
the hardware under the controller (and within the stack or chassis) can be replaced
fairly easily.

CAP Theorem and Subsidiarity

Centralization can often bring many benefits in terms of policy implementation;
some engineers and researchers think centralized control planes are much simpler
than distributed control planes. Why not completely centralize all control planes,
then? The answer lies in another three-way tradeoff problem, much like the State/
Optimization/Surface (SOS) three-way problem discussed in Chapter 1, “Fundamental
Concepts.” To understand this problem, consider Figure 18-10.

Openflow Controller Openflow Controller

Routing Protocol Routing Protocol

FIB FIB

FIB FIB

packets packets

packets packets

switch switch

switch switch

chassis chassis

Figure 18-9 OpenFlow in a chassis system

Chapter 18 Centralized Control Planes500

There are four sets illustrated in Figure 18-10:

 1. A single database on a single server, accessed by two processes running on two
hosts, C and D

 2. A pair of databases containing the same information (which must be synchro-
nized) running on a single server, accessed by two processes running on two
hosts, C and D

 3. A pair of databases containing the same information (which must be synchro-
nized) running on a pair of servers connected by a single wire, accessed by two
processes running on two hosts, C and D

 4. A pair of databases containing the same information (which must be synchro-
nized) running on a pair of servers connected through a router, accessed by
two processes running on two hosts, C and D

Now consider what happens in each case if C writes some piece of information
and D immediately reads it:

 1. The information is written to the database; when D reads the information, it
will be identical to what C has written.

 2. The information is written to one database, and it takes a few moments to be
synchronized to the other database because it must be transferred across some
sort of internal bus so it can be copied from one database to the other. If D
reads the information immediately from B, it will receive the old information;
D must wait for the synchronization process to complete to see an accurate
copy of the information (or the database).

A A

C C C CD D DD

A AB B B

set 1 set 2 set 3 set 4

Figure 18-10 Understanding the CAP theorem

CAP Theorem and Subsidiarity 501

 3. Once C has written the information to copy A, the information must cross
an internal bus to a network interface, be marshaled into some form of data
packet, serialized onto the wire (potentially after being queued for a few
moments), copied off the wire at the second server, passed over the second serv-
er’s internal bus, and then synchronized to the second copy of the database.

 4. Once C has written the information to copy A, the information must cross
an internal bus to a network interface, be marshaled into some form of data
packet, serialized onto the wire (potentially after being queued for a few
moments), copied off the wire by the router, processed and switched in mem-
ory, queued in the router, serialized back onto the wire, copied off the wire at
the second server, passed over the second server’s internal bus, and then syn-
chronized to the second copy of the database.

It should be obvious that the farther apart the two copies of the database are
logically, the longer it will take for the information in copy B to match the infor-
mation in copy A after C has finished writing. This is the first third of the CAP
theorem: partitionability. The database in set 1 is not partitioned; as you move left to
right, the database becomes more “strongly” partitioned by adding more processes
that the information must pass through before the two copies of the database can be
synchronized.

Assume you must ensure that the information D retrieves is exactly what C writes.
The simplest way to ensure this is to simply block D from reading the copy at B until
you know the two copies are synchronized. To put this in other terms, you can block
D’s access to the database. This is the second third of the CAP theorem, the “A”—
accessibility. You can solve the synchronization problem solved by partitioning the
database by making the database unreadable part of the time, or less accessible.

An alternate assumption might be that you do not need B to read precisely the
same information as C has written; hence the read and write do not need to be con-
sistent. This is the third third of the CAP theorem, the “C”—consistency.

Putting this all together, the CAP theorem states there are three design param-
eters in building a database: consistency, accessibility, and partitionability. You can
choose, in some measure, two of the three.

How does this apply to control planes? The answer is quite simple: if you want
to have a consistent view of the network, you must somehow block access to the
database containing the description of the network topology during some periods
of time (specifically while the network is converging). What distributed routing pro-
tocols do is to allow access all the time, and simply “live with” the inconsistencies
resulting from this “always available” distributed database of topology and reach-
ability information.

Chapter 18 Centralized Control Planes502

Centralized control planes, however, face a double problem. First, the database is
now distributed between the actual forwarding devices and the device with the data-
base describing the network. Second, there cannot be “only one controller”—this
would create an unacceptable single point of failure. To prevent having a single point
of failure, there must be at least two controllers. Those controllers must be synchro-
nized in some way.

So centralized control planes face a number of challenges, such as

 • Ensuring the actual state of the network is reflected from the devices that are
connected to links and destinations into the controller

 • Ensuring controllers have a consistent view of the network, or that an inconsist-
ent view of the network does not cause systemic, large-scale failures in some way

 • Ensuring the information needed to forward packets is available at individual
forwarding devices fast enough that forwarding does not suffer because of the
distributed nature of the control and forwarding planes

There are solutions in each of these spaces, but they often introduce as much
complexity as a distributed control plane in the first place. Quite often, hybrid mod-
els are chosen to balance between the complexity of distributed control planes and
the complexities of centralized control planes.

One interesting way to think about centralization and decentralization is through
the subsidiarity principle. Applying subsidiarity, which arises out of the social teach-
ing of Thomas Aquinas, might seem to go far afield of engineering, but consider the
principle itself:

This tenet holds that nothing should be done by a larger and more complex
organization which can be done as well by a smaller and simpler organization.2

The “root” of the subsidiarity principle is this: decisions should be made as close
as possible to the information the decisions themselves depend on. Applying this
principle to network engineering means thinking about where information is pro-
duced and placing any decision maker (generally a protocol, process, etc.) as close to
the source of information as possible. Looking at this from a CAP theorem perspec-
tive, putting the decision maker close to the source of the information on which the
decision maker depends reduces the amount of time between the information being
available and the decision being made.

What does this suggest in the network engineering world? Policy comes primarily
out of business decisions, and business decisions should be close to the business, not

2. Bosnich, “The Principle of Subsidiarity.”

Final Thoughts on Centralized Control Planes 503

the topology. Hence, policy, or least some element of policy, is often best done when
centralized. Topology and reachability, however, are grounded in what should be the
only source of truth about the state of the network, the network itself. Therefore, it
makes sense that decisions related to the topology and reachability, from detection to
reaction, should be kept close to the network itself; hence, topology and reachability
decisions should trend toward being decentralized.

Final Thoughts on Centralized Control Planes

There are no absolutes in the world of network engineering; if you have not found
the tradeoff, you have not looked hard enough. This is true of choosing when and
where to centralize, and when and where to decentralize. These choices are presented
as either/or absolute choices far too often. The reality is that different problems often
require different solutions.

Centralization and distribution, in terms of solving the many different problems
control planes must resolve in the real world, provide network and protocol design-
ers with a number of tradeoffs. A range of possible solutions seems obvious when
considering these two different ways of providing reachability and topology infor-
mation; for instance:

 • Centralize reachability and topology discovery in a set of distributed control-
lers, replacing the distributed control plane with a centralized one. This model
does not truly assume a “centralized” control plane, so much as it does remov-
ing the processing of information discovered about the network out of the
individual switching devices. Distribution of the information across a number
of devices is still key in creating a resilient design.

 • Centralize some part of the function of the control plane, normally the policy,
and distribute the remaining parts. PCEP, I2RS, and many other “overlay” con-
trol planes take this route.

 • Decentralize all of the control plane components, including reachability, topol-
ogy, and pushing policy. There are actually very few large-scale networks fully
decentralized in this way; at least some policy is normally.

There is, in the end, no simple answer to the problems control planes pose in the real
world. Between the three-way tradeoff implied by complexity theory (state, optimiza-
tion, and surface) and the CAP theorem (consistency, accessibility, and partitioning),
designers can make a wide range of choices when building networks and protocols.

Choose wisely.

Chapter 18 Centralized Control Planes504

Further Reading

Atlas, Alia, David Ward, and Thomas Nadeau. Problem Statement for the Interface
to the Routing System. Request for Comments 7920. RFC Editor, 2016. https://
rfc-editor.org/rfc/rfc7920.txt.

Bjorklund, Martin. The YANG 1.1 Data Modeling Language. Request for Com-
ments 7950. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7950.txt.

Bosnich, David A. “The Principle of Subsidiarity.” Religion & Liberty 4, no. 4 (July
2010). https://acton.org/pub/religion-liberty/volume-6-number-4/principle-
subsidiarity.

Clarke, Joe, Gonzalo Salgueiro, and Carlos Pignataro. Interface to the Routing
System (I2RS) Traceability: Framework and Information Model. Request for
Comments 7922. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7922.txt.

Doria, Avri, Ligang Dong, Weiming Wang, Hormuzd M. Khosravi, Jamal Hadi
Salim, and Ram Gopal. Forwarding and Control Element Separation (ForCES)
Protocol Specification. Request for Comments 5810. RFC Editor, 2010. https://
rfc-editor.org/rfc/rfc5810.txt.

Hares, Susan, and Mach Chen. “Summary of I2RS Use Case Requirements.”
 Internet-Draft. Internet Engineering Task Force, November 2016. https://
tools.ietf.org/html/draft-ietf-i2rs-usecase-reqs-summary-03.

Hares, Susan, Qin Wu, and Russ White. “Filter-Based Packet Forwarding ECA Pol-
icy.” Internet-Draft. Internet Engineering Task Force, October 2016. https://
tools.ietf.org/html/draft-ietf-i2rs-pkt-eca-data-model-02.

Medved, Jan, Nitin Bahadur, Hariharan Ananthakrishnan, Xufeng Liu, Robert
Varga, and Alexander Clemm. “A Data Model for Network Topologies.” Inter-
net-Draft. Internet Engineering Task Force, March 2017. https://tools.ietf.org/
html/draft-ietf-i2rs-yang-network-topo-12.

Medved, Jan, Nitin Bahadur, and Sriganesh Kini. “Routing Information Base Info
Model.” Internet-Draft. Internet Engineering Task Force, December 2016.
https://tools.ietf.org/html/draft-ietf-i2rs-rib-info-model-10.

Medved, Jan, Robert Varga, Hariharan Ananthakrishnan, Nitin Bahadur, Xufeng
Liu, and Alexander Clemm. “A YANG Data Model for Layer 3 Topologies.”
Internet-Draft. Internet Engineering Task Force, January 2017. https://
tools.ietf.org/html/draft-ietf-i2rs-yang-l3-topology-08.

Nadeau, Thomas, Alia Atlas, Joel M. Halpern, Susan Hares, and David Ward. An
Architecture for the Interface to the Routing System. Request for Comments
7921. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7921.txt.

https://rfc-editor.org/rfc/rfc7920.txt
https://rfc-editor.org/rfc/rfc7920.txt
https://rfc-editor.org/rfc/rfc7950.txt
https://acton.org/pub/religion-liberty/volume-6-number-4/principle-subsidiarity
https://acton.org/pub/religion-liberty/volume-6-number-4/principle-subsidiarity
https://rfc-editor.org/rfc/rfc7922.txt
https://rfc-editor.org/rfc/rfc5810.txt
https://rfc-editor.org/rfc/rfc5810.txt
https://tools.ietf.org/html/draft-ietf-i2rs-usecase-reqs-summary-03
https://tools.ietf.org/html/draft-ietf-i2rs-usecase-reqs-summary-03
https://tools.ietf.org/html/draft-ietf-i2rs-pkt-eca-data-model-02
https://tools.ietf.org/html/draft-ietf-i2rs-pkt-eca-data-model-02
https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-12
https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-12
https://tools.ietf.org/html/draft-ietf-i2rs-rib-info-model-10
https://tools.ietf.org/html/draft-ietf-i2rs-yang-l3-topology-08
https://tools.ietf.org/html/draft-ietf-i2rs-yang-l3-topology-08
https://rfc-editor.org/rfc/rfc7921.txt

Review Questions 505

Prieto, Alberto Gonzalez, Eric Voit, Ambika Tripathy, Einar Nilsen-Nygaard, Balazs
Lengyel, Andy Bierman, and Alexander Clemm. “Subscribing to YANG Data-
store Push Updates.” Internet-Draft. Internet Engineering Task Force, October
2016. https://tools.ietf.org/html/draft-ietf-netconf-yang-push-04.

Vissicchio, Stefano, Laurent Vanbever, and Jennifer Rexford. “Sweet Little Lies: Fake
Topologies for Flexible Routing.” In ACM HotNets. Los Angeles, California,
2014.

Wang, Lixing, Hariharan Ananthakrishnan, Mach Chen, Sriganesh Kini, and Nitin
Bahadur. “A YANG Data Model for Routing Information Base (RIB).” Inter-
net-Draft. Internet Engineering Task Force, January 2017. https://tools.ietf.org/
html/draft-ietf-i2rs-rib-data-model-07.

Review Questions

 1. Research Microsoft’s SWAN architecture. How would you classify this archi-
tecture? What parts of the control plane are centralized, what parts are distrib-
uted, what interface is used, and what is the southbound protocol?

 2. Research Google’s FirePath architecture. How would you classify this architec-
ture? What parts of the control plane are centralized, what parts are distrib-
uted, what interface is used, and what is the southbound protocol?

 3. Research OpenFabric. How would you classify this architecture? What parts of
the control plane are centralized, what parts are distributed, what interface is
used, and what is the southbound protocol?

 4. Research RESTful interfaces. What is the difference between a RESTful and
non-RESTful interface?

 5. Among the four possible interfaces, what interface did the forCES protocol
interact with?

 6. Research OpenFlow hybrid mode. Why did the developers of the OpenFlow
protocol abandon this idea? How would this mode have changed the classifica-
tion of the OpenFlow protocol?

 7. One of the problems facing operators who use BGP as a southbound interface
is the lack of a full view of the network topology. How does BGP-LS (Link
State) solve this problem?

 8. What are the state, surface, and optimization tradeoffs in fibbing?

https://tools.ietf.org/html/draft-ietf-netconf-yang-push-04
https://tools.ietf.org/html/draft-ietf-i2rs-rib-data-model-07
https://tools.ietf.org/html/draft-ietf-i2rs-rib-data-model-07

This page intentionally left blank

507

Chapter 19

Failure Domains and
Information Hiding

Learning Objectives

When you finish reading this chapter, you should understand:

 0 The reason for hiding information in the control plane

 0 The concepts of control plane state scope and speed

 0 Feedback loops and the dangers of positive feedback loops

 0 The difference between summarizing topology and aggregating
reachability

 0 Filtering reachability information

 0 Layering control planes

 0 Caching control plane information

The intentional modification or shaping of traffic flows across a network is not the
only kind of policy that network engineers must interact with. Information hiding,
while not often considered a form of policy, relates to the larger goals, or policies, of
building scalable, repeatable networks. These policies have consequences in terms of
traffic flow, although these consequences are often unintentional rather than
 intentional—which means they are often ignored. This chapter and the next, Chapter
20, “Examples of Information Hiding,” are dedicated to considering this one prob-
lem, the solution space, and some widely used solution implementations. The first
section in this chapter will examine the problem space, the second various kinds of

Chapter 19 Failure Domains and Information Hiding508

solutions that can be used to counter the problem, and the third section will consider
information hiding in the context of network complexity.

The Problem Space

Control planes are designed to learn about and carry as much information about the
network topology and reachability as possible. Why would network engineers want
to limit the scope of this state, once the processing and memory have been spent to
learn it? There are several answers, including

 • To reduce resource utilization in devices participating in the control plane,
generally just to save costs

 • To prevent a failure in one part of a network from impacting some other part
of the network; in other words, to break up the network into failure domains

 • To prevent leaking information about the topology of the network, and reach-
ability to destinations attached to the network, to attackers; in other words, to
reduce the network’s attack surface

 • To prevent positive feedback loops that can cause a complete network failure

The problems in the preceding list can be divided into two categories: reducing
the scope of control plane information and reducing the speed at which control
plane information is allowed to change. These will be considered in the two follow-
ing sections.

Defining Control Plane State Scope

Figure 19-1 illustrates the scope of control plane state.

A B C D

20
01

:d
b8

:3
e8

:1
00

::/
64

Figure 19-1 The scope of control plane state

The Problem Space 509

There are two kinds of state carried by the control plane: topology and reach-
ability. These two kinds of control plane state can have different scopes in a network.
For instance:

 • If D has knowledge of 2001:db8:3e8:100::/64, then the scope of this reachabil-
ity information is A, B, C, and D—the entire network.

 • If C has knowledge of 2001:db8:3e8:100::/64, and D does not, then the scope
of this reachability information is A, B, and C.

 • If D knows about the link connecting A and B, or that A and B are adjacent,
the scope of this topology information is A, B, C, and D—the entire network.

 • If D does not know about the link connecting A and B, or that A and B are
adjacent, the scope of this topology information is A, B, and C.

Another way to look at this is to ask: if a link or reachability to a specific destina-
tion fails, which devices must participate in convergence? Any device that does not
participate in convergence, perhaps by sending an update, recalculating the set of
loop-free paths through the network, or switching to an alternate path, is not part of
the failure domain. Any device that does need to send an update, recalculate the set
of loop-free paths, or switch to an alternate path is part of the failure domain. The
scope of a failure, then, determines the scope of the failure domain. In Figure 19-1:

 • If D has knowledge of 2001:db8:3e8:100::/64, then D must recalculate its set
of reachable destinations if 100::/64 is disconnected from A; hence D is part of
the failure domain for this destination.

 • If D does not have knowledge of 2001:db8:3e8:100:/64, then D does not change
its local forwarding information when 100::/64 is disconnected from A; hence
D is not part of the failure domain for this destination.

 • If D has knowledge of the link between A and B, then D needs to recalculate
the set of loop-free paths through the network if the link fails (along with any
reachability information passing through the link); hence D is part of the fail-
ure domain for this specific link.

 • If D does not have knowledge of the link between A and B, then D does not
need to recalculate anything when the link fails; hence D is not part of the
failure domain.

This definition means failure domains must be determined for each piece of
reachability and topology information. While protocols and network designs will

Chapter 19 Failure Domains and Information Hiding510

block reachability and/or topology at common points in a network, there are cases
in which

 • Topology information is blocked, but not reachability information.

 • Some reachability information is blocked, but not all.

 • Some reachability or topology information leaks, causing a leaky abstraction.

The scope of control plane information within a network is important because it
has a very large impact on the speed at which the control plane converges. Each addi-
tional device required to recalculate because of a change in topology or reachability
represents some amount of time the network will remain unconverged, and hence
either some destinations will be unnecessarily unreachable, or packets will be looped
across some set of links in the network because some routers have a different view
of the network topology than others. Looping, in particular, is a problem, because
loops quite often have the potential to become positive feedback loops, which can
cause the control plane to fail to converge permanently.

Positive Feedback Loops

Positive feedback loops are a bit harder to imagine than the scope of control plane
information; Figure 19-2 illustrates.

In Figure 19-2, there are four devices:

 • Device A, which adds whatever it receives from the signal input and what it
receives from B

 • Device B, which can either increase or decrease the size or frequency of the
signal it receives from C

 • Device C, which passes the signal along unchanged to D, and also samples the
signal, sending the sample to B

 • Device D, which measures the signal

signal input

sample

feedback

A

B

C D

Figure 19-2 A sample circuit to illustrate positive feedback loops

The Problem Space 511

To create a simple feedback loop, assume C samples some fraction of the signal
passing through it, passing this sample to B. Device B, in turn, amplifies the sample by
some factor, and passes this amplified signal back to A. Figure 19-3 shows the result.

The case shown in Figure 19-3 is a positive feedback loop; C amplifies the sample
it receives, making the signal just a bit larger. The result, at D, is a signal with con-
stantly increasing amplitude. When will this feedback loop stop? When some limiting
factor is hit. For instance, A may reach some limit where it cannot continue to add the
two signals, or perhaps C reaches some input signal limit and fails, releasing its magic
smoke (as all electronics will do if driven with too much input power). It is also pos-
sible to set up a negative feedback loop, where C removes a slight bit of power each
cycle; in the case of a sine wave (as shown here), this would require C to invert the
sample it receives from A. Finally, it is possible to configure each component in this
circuit to neither increase nor decrease the final output at D. In this case, C would be
somehow tuned to compensate for any inefficiency in the wiring, or A or C’s opera-
tion, by injecting just enough feedback to A to keep the signal at the same power at D.

Figure 19-4 changes the amplitude of the output signal to the frequency of an
event to illustrate why.

In Figure 19-4, B (as shown previously in Figure 19-2) is programmed to send a
single event for every pair of events it receives. In the original signal input, there are
six event signals, so B adds three more into the feedback path toward A. In the second
round, shown in the center column, the original six events from the input signal are
added to the three from B, resulting in nine event signals. Based on these nine event

signal input

sample at C

output at A

output at B

result at D

ad
ds

 to
 p

ro
du

ce

ad
ds

 to
 p

ro
du

ce

Figure 19-3 Result of a positive feedback loop

Chapter 19 Failure Domains and Information Hiding512

signals at the output of C, B will generate four event signals and feed them back to A.
The result is that the output of A now has ten event signals. This increase in the num-
ber of signals will continue until the entire time space is saturated with event signals.

Physical and logical loops can cause links to become saturated, devices to run out
of processing power or memory, or a number of other conditions that will eventually
cause a network failure. Figure 19-5 is used to provide an example.

Assume that each router in Figure 19-5 is capable of processing ten changes to the
network per second—either a route or topology change, for instance—and there are
five routes total in the routing table. Because of the speeds of the interfaces (or for
some other reason), the order in which updates are transmitted through the network
is always [D,A,C,B]; updates from D through [A,C] always arrive at B before updates
through [D,A] directly.

The 2001:db8:3e8:100::/64 link begins to flap three times per second. It seems like
the network should converge on this flap rate fine; it is 50% of the rate at which any
device can support, after all. To understand the impact of the feedback loop, how-
ever, it is important to trace the entire process of convergence:

 • Each time the 100:/64 link fails or comes up, D sends an update to A; this is
three failures and three recoveries, for a total of six events per second.

 • For each of these events, D will send an update to A.

 • For each of these events, A will send an update to B and C.

 • B will also send an update toward C for each update it receives; this effectively
doubles the rate of events at C to 12 per second.

signal input

output at B

output at A

ad
de

d

ad
de

d

Figure 19-4 Positive feedback loop using events

A

B

CD

20
01

:d
b8

:3
e8

:1
00

::/
64

Figure 19-5 A permanent control plane failure due to a positive feedback loop

The Solution Space 513

During the first second C receives 12 events per second, it will fail, in turn taking
down its relationships with A and B. When it comes back up, it will attempt to estab-
lish new adjacencies with each of the connected routers, which means it will send
its entire database, containing five routes, to A and B. Given the 100::/64 link is still
flapping at the same rate, this will drive B above its threshold, causing B to crash. It is
possible, as well (depending on the timing), that A could crash.

Once A crashes, the chain of crashes through resource exhaustion will continue—
if the timing is correct, or the crashes form their own self-supporting feedback loop,
even if the original flapping link is repaired. Although feedback loops of this kind
are not tagged as the root cause of the failure (the flapping link would be considered
the root cause of the failure in this example), they are often what turns a single event
into a complete failure of the control plane to converge.

The Solution Space

A number of solutions have been developed over the years to limit control plane
state, including summarization, aggregation, filtering, layering, caching, and back-
off timers. All of these solutions fall into one of two different ways to limit control
plane state—reducing the scope or the speed of control plane information. Each of
these, in turn, solves a specific problem, such as

 • Reducing the scope of control plane information improves security by control-
ling the set of devices through which a view of the network can be obtained.

 • Reducing the scope of control plane information improves convergence by
controlling the set of devices that must recalculate loop-free paths through the
network because of any individual change.

 • Reducing the scope of control plane information reduces the chance of positive
feedback loops by preventing state from “looping back” through the control plane.

 • Reducing the scope of control plane information reduces the chance of
resource exhaustion in any particular device (and potentially lowers the cost
of any particular device) by reducing the size of any tables held in memory and
across which the set of loop-free paths must be calculated.

 • Reducing the speed of control plane information traveling through the network,
or the velocity of state, reduces the chance of positive feedback loops forming
and reduces the chance of resource exhaustion in any individual device.

The following sections consider several widely implemented and deployed tech-
niques used to control the scope and velocity of state.

Chapter 19 Failure Domains and Information Hiding514

Summarizing Topology Information

Topological information can be summarized by making destinations that are physi-
cally (or virtually) connected several hops away appear to be directly attached to a
local node, and then removing the information about the links and nodes in any
routing information carried in the control plane from the point of summarization.
Figure 19-6 illustrates this concept from the perspective of F, with E summarizing.

Before the topology is summarized (the upper network), F might (depending on
the protocol) know A is connected to B, B is connected to C and D, and C and D
are connected to E. If E begins to summarize the topology information (shown in
the lower network), each of these other nodes appears, from F’s perspective, to be
directly connected to E. The physical topology does not change, of course, but F’s
view of the topology does change.

Summarization is a form of abstraction over the network topology; the set of
reachable destinations is abstracted from the network and connected so that loop-
free paths are preserved, but not detailed topology information. The way this is
normally done is to remove actual link information while preserving the metric infor-
mation associated with each destination, as the metric information alone can be
used to calculate loop-free paths.

Distance vector protocols essentially summarize topology information at every
hop, as they transmit each destination with a metric between devices. In Bellman-
Ford, the local device examines its local view of the network to calculate the set of
loop-free paths through the network. In Garcia-Luna’s Diffusing Update Algorithm

A

A

B

B

C

C

D

D

E

E

F

F

Before Summarization
After Summarization

Figure 19-6 Summarization of topology information in the control plane

The Solution Space 515

(DUAL), the device keeps (in effect) one hop of topology information, the cost to
each destination as seen from each of its neighbors, and uses this information to
calculate alternate loop-free paths to each destination. Link state protocols carry full
topology information, including links and metrics, within a single flooding domain.

Aggregating Reachability Information

If you take a trip to a distant city through a series of flights, you will need

 • Directions from your home to the local airport

 • Directions within the local airport to the correct gate to board the aircraft

 • Directions from gate to gate within the airport where each flight connection is made

 • Directions from the gate to the place where you pick up a rental car, or to a
taxi, or to some form of public transportation

 • Directions to the hotel where you will be staying

 • Directions from the hotel to the site of the meeting or conference you will be
attending

What would happen if you called your destination hotel and asked for full direc-
tions to its location from yours? Assuming the hotel staff even know how you are
traveling, the directions would easily overwhelm you. Maybe they would look some-
thing like this:

 1. Walk out your front door and get into your car.

 2. Turn left out of your driveway, go to the first stop sign, turn left.

 3. Proceed three blocks and turn right onto the entrance ramp onto the highway.

 4. Merge into traffic and stay on this road for 4.1 miles.

 5. …

 6. When you disembark from the plane, turn left on exiting the gate.

 7. Travel 400 yards to the internal airport transportation station.

 8. Ascend the steps or escalator to the second level, turn left, and board the first
train arriving there.

 9. On the third stop, exit the train, turn left, and proceed down the steps or esca-
lator to the first floor.

 10. …

Chapter 19 Failure Domains and Information Hiding516

You can see how such a set of directions might be overwhelming in their scope. In
fact, they would be so overwhelming as to be confusing.

Note

Why are down escalators called escalators? Since they go down, shouldn’t they be
called descalators?

The way travelers really navigate is in stages, or segments. A broad set of direc-
tions is given (board flight 123, which will take you to Chicago; then flight 456, which
will take you to San Jose; rent a car; and drive to the hotel). At each of these steps,
you assume there will be directions available locally to take you between any two
points. For instance, you assume there will be signs on the local highway, or some
software or map you can consult to provide you with directions from your home to
the local airport, and then there will be signs within the airport where you are con-
necting between flights to guide you between the gates, etc.

This process of taking a trip in stages is, in reality, a form of abstraction. You
know, when you travel, that information will become available as you proceed
through the trip, and hence you do not need it right now. What you need is enough
information to get you into a general area and then access to more detailed informa-
tion when you get there.

This is precisely how aggregation in network protocols works. Aggregation
removes more specific information about a particular destination as topological dis-
tance is covered in the network. Figure 19-7 illustrates.

A

B

C

D E

F

2001:db8:3e8:100::2/64

2001:db8:3e8:100::1/64

2001:db8:3e8:101::/64

2001:db8:3e8:100::/64

2001:db8:3e8:100::/60

2001:db8:3e8:102::/64

2001:db8:3e8:100::3/64

::/0

Figure 19-7 Aggregation of reachability information

The Solution Space 517

In Figure 19-7, there are three hosts connected to a single shared link (broad-
cast domain) attached to an interface on A. Each of these hosts has its own
physical Media Access Control (MAC) address, which is related to an Internet
Protocol (IP) address, which has been assigned either manually or through the
Dynamic Host Configuration Protocol (DHCP). These addresses all fall within
a single /64 range of addresses. A aggregates these host addresses into a single
advertisement, traditionally considered the address of the “wire” in IP networks:
2001:db8:3e8:100::/64.

Two other routers, B and C, are advertising two other /64s; the three /64s adver-
tised by A, B, and C fall within the same /60 address range. Router D is configured
to aggregate these three /64s to the /60. E, in turn, advertises a default route (::/0)
to F, which means “any IP address you do not know about, you can reach through
me.” This is an aggregate sitting “above” 2001:db8:3e8:100::/60. Some useful
terminology:

 • Supernet or aggregate: An address that covers, or represents, a set of longer
prefix, or more specific, destinations

 • Subnet: An address that is covered, or represented by, a longer prefix, or less
specific, destination in the routing table

Subnets and aggregates look identical in the routing table of any individual
device. The only way you can see if a particular route is either a supernet or subnet
is if the longer and shorter routes both exist in the routing table of the aggregating
device at the same time. Without the subnet, you cannot tell whether a route is an
aggregate or not.

A, in advertising 2001:db8:3e8:100::/64, does not remove any reachability from
the network; rather it adds unreachable destinations that appear to be reachable to
the control plane. Router A is advertising reachability to a large number of hosts,
such as 2001:db8:3e8:100:4//64, even though this host doesn’t exist. In the same
way, D is advertising unreachable address space into the network by advertising
2001:db8:3e8:100::/60, and E is advertising unreachable address space into the net-
work by advertising ::/0.

Packets transmitted to a nonexistent host are normally just dropped by the first
device with specific enough routing information to know the host doesn’t exist. For
instance:

 • If a packet is forwarded by F toward E with a destination address of
2001:db8:3e8:110::1, E can drop this packet, as this destination does not fall
within any of the available destinations in E’s routing table.

Chapter 19 Failure Domains and Information Hiding518

 • If a packet is forwarded by F toward E with a destination address of
2001:db8:3e8:103::1, D can drop the packet, as this destination does not fall
within any of the available destinations in D’s routing table.

 • If a packet is forwarded by F toward E with a destination address of
2001:db8:3e8:100::100, A would need to drop the packet, as this destination is
not in the local Address Resolution Protocol (ARP) cache at A’s connection to
2001:db8:3e8:100::/64.

There is another place where aggregation can be configured in a network:
between the routing table (Routing Information Base, or RIB) and the forwarding
table (Forwarding Information Base, or FIB), within an individual network device.
This type of aggregation is fairly unusual; it is primarily used in situations where
a device’s forwarding table is restricted to a particular size because of memory
limitations.

Filtering Reachability Information

Filtering reachability information, unlike aggregation, does remove reachability
information from the control plane; hence filtering is normally used as an aid or part
of a layered defense for network security. Figure 19-8 is used to illustrate.

A

B

C

D

E

F

G

::/0

or
ga

ni
za

tio
na

l
bo

un
da

ry

filter all except
2001:db8:3e8:100::/64

filter all except ::/0

2001:db8:3e8:100::A0/64

20
01

:d
b8

:3
e8

:1
01

::/
64

Figure 19-8 Route filtering

The Solution Space 519

In Figure 19-8, A should be able to reach E within the organization (to the right
of the organizational boundary line) and no destinations outside the organization.
Host A definitely should not be able to reach G, for instance, or any of the transit
links or routers within the organization’s network. There are several ways to accom-
plish this, of course. The network administrator could place a stateful packet filter
at the edge of the network to block traffic that is not part of a session originating
from inside the network, or the network administrator could configure a packet filter
to block A from accessing any destination other than E. While these are, of course,
good ideas, it is often best to combine such filters with some control plane filter
to prevent any routers in the network that A is attached to (within the cloud) from
learning about these destinations. To accomplish this, the network administrator
can place a filter at B blocking the advertisement of any reachable destination within
the network other than the subnet that E is attached to.

At D, all routes are also filtered toward F—except the default route. While this is
configured as a route filter on D, it acts like route aggregation; the default still allows
G to reach E, even though F does not have a specific route, by following the default
route. It is important to differentiate between the two cases: a route filter being used
like aggregation and a route filter being used to prevent or block reachability to or
from a particular device (or set of devices).

Layering Control Planes

In Chapter 9, “Network Virtualization,” the case for building virtual topologies was
laid out from the perspective of the data plane: primarily to provide traffic separa-
tion, reachability separation, and to provide “over the top” network services, par-
ticularly encryption and tunneled protocol support. There is an entirely separate
case to be made for layering control planes, either with virtualized topologies, or
without. Consider the security example set out previously in Figure 19-8; another
way to solve the same problem might be to provision an overlay network, as shown in
Figure 19-9.

In Figure 19-9, A needs to access H and K, but not M; N needs to access all three.
Router B is a smaller device, perhaps a small home office router, which can support
just a handful of routes. It is possible, of course, to filter routing information at C
such that B has just the one or two routes it needs, but this may not be scalable from
a network management perspective. Nor does this provide traffic separation, which
is a requirement in many places where overlay networks are used. Meeting any traf-
fic separation requirements would necessitate building packet filters at every device
along the path, adding further to the network management load.

A better option, in many cases, is to create a virtual overlay network including just
the devices that need to communicate. In this case, the dashed gray lines represent

Chapter 19 Failure Domains and Information Hiding520

the virtual overlay network created to fulfill the requirements given. From an infor-
mation hiding perspective, what is important to note is the following:

 • B does not need to know about D or G, the links connecting them, nor the
2001:db8:3e8:102::/64 subnet; information about these topology elements and
reachable destinations are hidden from the control plane at B by building a
tunnel, or virtual topology, with one end at B and the other ends at E and F.

 • The second control plane can run as a different process on C, E, and F; this sec-
ond control plane also does not need to know about these topology elements
or reachable destinations.

Some information about topology and reachability, then, is hidden from B entirely,
and some processes on C, E, and F, without reducing the required reachability. To
connect this back to the concept of failure domains, routers that do not know about
specific topology elements and/or reachable destinations do not need to recalculate
the set of loop-free paths through the network when those (hidden) elements change.
Because of this, B can be said to be in a different failure domain than D and G. Virtu-
alization, then, can often be treated as another form of information hiding.

Caching

Caching begins with a simple observation: not all forwarding information is used all
the time. Rather, particular flows pass along particular paths in a network, and par-
ticular pairs of devices (typically) only communicate for short periods of time. Storing
forwarding information for short-lived flows, and in devices far off the path any par-
ticular flow might use, is a waste of resources. Figure 19-10 is used to illustrate.

A

N

B C

D

E

F

G

H

K

M

2001:db8:3e8:100::1/64

2001:db8:3e8:101::1/64

2001:db8:3e8:102::1/64

Figure 19-9 An overlay as control plane information hiding

The Solution Space 521

In Figure 19-10, the path from A to 2001:db8:3e8:100::/64 does not pass through
C, E, or F; if A is the only device that ever originates paths toward this destination,
it is a waste of memory and processing power for C, E, and F to calculate shortest
paths to the 100::/64 destination. But how would E know no host attached to 101::/64
is going to send traffic to some device connected to 100::/64? There is no way, from a
control plane perspective, to know this.

Instead, E must rely on traffic as it passes through the network. For instance,
E could calculate a route toward 100::/64 when some packet is transmitted from
a locally attached host toward some destination on the 100::/64 subnet. This is a
reactive control plane. Caching is not restricted to reactive control planes, how-
ever. It is possible for E to calculate a loop-free route to 100::/64, but to not install
this information into its local FIB. This is another form of FIB compression,
which can be used when the size of the RIB is not limited, but the size of the FIB
is (for instance, when there is a limited hardware forwarding table). FIB compres-
sion was once quite common in network devices but has generally fallen out of
favor as the cost of memory has decreased and other techniques to store more
forwarding information in smaller amounts of memory have been developed and
deployed.

Note

There are also bad memories in the culture of network engineering around
RIB to FIB caching schemes; in the late 1990s, many provider networks failed
due to these schemes, so many network engineers avoid such schemes—and
often rightly so. There are many interesting and unpredictable failure modes
in RIB to FIB caching schemes, beyond those found in “normal” caching
schemes.

A B

C

D

E

F

2001:db8:3e8:100::/64

2001:db8:3e8:101::/64

2001:db8:3e8:102::/64

Figure 19-10 Considering why caching works

Chapter 19 Failure Domains and Information Hiding522

The key question in any caching scheme is: how long should the cached informa-
tion be held? There are at least two answers to this question:

 • Remove a cache entry some specific time after it has been installed, or some
specific time after its last use to forward a packet; this is timer based.

 • Remove the oldest or most specific cache entries when the cache reaches some
percentage of its capacity; this is capacity based.

Normally these are combined, with the first being the “normal” process for
removing stale cache information, and the second used as a “safety valve” to prevent
the cache from overflowing. Caches normally rely on the number of forwarding table
entries in use being some small percentage of the reachable destinations. Generally,
the rule of thumb is somewhere around 80/20—80% of the traffic will be directed
at 20% of the destinations, or, in other situations, about 20% of the total reachable
destinations will need to be stored at any given time.

There are a number of problems designers face when caching forwarding infor-
mation in this way. Figure 19-11 is used to illustrate one interesting failure mode.

In Figure 19-11, E has 100 hosts attached; at the same time, C and D can support 70
entries in their forwarding table and will start removing items from cache when their
forwarding table is 80% full (so when the cache reaches 56 entries, the caching algo-
rithm begins removing the oldest entries to bring the cache under some number of total
entries, say 50 for the purposes of this example). Assume caching is taking place at the
individual destination IP address level, rather than at the subnet level (the reason for this
will be explained in a following example). The situation that caching solutions normally
assume is that A will communicate with a limited number of the 100 possible destina-
tions at once. If A builds sessions with 20 of these destination devices for one minute,
then another 20 the next minute, and so on, the cache can be “tuned” to carry informa-
tion about any particular reachable destination for just a few seconds after its last use.

The worst possible case, from a caching perspective, is that A attempts to commu-
nicate with all 100 reachable hosts at once, or the cache timers are set long enough to

A B

C

D

E

2001:db8:3e8:100::/64
100 hosts

Figure 19-11 An interesting cache failure mode

The Solution Space 523

cause every one of these destinations to remain in the cache at all times. Two prob-
lems are going to develop in this case. First, the cache at B is going to overflow. When
B receives a packet that triggers caching of the 57th destination, it will begin remov-
ing older cache entries in order to protect the cache from failing entirely. The flow
dependent on the removed cache entries will, of course, continue sending packets (or
perhaps reset, and begin sending packets again), again causing the cache to reach the
57th entry, and hence the oldest entries to be removed again. This is a straightforward
problem, easily detected, even if it is not easily mitigated.

Second, the caches at C and D are likely to develop problems. It is possible to
build a stable system if B splits the load perfectly between C and D. However, this is
rarely going to happen in real life. Instead, what is likely to happen at A is, at best, a
60/40 split; so traffic sent by B toward 40 of the destinations is sent to C, while traffic
sent by A toward the other 60 destinations is sent toward D. The result is the cache
on D overflows (there would need to be 60 cache entries, which is more than the 56
allowed by the caching algorithm), causing D to start removing cache entries. The
removal of this caching information will cause the session to reset, as well.

The cache churn at B, C, and D can easily develop into a positive feedback loop,
where dropped packets and sessions cause a refactoring of where traffic flows in the
network, in turn causing different caches to overflow, in turn (again) causing dropped
packets and session resets. There are few ways to resolve this sort of problem other
than the obvious ones: increase the cache size, or reduce the number of concurrent
flows through the network.

One apparently obvious answer—caching to the subnet level, rather than indi-
vidual hosts—will not work. Figure 19-12 is used to explain why this will not work.

Figure 19-12 shows two networks: one (the upper) labeled before and the other
(the lower) labeled after. Assume B, C, D, and E cache to the subnet of the destina-
tion, rather than the individual host information. What happens in this network is

 • A sends a packet to 2001:db8:3e8:101::1.

 • B receives this packet and discovers (through some mechanism—it does not
matter what this mechanism is) that the destination is reachable through C
and D.

 • B determines (perhaps based on load sharing) that the traffic should travel
through C; it builds a cache entry toward 2001:db8:3e8:100::/60 through C in
its local forwarding table.

 • A now sends a packet to 2001:db8:3e8:100::1.

 • B forwards this traffic along the path toward 100::/60, so the traffic is sent to C,
then forwarded to E, where it is dropped.

Chapter 19 Failure Domains and Information Hiding524

Why does E drop this traffic? The packet destined to 100::1 “lives” in two differ-
ent network address spaces: the 100::/60 and the 100::/64. E knows about the 100::/60
address space, so it should know about every reachable destination in this space.
Because E believes it knows about every destination in this address space, there is no
reason for E to ask any of its neighbors about 100:1; it should already know about
this specific destination. This destination, however, is connected to D, so there is no
way for E to have 100::1 in its local forwarding table. In effect, E believes it knows
100::1, as an individual host, does not exist, so it will drop any traffic destined to
this address.

Because of this, A has no effective way to reach any device attached to 100::/64
network; it might be that when (or if) the cache entry times out at B, the next packet
will happen to be for a destination within the 100::/64 network, causing the correct
set of cache entries to be built at B. Whether or not this is likely to happen, it is never
a good thing for control planes to have possible states, such as this one, where reach-
ability is variable or unpredictable.

There are a number of ways this problem could be fixed, none of which appear to
be deployable in the real world. For instance, you could dictate that every prefix in
the network must have the same prefix length, but this would rule out aggregation,
which is problematic.

A B

C

D

E

2001:db8:3e8:100::/60

A B

C

D

E

2001:db8:3e8:100::/60

2001:db8:3e8:100::/64

before

after

Figure 19-12 Caching to the subnet level

The Solution Space 525

Note

There is another reason to build cache entries at the per device (or per address)
level—to improve load sharing. Consider the example shown in Figure 19-11; if B
built its cache at the per subnet level, then B would choose one path, either through
C or through D, to send all the traffic in the network. The other path would remain
unused (at least until B’s cache entry timed out, at which point the used and unused
paths might switch). Caching at the subnet level can cause a large set of network
resources to go unused; generally this is considered a result to be avoided.

Slowing Down

Everyone in the modern world should know the value of slowing down sometimes—it
can reduce information overload. It is no different for a control plane; slowing down the
pace at which information is presented to a device does not really reduce the processing
and memory requirements so much as spread them out over time. Another point in favor
of slowing down state velocity is that it can allow multiple state changes to be “gathered,”
or “bunched,” into a single processing cycle. Figure 19-13 illustrates these concepts.

F G

A

B

C

D

E
timeline 1

[A,F] [C,F] [E,F]
[B,F] [D,F]

timeline 3

[A,F] [C,F] [E,F]
[B,F] [D,F]

timeline 2

[A,F]
[B,F]

[C,F] [E,F]
[D,F]

Figure 19-13 Examples of slowing down state velocity

Chapter 19 Failure Domains and Information Hiding526

In Figure 19-13, timeline 1 illustrates the actual order in which the links between
F and another router fail; [A,F] and [B,F] fail relatively close to one another, and the
remaining links fail a bit farther apart (or spread out in time). In timeline 2, F waits
to advertise the control plane state change for a fixed amount of time. Because of this
delay between the event occurring and reporting the event, the failures of the [A,F]
and [B,F] links are reported at the same time, or in the same update. This allows G
to process both events at the same time, which (should) require less processor and
memory resources.

Finally, in timeline 3, an exponential backoff timer is shown. Essentially, the
first time an event occurs, a timer is set, and the event is reported after the timer
has expired. In timeline 3, this timer is set to 0 seconds, so the event is reported
immediately (a common configuration for exponential backoffs). Once the event
has been reported, a separate timer is set that must expire (or wake up) before
the next event can be reported. Each event occurring after this increases this timer
exponentially, causing the reporting of events to be spread out over ever-increasing
amounts of time.

Final Thoughts on Hiding Information

Hiding information has several positive effects:

 • It breaks a network into failure domains by limiting the scope of devices that
must react to any particular change in topology or reachability.

 • It reduces the velocity and scope of control plane state, allowing network to
scale to larger sizes while retaining network stability.

 • It is a “hook” through which to implement policy, specifically in relation to
network security.

It might seem hiding more state is always better, based on these advantages.
However, as with all things in network engineering, the truth is closer to a tradeoff.
If you have not found the tradeoff, you have not looked hard enough. In the case
of information hiding, refer back to Chapter 1, “Fundamental Concepts,” specifi-
cally the section on complexity, and the example given concerning stretch and route
aggregation. A second instance of hiding state can be found in relation to micro-
loops, which are explained in Chapter 13, “Unicast Loop-Free Paths (2).” The more
you slow down the velocity of state, the longer such microloops will exist in the
network.

Hiding state is, then, a useful tool in the hands of good designers, but it can also
cause many problems by negatively impacting network performance.

Review Questions 527

Further Reading

Bollapragada, Vijay, Russ White, and Curtis Murphy. Inside Cisco IOS Software
Architecture. Indianapolis, IN: Cisco Press, 2000.

Doyle, Jeff, and Jennifer DeHaven Carroll. Routing TCP/IP, Volume 1. 2nd edition.
New Delhi, India: Cisco Press, 2005.

Stringfield, Nakia, Russ White, and Stacia McKee. Cisco Express Forwarding. 1st
edition. Indianapolis, IN: Cisco Press, 2007.

Teixeira, Renata, Aman Shaikh, Timothy G. Griffin, and Jennifer Rexford. “Impact of
Hot-Potato Routing Changes in IP Networks.” IEEE/ACM Transactions on Net-
working, 16, no. 6 (December 2008): 1295–307. doi:10.1109/TNET.2008.919333.

White, Russ, and Denise Donohue. The Art of Network Architecture:
 Business-Driven Design. 1st edition. Indianapolis, IN: Cisco Press, 2014.

White, Russ, and Alvaro Retana. IS-IS: Deployment in IP Networks. 1st edition.
 Boston, MA: Addison-Wesley, 2003.

White, Russ, Alvaro Retana, and Don Slice. Optimal Routing Design. 1st edition.
Indianapolis, IN: Cisco Press, 2005.

White, Russ, and Jeff Tantsura. Navigating Network Complexity: Next-Generation
Routing with SDN, Service Virtualization, and Service Chaining. Indianapolis,
IN: Addison-Wesley Professional, 2015.

White, Russell I., Steven Edward Moore, James L. Ng, and Alvaro Enrique Retana. United
States Patent: 8121130—Determining an optimal route advertisement in a reactive
routing environment. 8121130, issued February 21, 2012. http://patft.uspto.gov/
netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=
%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,121,130.
PN.&OS=PN/8,121,130&RS=PN/8,121,130.

———. United States Patent: 9191227—Determining a route advertisement in a reactive
routing environment. 9191227, issued November 17, 2015. http://patft.uspto.gov/
netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=
%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9191227.
PN.&OS=PN/9191227&RS=PN/9191227.

Review Questions

 1. Describe how you can determine the scope and speed of control plane state.

 2. Is it possible to cause a network failure through a negative feedback loop? If
so, how?

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,121,130PN.&OS=PN/8,121,130&RS=PN/8,121,130
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,121,130PN.&OS=PN/8,121,130&RS=PN/8,121,130
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,121,130PN.&OS=PN/8,121,130&RS=PN/8,121,130
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9191227PN.&OS=PN/9191227&RS=PN/9191227
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9191227PN.&OS=PN/9191227&RS=PN/9191227
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9191227PN.&OS=PN/9191227&RS=PN/9191227
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,121,130PN.&OS=PN/8,121,130&RS=PN/8,121,130
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9191227PN.&OS=PN/9191227&RS=PN/9191227

Chapter 19 Failure Domains and Information Hiding528

 3. Describe the difference between summarizing and aggregating control plane
information to control state.

 4. Consider the State/Optimization/Surface (SOS) model. How would you
describe summarization and aggregation within this model?

 5. Consider the State/Optimization/Surface model (SOS). How would you
describe hiding information through layered control planes within this model?

 6. What might be some limiting factors in the formation of a positive feedback
loop in a network control plane?

 7. Research classful Internet Protocol addressing. How might the supernet/subnet
concepts fit more “neatly” into this kind of scheme than they do with classes
addressing schemes?

 8. Research the two patents listed in the “Further Reading” section around reac-
tive control planes and the caching of reachability information. Describe the
solution presented in these patents to the problem described in the text.

 9. Describe the importance of breaking up a network into failure domains.

 10. Describe the relationship between information hiding and failure domains.

529

Chapter 20

Examples of Information
Hiding

Learning Objectives

After reading this chapter, you should understand:

 0 The mechanisms used to summarize and aggregate control plane
 information in Intermediate System to Intermediate System (IS-IS)

 0 The mechanisms used to summarize and aggregate control plane
 information in Open Shortest Path First (OSPF)

 0 The interaction between summarization, aggregation, and external
 routing information in Open Shortest Path First

 0 Aggregation in the Border Gateway Protocol (BGP)

 0 The Border Gateway Protocol as a reachability overlay

 0 Controller-driven segment routing

 0 Exponential backoff

 0 Link state flooding reduction

The preceding chapter considered the problems that information hiding is designed
to prevent or resolve, including positive feedback loops, as part of an overall pat-
tern of security, and to reduce the amount and velocity of state in a control plane.
This chapter will provide several examples of information hiding deployed in net-
works and protocols. The first section here will describe summarization in

Chapter 20 Examples of Information Hiding530

Intermediate System to Intermediate System (IS-IS) and Open Shortest Path First
(OSPF); as described in earlier chapters, summarization here means the removal of
topology information, rather than reachability information. The second section
will describe aggregation in the Border Gateway Protocol (BGP), which originally
included the interesting feature of preserving topology information within aggre-
gated routes. An example of layering will be considered next, specifically external
routes carried in BGP layered over internal routes carried in IS-IS. The final section
will describe exponential backoff in some detail, as applied to BGP neighbor
dampening and the distribution of control plane state and calculation of loop-free
paths in IS-IS.

Summarizing Topology Information

When reading this section, remember that summarization is removing topology
information to manage control plane state, and aggregation is removing reachabil-
ity information to manage control plane state. This section will consider summari-
zation in the context of link state protocols, as distance vector protocols remove
topology information at every hop in the network—even the Enhanced Interior
Gateway Routing Protocol (EIGRP), which keeps a small radius of topology
information.

Intermediate System to Intermediate System

IS-IS is a link state protocol used in many large-scale networks, including transit
providers and data center (cloud) fabrics. The amount and velocity of state carried
in a link state control plane can overwhelm slower processors with smaller amounts
of memory, such as might be used in lower-cost routers and switches, or devices
that must fit into limited physical spaces. Consider the network illustrated in
 Figure 20-1.

A

C

DB
F

E

2001:db8:3e8:100::/64

Figure 20-1 Flooding copies in a link state protocol

Summarizing Topology Information 531

Note

In the early years of networking, routers were often shipped with much less com-
puting power and storage than are available at the time of this writing. Even the
routers deployed today for small office and home use can have more available
resources than midrange routers used in early networks, and “low-end” routers
deployed today often have more available resources than the most capable rout-
ers just a few years ago. It is always important to consider this when looking at
protocol design and deployment, particularly in the area of summarization and
aggregation.

In Figure 20-1, if the status of 100::/64 changes, D and E will receive three or four
different copies of the Link State Packet (LSP) generated by A (depending on which
LSP arrives at which intermediate system, or IS, when). Further, if the [A,B] link fails,
F will receive an update about this topology change, even though it has no impact on
E’s ability to reach 100::/64. There are a number of ways to reduce the control plane
state in this network; this section considers one method included in every link state
protocol: flooding domains.

A flooding domain is a set of routers (intermediate systems in the case of IS-IS)
with completely synchronized databases. When the flooding domain boundary is
crossed, topology information will be summarized, and reachability information
may be aggregated.

To understand flooding domains, it is best to start with a quick review of Open
Systems Interconnect (OSI) addressing, which is used in IS-IS. Figure 20-2 will help
illustrate this addressing scheme.

There are two primary sections of the OSI address to consider in Figure 20-2. The
right three parts of the address between the dots are unique to each IS, and are gener-
ally calculated based on a local physical (Media Access Control, or MAC) address
(as these are almost always designed to be unique for each physical interface or piece
of hardware). The left sections, which are variable in length (although almost always
used as shown in Internet Protocol, or IP, networks), are considered the “area ID”
by the IS. Any two intermediate systems with the same information to the left of
the right three dotted sections of their OSI address (called the area identifier, or area
ID), are considered part of the same level 1 flooding domain, and will form a level 1
adjacency. Likewise, any two intermediate systems with different information in the
left sections of their OSI addresses will form a level 2 adjacency, and hence will be
considered part of the level 2 flooding domain. There may be many different level 1
flooding domains in an IS-IS network, but there can be only one level 2 flooding
domain.

Chapter 20 Examples of Information Hiding532

Note

IS-IS forms level 2 adjacencies between each pair of intermediate systems, regard-
less of the area identifier. To simplify the explanation of flooding domains, how-
ever, this text will assume that neighbors capable of forming level 1 adjacencies
will form only level 1 adjacencies. This will be revisited later in this chapter to
provide more detail on this point.

Figure 20-3 illustrates.
In Figure 20-3, A has a different area ID than B and C; A has 49.0011.2222, while

B and C have 49.0011.5555. Hence, [A,B] and [A,C] will be level 2 adjacencies. [B,C],
[B,D], [C,E], [B,E], [C,D], [D,F], and [E,F] will all be level 1 adjacencies. Each adja-
cency type will exchange only the database associated with the correct adjacency
level; Figure 20-4 illustrates.

A: 49.0011.2222.0000.0000.000A
B: 49.0011.2222.0000.0000.000B
C: 49.0011.3333.0000.0000.000C
D: 49.0011.3333.0000.0000.000A

This is set by the intermediate
system based on a local
physical interface address

Any two devices sharing the same address
from here to the left, the area ID, are

considered to be in the same flooding
domain by intermediate systems

Always use 49 here
to indicate private addressing

Use this for internal network organization
(almost always set to the same numbers

in real deployments) This is normally used to indicate
the flooding domain (or the area)

Figure 20-2 OSI addressing

49.0011.2222.0000.0000.000A

49.0011.5555.0000.0000.000B

49.0011.5555.0000.0000.000C 49.0011.5555.0000.0000.000E

49.0011.5555.0000.0000.000F

49.0011.5555.0000.0000.000D

2001:db8:3e8:100::/64 2001:db8:3e8:101::/64

level 2 flooding domain
level 1 flooding domain

Figure 20-3 Flooding domains in IS-IS

Summarizing Topology Information 533

In Figure 20-4, A, B, and C all have a synchronized (shared) level 2 database; B, C,
D, E, and F all have a synchronized (shared) level 1 database.

Note

To be precise, every IS builds and maintains both a level 1 and a level 2 database.
If you were to examine F, for instance, you would find it has a level 1 database
containing information about every link, node (IS), and reachable destination
in the 49.0011.5555 flooding domain. The level 2 flooding domain at F, however,
would contain a single entry, for F itself. Why does the level 2 database at F have a
single entry? F only builds level 1 adjacencies with D and E; it will not synchronize
anything in its level 2 database across a level 1 adjacency. Hence, it builds a level 2
database but will not share the contents (synchronize) the contents of this data-
base with any adjacent neighbors.

This arrangement certainly seems to reduce the scope of the reachability and
topology information in the network; as the information about 100::/64 is in the level
2 flooding database at A, it will be shared just across level 2 adjacencies; hence only
B and C will receive this information. But how can a host connected to F (at 101::/64,
for instance) reach this destination? F does not receive a copy of the level 2 database,
and therefore cannot know about 100::/64.

IS-IS solves this through the attached bit. B and C, because they are attached to the
level 2 flooding domain (remember there can be only one level 2 flooding domain in
an IS-IS network), will set the attached bit in their advertisements. This causes D, E,
and F to create a default route in their local routing tables to point toward B and C.
Traffic originating someplace on 101::/64, then, will be switched based on this default
route at F toward either D or E, and then toward B or C from D or E. When the traf-
fic reaches B or C, it will follow the specific route installed in the local routing table
based on the information contained in the level 2 database toward the destination.

49.0011.2222.0000.0000.000A

49.0011.5555.0000.0000.000B

49.0011.5555.0000.0000.000C 49.0011.5555.0000.0000.000E

49.0011.5555.0000.0000.000F

49.0011.5555.0000.0000.000D

2001:db8:3e8:100::/64

single, shared
level 2 database single, shared

level 1 database

2001:db8:3e8:101::/64

Figure 20-4 Shared databases in IS-IS flooding domains

Chapter 20 Examples of Information Hiding534

What about the return traffic? If 101::/64 is shared to B, C, D, E, and F through
a level 1 flooding database, A cannot know about this destination. Hence, hosts
attached to the 100::/64 network will not be able to send traffic toward a host on the
101::/64 network. IS-IS solves this problem through redistribution between the two
databases. Any destinations in the level 1 flooding database are automatically redis-
tributed into the level 2 flooding database as if they are attached to the redistributing
IS. The cost to reach the destination from the redistribution point is preserved in the
new route injected into level 2 to provide (some level of) optimal routing through the
network.

What if you want to carry a more specific route toward 100::/64 into the level 1
flooding domain in the network shown in Figure 20-4? Most IS-IS implementations
allow this through redistribution from the level 2 database into the level 1 database
through route leaking. To prevent routing loops (consider what would happen if
100::/64 were redistributed from the level 2 database into the level 1 database and
back again), routes redistributed from the level 2 flooding domain into a level 1
flooding domain have the down bit set; this means the route has been redistributed
down the flooding domain hierarchy and should not be redistributed back up the
hierarchical level structure.

IS-IS, then, both aggregates routing information and summarized topology infor-
mation at a flooding domain boundary. It is possible to leak more specific reachabil-
ity information through the aggregate (the attached bit, which causes a ::/0 route to
be installed in the local routing table of each IS in the level 1 flooding domain), so
route aggregation can be “undone,” if the network designer decides it is important
to do so.

An interesting point to note about IS-IS flooding domains is this: there are no
“hard boundaries” of any kind between the level 1 and level 2 flooding domains.
It is perfectly valid for every IS in a network to be a part of the level 2 flooding
domain, as well as some level 1 flooding domain. Figure 20-5 illustrates a net-
work in which some intermediate systems are in both level 1 and level 2 flooding
domains.

Four flooding domains are illustrated in Figure 20-5. The first, 49.0011.1111,
contains A, B, and C. The second, 49.0011.3333, contains D and F. The third,
49.0011.4444, contains G, H, M, and N. The fourth flooding domain is the overlay-
ing level 2 flooding domain, which contains C, E, D, G, and F. The first interest-
ing point here is all the intermediate systems in the level 2 flooding domain are
also in a level 1 flooding domain with the exception of E. Each of the intermediate
systems in both a level 1 and level 2 flooding domain have formed a level 2 adja-
cency with each of its connected neighbors in the level 2 flooding domain, and are

Summarizing Topology Information 535

 synchronizing their level 2 database with their level 2 neighbors. For instance, C has
four adjacencies:

 • A, with which it is synchronizing only the level 1 database

 • B, with which it is synchronizing only the level 1 database

 • D, with which it is synchronizing only the level 2 database

 • E, with which it is synchronizing only the level 2 database

The second interesting point is that D and F are in a level 1 flooding domain,
49.0011.3333, completely overlapped by the level 2 flooding domain. D and F have
formed both a level 1 and level 2 adjacency across the link between them, and are
synchronizing both the level 2 database and the 49.0011.3333 database. It is possible
for two adjacent intermediate systems with the same area ID to form a level 2 adja-
cency; it is not possible for two adjacent intermediate systems with different area IDs
to form a level 1 adjacency.

Open Shortest Path First

OSPF is also a link state protocol, and hence also subject to the same sorts of limita-
tions as IS-IS; a rapidly changing topology can sometimes overwhelm slower

A

C

D
G

M

N

HE

F

B

49.0011.1111

level 2

49.0011.3333

49.0011.4444

Figure 20-5 Overlapping flooding domains in IS-IS

Chapter 20 Examples of Information Hiding536

processors with smaller amounts of memory. To prevent this, network designers can
break up the flooding domains in an OSPF network into areas. OSPF areas are imple-
mented differently from the flooding domains in IS-IS; Figure 20-6 illustrates.

While some of the mechanisms are similar, there are some important differences
between the two.

First, OSPF areas cannot overlap; Area Border Routers (ABRs) connect two flooding
domains (or areas) together and have two databases (one per area). Every other router
in the network has one link state database (LSDB), which contains reachability and
topology information. The outlying area IDs can identify which area a particular router
is in; area 0 acts as a centralized area connecting all of the outlying areas together.

Second, OSPF summarizes by default, but it does not aggregate by default. OSPF
carries information in a series of Link State Advertisement (LSA) types, each type
carrying a different kind of information. The most common types are

 • Router: Information about the originating router, connected neighbors, and
connected destinations

 • Network LSA: A pseudonode

 • Inter-Area Prefix (or summary) LSA: Summarized reachability information

 • Inter-Area Router LSA: Information about the originating router

 • AS-External LSA: External reachability information

 • AS-External Not-So-Stubby Area (NSSA) LSA: External reachability
information

A

C

D
G

M

N

HE

F

B

area 1

area 0
area 2

Figure 20-6 Flooding domains in OSPF

Summarizing Topology Information 537

Many of these LSA types are used to carry information between flooding
domains; Figure 20-7 illustrates.

The set of LSAs carried between two areas depends on the type of the outlying
(nonarea 0) area. Several of these are described in the following sections.

Normal Area
An Area Border Router (ABR) sitting between a normal area and area 0 will summa-
rize topology information by default, but not aggregate routing information. It is
best to begin with the information B knows about area 1, and then examine what
information B would send toward A, in area 0. In this network, B would have in its
area 1 LSDB:

 • An AS-external LSA for 100::/64 originated by D

 • A network LSA (pseudonode) for the [C,D] broadcast link, which would
include a connection to C, D, and 101::/64

 • A router LSA from D with a connection to the [C,D] network LSA
 (pseudonode), a connection to C, and a connection to 101::/64

 • A router LSA from C with a connection to the [C,D] network LSA
 (pseudonode), a connection to C, a connection to 101::/64, a connection to B,
and a connection to 102::/64

 • A router LSA from B with a connection to C and a connection to 102::/64

A

ABR

ASBRC

D

B

area 1

AS boundary

area 0

2001:db8:3e8:100::/64

20
01

:d
b8

:3
e8

:1
01

::/
64

20
01

:d
b8

:3
e8

:1
02

::/
64

Figure 20-7 OSPF Link State Advertisements between flooding domains

Chapter 20 Examples of Information Hiding538

If no aggregation is manually configured, A would receive the following informa-
tion about area 1:

 • An AS-external LSA for 100::/64 originated by D. External LSAs are not modi-
fied in any way by the ABR in a normal OSPF area.

 • A summary LSA including 101::64 and 102::/64 originated at B. From the per-
spective of the Shortest Path Tree, these two routes will appear to be connected
to B itself, with B’s cost to reach each destination preserved in the summary LSA.

Route aggregation can be manually configured in OSPF implementations; for
instance, the 100::/64, 101::/64, and 102::/64 reachable destinations in OSPF area 1
in Figure 20-7 could be aggregated into a 100::/60. In this case, B would advertise a
single route in its summary LSA toward A, 100::/60.

Stub Area
OSPF stub areas are designed to support outlying areas with no external reachabil-
ity; all topology and reachability information is internal to OSPF. Because of this,
routers in OSPF stub areas are not allowed to carry redistributed routing informa-
tion into the outlying area; likewise, external routing information from the rest of
the network is not carried into the stub area. Because of this, D would not be able
to redistribute the 100::/64 route into area 1. In this network, B would have in its
area 1 LSDB:

 • A network LSA (pseudonode) for the [C,D] broadcast link, which would
include a connection to C, D, and 101::/64

 • A router LSA from D with a connection to the [C,D] network LSA (pseudo-
node), a connection to C, and a connection to 101::/64

 • A router LSA from C with a connection to the [C,D] network LSA (pseudo-
node), a connection to C, a connection to 101::/64, a connection to B, and a
connection to 102::/64

 • A router LSA from B with a connection to C and a connection to 102::/64

If no aggregation is manually configured, A would receive the following informa-
tion about area 1:

A summary LSA including 101::/64 and 102::/64 originated at B. From the per-
spective of the Shortest Path Tree, these two routes will appear to be connected
to B itself, with B’s cost to reach each destination preserved in the summary LSA.

Summarizing Topology Information 539

The ABR, B in Figure 20-7, will also transmit a default route (::/0) into the out-
lying flooding domain (area 1, in this case), so C and D can reach any external desti-
nations connected to other areas in the network. B, C, and D would still know about
the [A,B] link, as this is internal routing information.

Totally Stubby Area
If an area is configured as a totally stubby area, routers within the area cannot orig-
inate (redistribute) external routing information into OSPF, and external routes
are not carried into the area. In this case, the LSDB at B would be the same as in the
stub area case, and the LSAs advertised by B toward A would also be the same as the
stub area case. The primary difference between a stub area and a totally stubby area
is the handling of reachability information into area 1 from area 0. In a totally
stubby area, the ABR (B, in the network in Figure 20-7) will generate a summary
LSA into area 1 with just a default route (::/0). C and D would have no knowledge of
the topology or the reachable destinations beyond area 0, such as the existence of A
or the [A,B] link.

Not-so-Stubby Area
Routers in an NSSA can redistribute routing information into the network from
other sources (such as another routing protocol, or statically configured routes),
but external routes from other OSPF routers (in area 0) are blocked at the ABR.
Because AS-external LSAs are not allowed within the flooding domain, a special
kind of LSA is used instead: the AS-external NSSA LSA (a type 7 LSA in OSPFv4).
In Figure 20-7, B would have the following LSDB entries if area 1 is configured as
an NSSA:

 • A network LSA (pseudonode) for the [C,D] broadcast link, which would
include a connection to C, D, and 101::/64

 • A router LSA from D with a connection to the [C,D] network LSA (pseudo-
node), a connection to C, and a connection to 101::/64

 • A router LSA from C with a connection to the [C,D] network LSA (pseudo-
node), a connection to C, a connection to 101::/64, a connection to B, and a
connection to 102::/64

 • A router LSA from B with a connection to C and a connection to 102::/64

 • An AS-external NSSA LSA from D carrying 100::/64

The special NSSA AS-external cannot be leaked outside the area, so the ABR must
translate it into a standard AS-external LSA before sending it into area 0. Given this

Chapter 20 Examples of Information Hiding540

translation, if no aggregation is manually configured, A would receive the following
information about area 1:

 • An AS-external LSA for 100::/64 originated by D. External LSAs are not modi-
fied in any way by the ABR in a normal OSPF area.

 • A summary LSA including 101::64 and 102::/64 originated at B. From the
 perspective of the Shortest Path Tree, these two routes will appear to be con-
nected to B itself, with B’s cost to reach each destination preserved in the
 summary LSA.

Totally Not-so-Stubby Area
The totally not-so-stubby area (totally NSSA) is

 • Similar to the totally stubby area because the ABR just sends a single summary
LSA containing a default route (::/0) into the outlying area

 • Similar to the not-so-stubby area (NSSA) because routers within the area can
originate external routes using the AS-external NSSA LSA, which the ABR
translates into an AS-external LSA, which is then transmitted into area 0

The Inter-area Router LSA
It is possible, in the right situation, for the summarization of topology information
to cause a router in area 0 to choose a less than optimal path to external destination.
Figure 20-8 illustrates.

A

C

D
1015

2010

B

area 1

AS boundary

area 0

2001:db8:3e8:100::/64

Figure 20-8 Suboptimal routing with OSPF external routes

Summarizing Topology Information 541

In Figure 20-8, if A just has a single AS-external route toward 100::/64, it will
choose the closest ABR connected to area 1 (the outlying area that the route is being
redistributed into). In this case, A would choose C, sending all traffic toward the
100::/64 destination along a path with a total cost of 30. There is a path with a total
cost of 25 available, but A does not “know” about this path, as the internal topology
of area 1 is hidden through the OSPF summarization process at the ABRs.

To resolve this problem, OSPF ABRs will generate an inter-area router LSA for
each ASBR (or each router which is redistributing reachable destinations into OSPF).
The inter-area router LSA contains the ABR’s cost to reach a particular ASBR. In
this network, then, assuming area 1 is some sort of area that supports redistribution,
A will have at least the following entries in its LSDB:

 • An AS-external LSA for 2001:db8:3e8:100::/64 originated by D (this could
potentially be a translated AS-external NSSA LSA, but A will not know the
difference between these two possibilities)

 • An inter-area router LSA generated by B with a cost of 10 to reach D

 • An inter-area router LSA generated by C with a cost of 20 to reach D

Using this information, A can compare

 • The cost through B toward 100::/64, by adding the cost to B to the cost from B
to D, for a total cost of 25

 • The cost through C toward 100::/64, by adding the cost to C to the cost from C
to D, for a total cost of 30

The additional LSA provides the information A needs to choose the optimal path
to the 100::/64 external destination, through B.

Final Thoughts on OSPF Stub Areas
If you find the various area types confusing, you are not alone; network engineers
struggle with remembering which area type permits what kind of information. If you

Note

This discussion around optimal routing and inter-area router LSAs should bring
to mind the discussion in Chapter 1 around state, optimization, and surface. This
is a specific instance where removing state from the control plane can result in
suboptimal traffic flows, and where adding information back in is used as a tech-
nique to make traffic flows more optimal again.

Chapter 20 Examples of Information Hiding542

can remember three simple rules, however, you can easily figure out what sort of
information should be where in any OSPF implementation:

 • Stub means no externals are allowed in the area at all.

 • Not-so means externals are allowed out of the area.

 • Totally means no internals are allowed into the area.

Area types are designed to decrease the amount of information carried between
flooding domains, reducing the amount of information any particular router in the
network needs to store and process. Many OSPF implementations can also filter the
information inserted into a summary LSA; this is often called type 3 filtering, even
though the summary LSA may not be a type 3 in every version of OSPF.

Aggregation

Aggregation reduces the state in the network by combining multiple reachable desti-
nations into a single destination. Most of the time, aggregation entails summariza-
tion, as seen in the example of routing information transiting flooding domains in
IS-IS. This is true of OSPF, as well—in almost all cases, aggregating routing informa-
tion involves summarizing topology information as well.

Is there any case where aggregation is used without summarization? There is an
older feature in the Border Gateway Protocol (BGP), now generally deprecated and
almost never really deployed, that does aggregate routes without discarding all of
available topology information. Figure 20-9 is used to illustrate.

A

B

2001:db8:3e8:100::/64

2001:db8:3e8:100::/60

2001:db8:3e8:101::/64
65000

65001

65002

65003

65004

Figure 20-9 The BGP atomic aggregate

Layering 543

In Figure 20-9, a series of BGP Autonomous Systems (AS) have been connected in
a ring. Assume the following:

 • 100::/64 is advertised through the [65004,65001] boundary, toward AS65000
and AS65002.

 • 100::/64 is filtered at the [65004,65003] boundary toward AS65003.

 • The 100::/64 and 101::/64 routes are aggregated at the [65001,65002] boundary
toward AS65002.

If some router in AS65004 prefers the aggregate over the longer prefix route within
AS65004 (such as a local filter), it is possible a routing loop can form in this network. This
type of situation can occur because BGP relies on the AS path to prevent loops across an
internetwork. How can this problem be resolved? The most obvious solution would be
to somehow include enough information about the AS path to prevent the 100::/60 route
from being leaked back into any AS where a component of the aggregate is connected.

To prevent such loops from forming, BGP required any speaker aggregating rout-
ing information to include an atomic aggregate in the aggregate update. The atomic
aggregate included the full list of every AS in the path of any of the component
routes making up the aggregate. In this case, the 100::/60 aggregate advertised into
AS60552 would have an AS path with one entry, 65001, but it would also contain
an atomic aggregate containing [65004, 65000]. When the eBGP speaker between
Autonomous Systems 65003 and 65004 receives the 100::/60 aggregate, it can exam-
ine the atomic aggregate attribute and determine at least some component of the
aggregated route originated in AS65004. Hence, the eBGP speaker at the edge of
AS65003 can reject the aggregate route, preventing the loop.

Note

There have been many proposals to remove the atomic aggregate from BGP; the
most recent is Deprecate Atomic Aggregate.1

1. Hares, “Deprecate Atomic Aggregate.”

Layering

While layering is not normally considered a form of information hiding by network
engineers, it definitely does hide full information about the topology and reachabil-
ity from some set of forwarding devices. Two examples—using BGP as an overlay to

Chapter 20 Examples of Information Hiding544

carry external routing information and Segment Routing (SR) combined with a con-
troller to produce a traffic engineering (TE) overlay—will be used to illustrate
layering.

Note

It is impossible for an introductory-level book, such as this one, to give an
in-depth overview of the many possible layering protocols and systems invented
and deployed in networks. To give a small sample: Layer 3 virtual private net-
works (L3VPNs) based in MPLS and IP and IP tunnels, Layer 2 virtual private
networks (L2VPNs), Ethernet VPNS (eVPNs), traffic-engineered overlays using
Path Computation Element Protocol (PCEP), VXLAN (which has a native control
plane, although the tunneling encapsulation is often used with a different con-
trol plane), 802.1q virtual local area networks (VLANs), Transparent Connection
of Lots of Links (TRILL) VLANs, and SR. Covering these topics would require
another entire book, and this one is quite large enough. Readers who would like
to read more on these topics should look at the “Further Reading” section at the
end of this chapter for more information.

The Border Gateway Protocol as a Reachability Overlay

The Border Gateway Protocol (BGP) was originally designed to carry inter-
Autonomous System (inter-AS) information; it was explicitly not designed to carry
reachability information within an AS. The basic design was to separate internal
reachability (within the AS) from external reachability (outside the AS, or in the
default free zone, or DFZ), in order to

 • Prevent changes outside the network from impacting the operation of the net-
work itself

 • Allow different policies to be applied to internal and external routes

The first reason, to prevent changes external to the network from impacting the
operation of the network itself, should be a familiar reason to hide information—to
break up a network into multiple failure domains. Figure 20-10 illustrates.

In Figure 20-10:

 • IS-IS is running on B, C, D, and E to provide reachability and topology infor-
mation within the AS.

Layering 545

 • E and F are configured with an external BGP (eBGP) session.

 • A and B are configured with an eBGP session.

 • Each pair of [B,C], [B,D], [D,E], and [C,E] is configured with an interior
(iBGP) session.

 • C and D are acting as route reflectors for B and E.

Tracing the path of the route advertisement to 100::/64 through the network:

 • F advertises 100::/64 to E over the eBGP session; the AS path is set to [65002].

 • E advertises the 100::/64 route to D and C, which then reflect the route to B.

 • B advertises the route to A over the eBGP session; the AS path is set to
[65002,65001].

The Interior Gateway Protocol (IGP), which runs within the AS, does not need
to carry the 100::/64 route at all. IS-IS carries just internal destinations, such as
100f::/64. Another way to put this is, IS-IS provides the internal reachability to allow
BGP to form sessions through the AS, while BGP carries the reachability information
allowing other Autonomous Systems to transit the local AS (to forward traffic from
A, through AS65001, and on to F).

This separation of duties is a form of layering; BGP overlays IS-IS (the IGP),
using the IGP to form adjacencies and discover paths within the AS along which
it can forward traffic. IS-IS, on the other hand, does not need to know about any
externally reachable destinations. How does this divide the network into two
 failure domains?

B
A

C

E

F

D

AS65002

AS65000

AS65001

AS65001

2001:db8:3e8:100::/64

2001:db8:3e8:100f::/64

Figure 20-10 BGP as an overlay

Chapter 20 Examples of Information Hiding546

First, IS-IS (or any other IGP) is not impacted by changes to topology and reach-
ability information external to the AS. If the link between F and 100::/64 changes,
the IS-IS processes running on B, C, D, and E do not need to recalculate anything, as
nothing in the network has changed from their perspective.

Second, peering Autonomous Systems are shielded from changes within AS65001.
For instance, if the [C,E] link fails, the path has not changed from the perspective of
A; the AS path remains the same, so BGP does not need to reconverge.

The fate of internal and external topology and reachability information is (at
least to a large degree) separated from one another; hence the internal routing and
the external routing are two different failure domains.

Note

There has been some research into how often, and under what circumstances, AS
level policies, combined with route changes within an AS, will “leak” out to the
rest of the DFZ.2 These kinds of information leaks cross what should be a failure
domain boundary, merging the failure domains at least in some small part. This is
an example of leaky abstractions, which are discussed in Chapter 1.

Segment Routing with a Controller Overlay

SR is perhaps the simplest possible use of Multiprotocol Label Switching (MPLS)
short of manually configured point-to-point tunnels through a network. The general
idea behind SR is to stack a set of labels at one edge of the network, so each device
along the path can forward based on the outermost label exposed on the stack. As
each device pops the outermost label off the stack, a new label is exposed describing
the next hop in the path. Figure 20-11 is used for illustration.

Note

SR is described here at a very high level. There are many more details in the design,
deployment, and operation of SR; please refer to the “Further Reading” section at
the end of the chapter for good references on SR.

In Figure 20-11, A receives a packet destined to 100::/64. Based on IP routing, this
packet will be forwarded across the lowest-cost path, along [A,B,D,E,F]. What if the
network operator wants the packet to travel along the alternate path, [A,B,C,E,F]? It

2. Teixeira, et al., “Impact of Hot-Potato Routing Changes in IP Networks.”

Layering 547

is possible to modify the metrics along the paths, of course, but this would impact all
the traffic entering the network at A and destined to 100::/64.

Several overlay technologies can solve this type of problem using a number of
different control planes and a number of different encapsulations. If you mul-
tiply every possible encapsulation with every possible control plane, you will
probably find there are more ways to solve this problem than can be explained
in normal terms. Perhaps the real explanation is bored engineers who enjoy the
challenge of solving the same problem in as many ways as possible. SR is a rela-
tively simple way to solve this problem. If the operator has SR deployed on his
network, he can

 • Compute the path from A to F through [B,C,E].

 • Discover the MPLS label for each device along the way; the resulting label stack
would be [30,31,33,34].

 • Impose this label stack on the packet while it is being switched at A.

Once this label stack has been imposed at A, the switching path would be

 • A would forward the packet to label 30, which is B.

 • When B receives this packet, it pops the outermost label on the stack; the stack
is now [31,33,34].

 • B will switch the packet toward 31, the outermost label on the stack, which is C.

B
A

C

E

F

G

D

10 10

15 10

10
2001:db8:3e8:100::/64

30

31

32

33

34

Figure 20-11 Segment routing sample network

Chapter 20 Examples of Information Hiding548

 • When C receives this packet, it pops the outermost label on the stack; the stack
is now [33,34].

 • C will switch the packet toward 33, which is E.

 • When E receives this packet, it pops the outermost label on the stack; the stack
is now [34].

 • E will switch the packet toward 34, which is F.

Finally, F will pop the final label off the stack and forward the traffic based on the
destination IP address. Where does the label that stack A imposes come from? There
are, as always, a large number of possibilities, but in order to keep the example as
simple as possible, assume there is a controller located someplace on the network,
labeled as G in Figure 20-11.

This controller can participate in the routing protocol to discover the topology
of the network and the reachable destinations (including what MPLS label has been
assigned to each device). After combining this information with a set of policies, it
can calculate the correct traffic-engineered path through the network and then signal
A about what label stack to impose on this particular flow.

This kind of layering reduces state (hides information) by

 • Allowing the traffic engineering policy to be pulled out of the distributed con-
trol plane, reducing the state in the distributed control plane considerably

 • Removing the process of neighbor discovery and other distributed elements
from the purview of the distributed control plane

Even if the policy controller fails, the network will still forward traffic, which
means the controller has been placed into a different failure domain.

Slowing Down State Velocity

A third technique often used in protocols to hide information is to simply slow down
the rate at which information is distributed through the network. Slowing down state
velocity does not technically hide information in the permanent sense: it either allows
network devices to “bunch up information” requiring shorter bursts of processing
spaced farther apart, it allows network devices to take on information at a steady
pace, or it removes duplicate copies of control plane state from the network. There
are many different ways to reduce the velocity of state in a network control plane,
but two examples are considered here: exponential backoff and flooding reduction.

Slowing Down State Velocity 549

Exponential Backoff

Exponential backoff is used in a wide variety of contexts, including

 • In slowing down (dampening) the speed at which routes are propagated
throughout an internetwork

 • In slowing down (dampening) the speed at which interface state change is
allowed to propagate in some network operating system implementations

 • In slowing down the speed at which a link state protocol will compute a new
Shortest Path Tree (SPT) on receiving new topology information

 • In slowing down the speed at which routing information is distributed by a link
state protocol in response to a change in the state of a link

This section will use running SPF in a link state protocol as an example, but you
should keep in mind there are many places where exponential backoff can be used.
To understand exponential backoff, several definitions will be needed:

 • Initial wait: The amount of time the implementation will wait after receiving
an event before processing it

 • Second wait: Multiplied by an exponential offset to set the wait time on sub-
sequent events

 • Max wait: Used for two purposes:

 • The amount of time the implementation will wait after an event before set-
ting the wait timer back to initial wait

 • The maximum amount of time the implementation will ever set the wait
timer

 • Wait timer: The amount of time the implementation will wait before process-
ing the items currently in the processing queue

The exponential backoff process looks something like this in pseudocode:

// initial_wait == initial wait time

// second_wait == second wait time

// max_wait == max wait time

// next_wait == how long before the wait_timer expires

// begin by expiring the reset_timer

Chapter 20 Examples of Information Hiding550

when reset_timer expires {

 stop wait_timer

 next_wait = initial_wait

 backoff = 1

}

when event_occurs {

 if wait_timer is running {

 next_wait = backoff * second_wait

 if next_wait > max_wait {

 next_wait = max_wait

 }

 backoff = backoff * 2

 } else {

 next_wait = initial_wait

 }

 set event to process at wait_time

 start reset_timer to expire in max_wait * 2

 start wait_timer to expire in next_wait

}

Figure 20-12 is used to explain exponential backoff in determining when to
run SPF.

Assume some router is configured to use exponential backoff to reduce the
amount of processing required for running SPF. Using Figure 20-12, the sequence of
events might look like this:

 1. The router begins with the wait_time set to initial_wait.

 2. The router receives a new link state entry (whether an LSA or an LSP doesn’t
matter for this example; it could be OSPF or IS-IS).

 3. The event is accepted, and

a. A timer is set to max_wait * 2; this can be called the reset_timer.

b. A timer is set for this specific event; once this timer expires, the event will be
processed.

 4. Before reset_timer expires, a second event is received.

a. The reset_timer is restarted, so it will again expire in max_wait * 2.

b. A timer is set for this specific event; once this timer expires, the event will be
processed.

c. The wait_time is set to second_timer * 1, as this is the second event.

Slowing Down State Velocity 551

 5. Before reset_timer expires, a second event is received.

a. The reset_timer is restarted, so it will again expire in max_wait * 2.

b. A timer is set for this specific event; once this timer expires, the event will be
processed.

c. The wait_time is set to second_timer * 2, as this is the third event.

The wait_time is set to the event number multiplied by 2 (this can be configured
on some implementations), so the wait_time doubles with each event. If the wait_
time ever reaches the max_wait, it will be capped at max_wait. And if the reset timer
ever expires, which is max_wait * 2 from the last event, the entire system resets to its
initial state. This process produces a wait_time as shown in Figure 20-12; the timer
value increases exponentially until it reaches a cap. If no events happen for some long
period, the entire system resets.

Why an exponential backoff? Because it allows the system to react quickly at first,
but then to slow down its reaction time until the system is at the slowest acceptable
speed. In the case of an SPF run, the first SPF run would occur quickly, but as more
link state updates are received, the SPF runs are spread farther apart until some max-
imum is reached. This allows for fast reactions to individual events, while dampening
the rate at which a large number of quickly occurring events is processed.

Fi
rs

t E
ve

nt

Se
co

nd
 E

ve
nt

Th
ir

d
Ev

en
t

Fo
ur

th
 E

ve
nt

Fi
ft

h
Ev

en
t

Si
xt

h
Ev

en
t

in
iti

al
 w

ai
t

1x second wait

2x second wait

4x second
wait

8x second
wait wait capped at max

wait returns
to initial

2x max wait
2x max wait

2x max wait

2x max wait

2x max wait

Figure 20-12 Exponential backoff

Chapter 20 Examples of Information Hiding552

Link State Flooding Reduction

In deploying link state protocols onto highly meshed mobile networks, the amount
of flooding required to converge can be a limiting factor. Figure 20-13 is used to
illustrate.

In Figure 20-13:

 • The columns and rows are marked instead of each individual router being
marked; A1, for instance, is at the top-left corner, while D5 is at the lower-right
corner.

 • The tier numbers are marked on the right side; routers in T0 are Top of Rack
(ToR) switches (or routers).

If some change occurs at A5, then

 • A5 will flood a link state change to every router in row 4.

 • Every router in row 4 will flood a link state change to A3.

A3, then, will receive four copies of the same link state change; in fact, every
router in the fabric will receive at least four copies of the same link state change,
and some will receive more copies. How can the number of copies be reduced in this
topology? By building a view of the routers two hops away from any router that is
flooding a change, and somehow signaling just one of them to reflood the link state

row
 1

row
 2

row
 3

row
 4

row
 5

col a col b col c col d

T0

T1

T2

T1

T0

Figure 20-13 A spine and leaf fabric as a flooding reduction example

Slowing Down State Velocity 553

change to its neighbors. For instance, if A5 can discover that A4 can reach every
router two hops away from A5 itself, A5 can send the link state change to B4-D4 for-
matted so they will not reflood it, while sending the update to A4 in a way that allows
A4 to reflood the change.

But how can A5 determine which routers are two hops away? At least two meth-
ods have been devised and implemented:

 • Each router can report its full set of neighbors to every neighbor, rather than
just the neighbors on this link. For instance, A4 can report the set of neighbors
[A3,B3,C3,D3,B5,C5,D5] to A5, rather than just [A5] (as it would normally do
to verify two-way connectivity during adjacency formation).

 • Once the initial adjacencies are formed, an SPF can be run at A5 that is
restricted to two hops.

Once A5 discovers all of its neighbor’s neighbors, it can build a minimum list of
neighbors to flood to “cover” the entire set of two-hop neighbors. Given A4, B4, C4,
and D4 all have the same set of neighbors, designating any of these neighbors as a
“reflooder” will ensure the changes to the LSDB are synchronized through the net-
work. Any neighbors on this list should receive changes in a way that allows them to
reflood; neighbors not on this list should receive link state information in a way that
does not allow them to reflood the changes. There are a number of ways a link state
protocol can be modified to limit flooding scope in this way.

To outline the process in the network shown in Figure 20-13:

 1. A5 discovers some change to the topology or reachability information.

 2. A5 determines that A4, B4, C4, and D4 all have the same set of two-hop
neighbors.

 3. A5 selects one neighbor as a reflooder (or designated flooder); assume this is
A4.

 4. A5 floods to A4 normally.

 5. A5 floods to B4, C4, and D4 using a mechanism that does not allow them to
reflood the change.

 6. A4 determines that A3, B3, C3, and D3 all have the same set of two-hop
neighbors.

 7. A4 selects one neighbor as a reflooder (or designated flooder); assume this is A3.

Chapter 20 Examples of Information Hiding554

 8. A4 floods to A3 normally.

 9. A4 floods to B3, C3, and D3 using a mechanism that does not allow them to
reflood the change.

There is a bit more to this technique than is outlined here; refer to the “Further
Reading” section to find out more about this technique, as well as other flooding
reduction mechanisms similar to this technique.

Final Thoughts on Failure Domains

The initial problem of summarizing information appears to be fairly simple; work-
ing from within the framework of a distance protocol in a simple network, it can be.
In link state protocols, however, the ability to summarize without aggregation and
the requirement for aggregation and summarization to take place at a specific place
in the network make summarization and aggregation more difficult. Quite often,
ideas and concepts are agglutinated, causing each idea to be difficult to understand
on its own. Disentangling the ideas, however, to make them easier to understand can
prove difficult as well. Adding in external routing information makes summarization
and aggregation more complex in a link state protocol.

All of these concepts are extremely important for you to understand as a network
engineer. Combining a base knowledge of how any given method of carrying control
plane information, how each shortest path algorithm works on any given topology,
and how and where information is aggregated and/or summarized can give you a
quick read of how a network will work normally, as well in various failure situations.

This line of thinking provides a good segue to move from thinking about proto-
cols to thinking about network operation.

Further Reading

Dearlove, Christopher, Thomas H. Clausen, Ulrich Herberg, and Philippe Jacquet.
The Optimized Link State Routing Protocol Version 2. Request for Comments
7181. RFC Editor, 2014. doi:10.17487/rfc7181.

Ferguson, Dennis, Acee Lindem, and John Moy. OSPF for IPv6. Request for Com-
ments 5340. RFC Editor, 2008. doi:10.17487/rfc5340.

Hares, Susan. “Deprecate Atomic Aggregate.” Internet-Draft. Internet Engi-
neering Task Force, March 2017. https://datatracker.ietf.org/doc/html/
draft-hares-deprecate-atomic-aggregate-00.

https://datatracker.ietf.org/doc/html/draft-hares-deprecate-atomic-aggregate-00
https://datatracker.ietf.org/doc/html/draft-hares-deprecate-atomic-aggregate-00

Further Reading 555

“Intermediate System to Intermediate System Intra-Domain Routing Information
Exchange Protocol for Use in Conjunction with the Protocol for Providing
the Connectionless-Mode Network Service.” Standard. Geneva, CH: Inter-
national Organization for Standardization, 2002. http://standards.iso.org/ittf/
PubliclyAvailableStandards/.

Jacquet, Philippe. Optimized Link State Routing Protocol (OLSR). Request for Com-
ments 3626. RFC Editor, 2003. doi:10.17487/rfc3626.

Katz, Dave. “OSPF and IS-IS: A Comparative Anatomy.” Presented at the NANOG19,
Albuquerque, NM, June 12, 2000. https://nanog.org/meetings/abstract?id=1084.

Moy, John. OSPF Version 2. Request for Comments. RFC Editor, April 1998.
doi:10.17487/RFC2328.

Nguyen, Dang-Quan, Thomas H. Clausen, Philippe Jacquet, and Emmanuel Baccelli.
OSPF Multipoint Relay (MPR) Extension for Ad Hoc Networks. Request for
Comments 5449. RFC Editor, 2009. doi:10.17487/rfc5449.

Ogier, Richard G. Use of OSPF-MDR in Single-Hop Broadcast Networks. Request for
Comments 7038. RFC Editor, 2013. doi:10.17487/rfc7038.

Ogier, Richard, and Phil Spagnolo. Mobile Ad Hoc Network (MANET) Extension of
OSPF Using Connected Dominating Set (CDS) Flooding. Request for Comments
5614. RFC Editor, 2009. doi:10.17487/rfc5614.

Pelsser, Cristel, Randy Bush, Keyur Patel, Prodosh Mohapatra, and Olaf Maennel.
Making Route Flap Dampening Usable. Request for Comments 7196. RFC Edi-
tor, 2014. doi:10.17487/RFC7196.

Przygienda, Tony, John Drake, and Alia Atlas. “RIFT: Routing in Fat Trees.”
 Internet-Draft. Internet Engineering Task Force, January 2017. https://
datatracker.ietf.org/doc/html/draft-przygienda-rift-01.

Rekhter, Yakov, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
Request for Comments 4271. RFC Editor, 2006. doi:10.17487/rfc4271.

Retana, Alvaro, and Stan Ratliff. Use of the OSPF-MANET Interface in Single-Hop
Broadcast Networks. Request for Comments 7137. RFC Editor, 2014.
doi:10.17487/rfc7137.

Roy, Abhay, Yi Yang, and Alvaro Retana. Hiding Transit-Only Networks in OSPF.
Request for Comments 6860. RFC Editor, 2013. doi:10.17487/rfc6860.

Shen, Naiming, Les Ginsberg, and Sanjay Thyamagundalu. “IS-IS Routing for
 Spine-Leaf Topology.” Internet-Draft. Internet Engineering Task Force, March
2017. https://datatracker.ietf.org/doc/html/draft-shen-isis-spine-leaf-ext-03.

Teixeira, Renata, et al., “Impact of Hot-Potato Routing Changes in IP Networks,”
IEEE/ACM Transactions on Networking 16, no. 6 (December 2008): 1295–307,
doi:10.1109/TNET.2008.919333.

http://standards.iso.org/ittf/PubliclyAvailableStandards/
http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://nanog.org/meetings/abstract?id=1084
https://datatracker.ietf.org/doc/html/draft-przygienda-rift-01
https://datatracker.ietf.org/doc/html/draft-przygienda-rift-01
https://datatracker.ietf.org/doc/html/draft-shen-isis-spine-leaf-ext-03

Chapter 20 Examples of Information Hiding556

Wang, Lili, Zhaohui (Jeffrey) Zhang, and Nischal Sheth. OSPF Hybrid Broadcast
and Point-to-Multipoint Interface Type. Request for Comments 6845. RFC
Editor, 2013. doi:10.17487/rfc6845.

White, Russ. Intermediate System to Intermediate System (IS-IS) Routing Protocol Live-
Lessons. Video. LiveLessons. Cisco Press, 2016. http://www.ciscopress.com/store/
intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=
text&cmpid=2017_02_02_CP_RussWhiteVideo.

White, Russ, and Shawn Zandi. “IS-IS Support for Openfabric.” Internet Draft.
Internet Engineering Task Force, October 2017. https://datatracker.ietf.org/
doc/html/draft-white-openfabric-03.

White, Russ, Danny McPherson, and Srihari Sangli. Practical BGP. Boston, MA:
Addison-Wesley Professional, 2004.

Review Questions

 1. Read the OpenFabric documentation provided in the “Further Reading” sec-
tion. Does OpenFabric concentrate on aggregation or summarization? How
does OpenFabric reduce the amount of control plane information without
dividing up the network into flooding domains?

 2. Read the Routing in Fat Trees (RIFT) documentation provided in the “Further
Reading” section. Does RIFT concentrate on aggregation or summarization?
Describe one technique that RIFT uses to summarize state and how RIFT han-
dles aggregation.

 3. When might it be useful to be able to configure overlapping flooding domains
in IS-IS?

 4. “Stub” in OSPF means what kinds of routing information will always be
blocked at an ABR?

 5. “Totally” in OSPF means what kinds of routing information will always
be blocked at an ABR?

 6. “Not so” in OSPF means what kinds of routing information will always be
blocked at an ABR?

 7. Read RFC7196, Making Route Flap Dampening Usable. What problems does
this document pose for exponential backoff schemes, and what solutions does
it propose to resolve these problems?

http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
http://www.ciscopress.com/store/intermediate-system-to-intermediate-system-is-is-routing-9780134465326?link=text&cmpid=2017_02_02_CP_RussWhiteVideo
https://datatracker.ietf.org/doc/html/draft-white-openfabric-03
https://datatracker.ietf.org/doc/html/draft-white-openfabric-03

557557

Understanding the design and operation of the transport and control plane subsys-
tems of a network is a good start toward being a network engineer. Design involves
adding several more points and integrating them into a whole. For instance, network
design also involves the following tasks:

 • Building security into the design and operation of a network

 • Using the network as a tool (where it makes sense) to help secure the attached
hosts and applications

 • The design patterns used in network design, and where and how to apply those
patterns

 • Resilience at a system-wide level

 • Choosing between the many technologies available to solve the set of problems
presented by applications and business drivers (this reaches into the world of
the network designer)

 • How network design interacts with strategic business interests in the long
term, including how the network impacts the directions the company may be
able to take in the future (this reaches into the realm of the network architect)

Network design and architecture are very broad fields, far outside the scope of this
book. In fact, very little has been written specifically on these larger fields—unlike
the other introductory sections in this book. Be sure to consult the “Further Read-
ing” section at the end of each chapter in this part so that the key works in this space
are called out in the larger scope.

PART III

Network Design

Part III Network Design558

Three Underlying Models

The field of design relies heavily on models and abstractions; design tends to be more
of a “seat of the pants” affair, grounded in experience and a broad knowledge set.
Although they have been covered in other areas of this book, it is important to keep
three specific models in mind when reading these chapters on design.

The Law of Leaky Abstractions

Many abstractions are meant to be “perfect,” in that they completely contain infor-
mation within a single system. For instance, the Transmission Control Protocol
(TCP) is designed to provide what appears to be a connection between two hosts (or
two applications) across a network that does not guarantee packet delivery—in
order, or at all. In reality, there are many situations where the operation of the Inter-
net Protocol (IP)—which underlies TCP, and the physical links that underlie IP—will
be directly visible in the operation of TCP. The law of leaky abstractions applies to
almost every type of abstraction undertaken in a network, from layering protocols,
to aggregating reachability and topology information, to building an overlay net-
work “over the top.” A lot of complexity is driven into network protocols and design
through various attempts to account for state leaking outside what should be a fairly
watertight abstraction.

The State/Optimization/Surface (SOS) Triad

This was originally explained in Chapter 1, “Fundamental Concepts,” and is refer-
enced throughout the rest of the book. Much of the art of design is consciously con-
sidering this set of tradeoffs at a system level; many designs have become overly
complex, and hence overly fragile, because designers tend to focus on goals rather
than tradeoffs. Consider this in terms of the decision to deploy an overlay (or even
what kind of overlay to deploy). Deploying an overlay certainly decreases the amount
of state, and the speed at which state changes, in the resulting underlay and overlay.
The overlay can inject additional state at the overlay layer to use resources more effi-
ciently (as an example, see Chapter 25, “Disaggregation, Hyperconvergence, and the
Changing Network,” on network function virtualization). But introducing a second
control plane and an “over the top” transport layer also creates a broad, and often
deep, interaction surface. Will deploying the overlay ultimately increase overall com-
plexity, or reduce it? What can be done to mitigate this additional complexity? Where
will the underlay, as an abstraction, leak? What steps might need to be taken to stem
this leak, and how much more complexity will this add?

Three Underlying Models 559

Every design discussion, every design decision, needs to be driven by asking ques-
tions like these about tradeoffs.

The Consistency/Accessibility/Partitioning (CAP) Triad

The CAP theorem is widely known and appreciated in the database design field, but
is not often considered in the world of network design. In reality, CAP tells the
designer that there is a time cost to distance and processing. The more distance and
processing separating a data source from the ultimate data destination, the more
time it will take for the data to get there. When decisions are dependent on the pres-
ence of data, this means that distance and processing requirements will ultimately
slow down the pace at which decisions can be made. Hence, the ideal situation is
where decisions are distributed to the point closest to where the data required to
make the decision “lives”—this is known as the subsidiarity principle. The key point
to remember is the source of the data; the source of business policy is the business, so
decisions about policy need to be close to the business. On the other hand, the source
of routing information to find loop-free paths is the network devices that have near-
real-time access to the state of topology and reachability in the network, so it makes
sense to put decisions based on topology changes close to the network devices that
actually forward traffic.

The chapters in Part III assume all of these factors need to be considered in each
design realm; knowing and applying them will speed your capabilities as a network
designer. The chapters in this part include:

 • Chapter 21: Security: A Broader Sweep, with discussions of the different
components of the security environment, defense in depth, information pri-
vacy, and the OODA loop

 • Chapter 22: Network Design Patterns, with discussions of the relation-
ship between business and network design, network ownership models, choke
points, hierarchical design, layering, common network topologies, and regular
topologies

 • Chapter 23: Redundant and Resilient, with discussions of control plane
failures, control plane convergence, measuring network availability, graceful
restart, in service software upgrades, and modularization for resilience

 • Chapter 24: Troubleshooting, with discussions of the narrowing process,
breaking networks into components, the how model, the what model, trou-
bleshooting tools, models in troubleshooting, the half split method, and
technical debt

This page intentionally left blank

561

Chapter 21

Security: A Broader Sweep

Learning Objectives

When you are finished reading this chapter, you should understand:

 0 The difference between a threat actor, an exploit, an attack, a vulnerability,
an asset, and a risk

 0 The concept of defense in depth, and how it relates to security

 0 The concept of AAA and what AAA systems are designed to accomplish

 0 The concept of data exhaust

 0 The process used to exchange private keys

 0 The concept of a distributed denial of service attack and protection
mechanisms

 0 The relationship between control plane security and securing traffic pass-
ing through the network

 0 The OODA loop and its application to network security

Security is often placed last in any discussion of network design principles; it is often
thought of as an add-on to the main focus of the design process. The modern world,
however, is a dangerous place for data, particularly data that can ruin people’s lives
permanently.

Chapter 21 Security: A Broader Sweep562

The Scope of the Problem

Security is a very broad and important topic for network engineers; the following
sections will outline why this is so.

The Biometric Identity Conundrum

Consider this simple example: many electronic devices have a fingerprint reader that
is (often) used in the place of a password. Gaining access to such devices is much
simpler than password or pin-driven access; there is no password to remember. It is
also (theoretically) more secure. You cannot “steal” someone’s fingerprint.

Or can you? There are two less than obvious lines of attack. First, you leave your
fingerprint everywhere in everyday life. It is on the screen of your cell phone, the
doorknob to any building you enter, the door handles on your car (or handlebars
on your scooter or bike), and in many other places. People have long been able to
lift such prints from a wide array of services. How much of a secret is your finger-
print, really? This same problem applies to any externally visible body characteristic
used to identify you: cameras are everywhere, and at least some of them capture just
about any part of your body used for identification on a regular basis. Figure 21-1
illustrates this problem.

The second line of attack is, perhaps, less obvious but maybe more dangerous.
No system stores fingerprints as images, per se. Rather, all fingerprint systems store
fingerprints as a digitized version of the key characteristics of each fingerprint.

Nitrile Gloves

biometric password protect ion

Figure 21-1 The fingerprint as a password problem

The Scope of the Problem 563

Certainly such files will be encrypted and protected, and perhaps even just stored
locally. Once fingerprint data is taken online, however, all security bets are off. No
matter how well protected, data moved across the public Internet has some per-
centage probability of being stolen at some point. Data breaches are common; for
instance, here are a few sample breaches from 2016:

 • FACC, a manufacturer of lightweight composites, was the victim of cyber theft
worth at least $54.5 million.1

 • The University of Florida, exposing the records of about 63,000 students and
staff.2

 • The FBI, exposing the contact information of about 20,000 employees.3

 • The United States Internal Revenue Service, exposing the information of about
220,000 tax payers.4

 • The University of California at Berkley, exposing information of about 80,000
students, faculty, and alumni.5

 • Premier Health Care, exposing information about 200,000 patients.6

 • Verizon Enterprise Services, potentially exposing information about 1.5 mil-
lion customers.7

 • The City of Salt Lake City, Utah, exposing information about 14,200 people.8

 • Tidewater Community College, exposing information about 3,000 employees.9

 • The voting system of the Philippines, exposing information about 55 million
citizens.10

 • Yahoo, exposing the information of between 500 million and 1 billion users.11

 1. “EANS-Adhoc: FACC AG / UPDATE: FACC AG - Cyber-Fraud.”

 2. Leary, “UCF Data Breach.”

 3. CNN and Mallonee, “Hackers Publish 20,000 FBI Employees’ Contact Information.”

 4. Leary, “IRS Data Breach Grows.”

 5. “Data Breach Affects 80,000 UC Berkeley Faculty, Students and Alumni.”

 6. “Premier Healthcare Faces Possible Data Breach That Could Affect 200,000 Patients.”

 7. Leary, “Verizon Enterprise Data Breach.”

 8. Gorrell, “Salt Lake County Data Breach Exposed Info of 14,200 People.”

 9. McKinney, “Data Breach Exposes Information on More than 3,000 TCC Employees.”

 10. Muncaster, “Every Voter in Philippines Exposed in Mega Hack.”

 11. Siciliano, “Yahoo Data Breach: Almost 500 Million Affected”; “1 Billion Yahoo Accounts Compro-
mised in Data Breach | IdentityForce.

Chapter 21 Security: A Broader Sweep564

There are hundreds (or thousands) of such breaches each year, many of which
escape the notice of the wider public or are not reported at all. Once fingerprints
are stored like credit card and other information, it is a matter of time before large
caches of fingerprint information are stolen. Of course, not every fingerprint for
every person in the world will be stolen in such a breach, but this will be small com-
fort to those whose fingerprints were stolen.

Definitions

To understand the world of security, it is important to understand some basic terms.
Figure 21-2 illustrates the first set of important definitions.

In Figure 21-2, working from left to right:

 • The threat actor, or attacker, is the individual or organization initiating the
attack(s). The identity of the threat actor can help you understand motiva-
tions, skill level, and possible plan of attack.

 • The exploit takes advantage of the vulnerability using a process or tool, such
as manually entering a specific string, running a script or piece of software, etc.

 • The attack or threat is the potential or actual attack performed by the threat
actor using the exploit.

 • Vulnerabilities are potential weak spots in the defense that can be exploited
to achieve an objective. For instance, a missing or misconfigured packet filter,
someone inside the network with rights to the target system who can be social-
engineered to provide access in some way, or a defect in a system’s code allow-
ing a threat actor to attack a system in some way.

B

C

D

E

F

threat/attack

threat actor/
attacker

exploits

attack surface

assets

risks

vulnerabilities

BREACHREPORT

Figure 21-2 Security definitions

The Solution Space 565

 • The attack surface is the total set of systems, port numbers, applications, etc.,
the threat actor has access to in some way.

 • Assets are the network elements and information within the network that the
threat actor would either like to access or prevent access to (in the case of a
denial of service attack).

 • Risks are the potential negative results of an attack, such as bad publicity
(represented by the microphone), a major business consequence (represented
by the breach report), or even a complete failure of the business itself. Risk is
often quantified as potential times impact.

The Problem Space

The security problem space, from a network perspective, can be divided into three
broad areas:

 • How can users and processes access the data they need to do their jobs?

 • How can the information carried over the network and stored on devices con-
nected to the network remain confidential?

 • How can the network remain accessible? Many attackers would like to disrupt
a business or organization by removing the network as a usable resource; this is
called a denial of service (DoS) attack.

The following section will consider a wide scope of possible solutions to each of
these problems. After this, some examples of solutions in the security space will be
considered, and then a useful model for considering network security, the Observe,
Orient, Decide, Act (OODA) loop, will be discussed.

The Solution Space

Many books, articles, and research papers have been written addressing different ele-
ments of security since the first network break-in, which probably happened the day
after the first network was operational. The “Further Reading” section will be help-
ful if you are interested in learning more about security than what is contained in this
and later sections in this chapter.

This section will begin by looking at the concept of defense in depth and then
consider three broad security solution spaces: access control, data protection, and
service availability assurance.

Chapter 21 Security: A Broader Sweep566

Defense in Depth

The first, and most important, solution is more conceptual than tool or method ori-
ented. Defense in depth is the concept of having multiple, overlapping layers of
defenses interacting in a way that poses multiple challenges to an attacker. Figure 21-3
illustrates one possible set of lines of defense.

In Figure 21-3, there are a number of lines of defense, including

 • Packet filters and access controls at the routed edge to the network; these are
“basic” controls that just check to see if a user is authorized to access the net-
work in general, block some basic (obvious) packet flows, and even limit the
rate at which hosts outside the network can transfer data.

 • Route validation at the routed edge to the network; this will help prevent access
from hijacked address space.

 • General telemetry throughout the network, which will indicate top talkers,
provide information on the most common source/destination pairs, note unu-
sual spikes in utilization, etc.

 • Stateful packet filters at the middlebox C, which will only allow traffic into the
network on some ports if there is an existing connection.

 • Exfiltration monitoring deployed in several locations; this will raise an alert
when specific access patterns occur, such as large amounts of data being trans-
ferred toward a destination outside the network from a database containing
sensitive user information.

 • Access control on individual services and/or servers, such as G, which ensures
the user at D is authorized to access individual resources.

A B C E GF

D

outsider threat

insider threat

packet filters

stateful
packet filters

intrusion
detection

exfiltration
monitoring

route validation

access control access control
general telemetry

Figure 21-3 Defense in depth

The Solution Space 567

Although none of these systems will stop an intruder from breaching your net-
work or data, used together they can provide a fairly effective defense system against
many different forms of attack. First, the time a threat actor spends moving through
one layer gives the network operator an opportunity to discover and counter the
attack with more specific controls. Second, the layering of systems and filters forms a
kind of “layer of grids” through which traffic must pass to reach important resources.
An attack not blocked by the first grid layer may be blocked by the second, etc.

Understanding the in-depth defensive posture of the complete set of systems in a
network and using every available resource as a potential defensive system are impor-
tant skills in the network design space.

Access Control

Access control tries to ensure

 • Users (or processes) are who they claim to be—to verify identity. This is often
called authentication.

 • Users (or processes) are able to access the data they are attempting to access, or
rather whether or not they are authorized to use a particular service or access a
particular piece of data.

 • Information about user actions are recorded so they can be used to trace back
to failures and breaches. This is generally called accounting.

Access control systems are often called AAA systems, because of the three A’s:
authentication, authorization, and accounting. These systems are often specialized
applications, interacting with devices through a protocol such as Remote Authen-
tication Dial-In User Service (RADIUS) to ensure users are properly logged in and
applications have enough information to ensure that only valid and authorized users
are accessing information and services.

Access control can be implemented in many different places in a system; for
instance:

 • Before the user connects to the network, or rather before the user can log on to
a device that is able to obtain an Internet Protocol (IP) address, connect to an
upstream switch, connect to a wireless network, etc.

 • After the user connects to the network but before the user can access any service.

 • After the user connects to the network and before the user accesses each indi-
vidual service.

Chapter 21 Security: A Broader Sweep568

These three different options can be combined; for instance, a user may be asked
to provide a username and password before connecting to the network, and again
before accessing any service on the network, and then again before accessing particu-
lar, more highly restricted, systems or information.

Data Protection

Consider the protection around a safe holding classified documents. Is it possible the
safe might be breached in some way? What if someone calls in a bomb threat to the
building where the safe is housed? Will the occupants of the building gather up any
necessary equipment and information, including the contents of the safe, and leave
the building? Or what if someone who appears to be authorized calls and asks for the
data? The safe being breached is similar to an access control failure, and the bomb
threat or request for information that drives the data out into the street is similar to a
request pulling the information across the network.

Ultimately, there must be a line of defense to protect data in these sorts of situa-
tions; systems and applications will be breached, and data will be requested over the
network. Encryption is generally the last line of defense for these situations.

The Man in the Middle and the Control Plane

When data leaves the safe space, many new vulnerabilities come into play.
While encryption can help protect data in these situations, it is useful to know
what these situations look like, and hence (potentially) what needs to be pro-
tected against and what the limits of protection might be. Man-in-the-middle
(MitM) attacks are a common sort of attack in this realm; these attacks are
sometimes enabled by an attack on the control plane (an attack on one system
that enables an attack on another is called a side attack). Figure 21-4 is used
to illustrate.

In Figure 21-4, host A opens a secure session to G. As part of the secure
session configuration, A and G must exchange keys and other information to
allow an encrypted session to operate. If E, the attacker, can intercept these
communications, it can

Make A believe it is exchanging information with G, even though it is
exchanging information with E

Make G believe it is exchanging information with A, even though it is
exchanging information with E

The Solution Space 569

By acting as a man in the middle, E can make A and G believe they are
exchanging information securely, when the entire connection is being moni-
tored by E. The problem, for the attacker, is to intercept the traffic between A
and G at just the right point in time to allow this kind of attack to work. This
may be fairly easy if there is just one path between A and G, but in Figure 21-4
there are two paths. How can the attacker ensure it will see the traffic flowing
between A and G? The attacker must exploit some vulnerability in the rout-
ing system to ensure traffic between A and G is flowing across the [C,F] link.

While not all man-in-the-middle attacks will require compromising the
routing system in this way, at least some will; hence the security of the routing
system itself can be a security issue, as well. Securing the routing system is
very difficult, however. For instance:

 • If the destination is only reachable through the public Internet, it is next to
impossible to know what the “correct” route is. The Internet is made up of
individual networks, each of which has policies intentionally unavailable
to other operators.

 • If the destination is reachable entirely through an internal network, it
would be difficult to detect the [B,C,F] path as an invalid path. Both avail-
able paths are “valid” in the sense of being available paths between the
source and destination; why one should be considered “more valid” than
the other is difficult to discern.

These and many other problems plague security in the control plane.
While some information can be verified, such as existing connectivity, it is
difficult to determine whether or not traffic is following these validated paths.
While the network can help prevent man-in-the-middle attacks of this kind,
some attacks can only be resolved at the protocol and application level.

A B

C

D

E

F G

attacker

Figure 21-4 A man-in-the-middle attack

Chapter 21 Security: A Broader Sweep570

Encryption takes a block of information (the plaintext) and encodes it using some
form of mathematical operation to obscure the text, resulting in a ciphertext. To
recover the original plaintext, the mathematical operations must be reversed. Most
encryption is based on the difficulty involved in factoring a large integer composed of
two or more prime factors. An integer is calculated based on the key (a prime factor)
and some portion of the plaintext, resulting in the ciphertext. To recover the plaintext
from the ciphertext, the process is reversed; the key is used to find the factor of the
large integers in the ciphertext, ultimately calculating the original plaintext.

There are two kinds of widely used encryption: public key and private key. In
public key cryptography, more properly called asymmetric cryptography, there are
two factors or keys; if the plaintext is encrypted using one of the keys, it can be
unencrypted using the second key. This is useful because it allows one of the two keys
to be published publicly. In private key cryptography, more properly called symmetric
key cryptography, the same key is used to encrypt and unencrypt the plaintext; hence
the sender and receiver must share the same key to communicate.

Public and private key cryptography are often used together to form a single sys-
tem. Figure 21-5 is used to illustrate.

In Figure 21-5:

 1. Assume A begins the process. A will encrypt a nonce, or rather a large random
number, using B’s public key. Because the nonce has been encrypted with B’s
public key, in theory only B can unencrypt the nonce, as only B should know
B’s private key.

 2. B, on unencrypting the nonce, will now send some new nonce to A. This may
include A’s original nonce, or A’s original nonce plus some other information.
The point is that A must know, for certain, the original message, including
A’s nonce was received by B—and not some other system acting as B. This is
ensured by B including some piece of information encrypted using its public
key, as B is the only system able to unencrypt it.

A B

1. encrypted nonce

3. calculate private key

2. encrypted nonce

Figure 21-5 Using public keys to either exchange or calculate a private session key

The Solution Space 571

 3. A and B, using the nonces and other information exchanged to this point, will
calculate a private key, which is then used to encrypt/unencrypt information
transferred between the two systems.

The steps outlined here are somewhat naive; there are better, more secure, sys-
tems, such as the Internet Key Exchange (IKE) protocol; see the “Further Reading”
section for resources in this area. Why not just use asymmetric (or public key) cryp-
tography all the time? Because the computational costs of using asymmetric key
cryptography are much higher than using symmetric cryptography.

A second area to be concerned about in data protection is data exhaust.
There are many other terms for this, of course, but the general idea is vulner-
abilities in the communication patterns. For instance, assume a bank configures
an automated backup for a particular database table; when the balances in the
account held in the table change by a particular amount, the backup is kicked off
automatically. This might seem like a perfectly reasonable sort of backup job, but
it does involve some amount of data exhaust. If a threat actor puts the backup
together with the change in account value, he will know specifically what the
 pattern of account activity is. Enough clues of this sort can be developed into an
entire set of attack plans.

How can network engineers protect against data exhaust? There are no real good
ways to protect against leaking information unintentionally into the public domain
through such actions; even in security, the law of leaky abstractions applies. The best
you can do is to be aware of such problems, potentially profiling your network the
same way an attacker would, and noting any patterns that might be used against
your defense system.

Security and Obscurity

No security through obscurity. If you get close enough to a security engineer
for long enough, or involved in any sort of debate over proper security, you
will likely hear these words somewhere along the way. There is one problem
with this phrase, however: it is often used out of context. To understand
the real meaning of the phrase, you need to go back in time to the origin of
encryption algorithms. In the physical lock world, revealing the plans of a
lock will often reveal various passageways to bypassing or defeating the lock.
This habit was carried over to early software security vendors; if an attacker
knows how the encryption algorithm works, she will be able to find ways to
defeat the encryption algorithm.

Chapter 21 Security: A Broader Sweep572

But encryption algorithms are not door locks; what is an important safe-
guard in one realm can be a dangerous crutch in another. Hiding code devel-
oped to encrypt plaintext does not make the code more secure; in fact, just the
opposite happens. Instead of improving security, obscuring encryption code
and processes just prevents experts in the field from finding flaws and possible
ways to defeat the code before these are exposed in real deployments. Ulti-
mately, security by obscurity is dangerous in this particular context.

So this is a good principle, but it can be misapplied. For instance, if a net-
work operator attempts to hide the internal network architecture or address-
ing, or even block external hosts from reaching internal ones, at least some
security experts will counter with “That is security by obscurity; you should
not do this.” Taken in this sense, however, encrypting data is also security
by obscurity. Hiding information and hiding information about your infra-
structure are both essentially hiding information, and hiding information is
essentially a form of obscurity.

How can you tell when you should apply “no security by obscurity” and
when you should not? Perhaps the best rule of thumb is this: hiding processes,
algorithms, and implementations is not a useful addition to security in the
cyberworld. Hiding information, however, often is. It can be hard to apply
this rule of thumb in many situations, but it should be a good start in think-
ing through the issues and making the right decision in each particular case.

Service Availability Assurance

Distributed denial of service (DDoS) attacks are on the rise, with the largest reaching
over 1 terabits per second in late 2016,12 using hijacked Internet of Things (IoT)
devices, called a botnet. Figure 21-6 illustrates one way such an attack can be built.

The process in Figure 21-6 begins before the attack, with the creation of a botnet
to use as a platform. Building botnets is mostly a matter of getting as many devices
as possible infected with a virus, allowing a controller to instruct the device to send
a stream of packets to some IP address on demand. Viruses are designed to infect a
wide range of devices, including IoT devices (like light bulbs, refrigerators, video
cameras, television sets, etc.), personal computers, cell phones, and web servers
(which normally run inside a virtual machine), ultimately allowing them to be con-
trolled in some limited sense by the botnet controller. Such botnets can be rented by
the hour fairly easily.

 12. Khandelwal, “World’s Largest 1 Tbps DDoS Attack Launched from 152,000 Hacked Smart Devices.”

The Solution Space 573

Once the botnet is built:

 1. The botnet controller sends a command for each of the devices, potentially
hundreds of thousands of them, to send a series of packets to a set of well-
known servers. Any sort of server hosting a widely used public service with a
lot of bandwidth and processing power will do; favorites are Domain Name
System (DNS) and Network Time Protocol (NTP) servers.

 2. The botnet devices send requests for some piece of information to each server
being used as a reflector in the attack. Typically, this is a request for a DNS
resolution, or a large text record stored in the DNS table, or something similar.
The source of the request is forged or set to the target’s IP address.

 3. The servers respond to the request with large amounts of data, which is then
sent to the target device. Some resource, such as available bandwidth, available
Transmission Control Protocol (TCP) connection buffers, or something else
with a limited scale, is consumed, preventing the server from operating prop-
erly (such as preventing a web server from serving web pages to visitors).

Why do threat actors build and launch these kinds of attacks? There are a number
of reasons, including

 • To extort money from businesses. A large-scale attack against a well-known
target is particularly effective for extortion; a threat actor can send an email
to hundreds of companies saying something like: “Did you see the news about

thousands of
hijacked devices

tens or
hundreds of
large public
servers

target

botnet controller

step 1

step 2

step 3

Figure 21-6 A DDoS reflection attack

Chapter 21 Security: A Broader Sweep574

the big DDoS attack? That was me. If you do not pay me (some large amount
of money), you will be next.” If the targeted company perceives it has fewer
resources and skills than the well-known target, it may pay rather than trying
to defend itself against such a large attack.

 • To make a political point. Some attacks are targeted at organizations that the
threat actor disagrees with politically, such as a company failing to support a
specific cause, a rival political party, etc.

 • To bring down a competitor. Some threat actors sell the service of taking down
a rival’s website for some period of time, in order to embarrass the company or
drive users to a competitor.

 • To distract the security team at a company while some other attack is occurring.
DDoS attacks are often a useful feint to distract the corporate security team while
some form of back door or other vulnerability is created in the victim’s network.

 • Because they can. Some people just seem to enjoy wreaking havoc, or they
believe it is the only way they will ever become famous.

There are a number of ways to defend systems against DDoS attacks, many of
which can (and should) be used in parallel.

Reflection, Amplification, and Burner Attacks

Why is the indirection off a public server used, rather than using the botnet to
attack targets directly? There are generally three reasons. First, servers designed
to support large-scale public services, like DNS and NTP, are generally well-
connected, high-powered systems. In fact, these are often multiple systems oper-
ating behind a single anycast address; such servers will be able to generate a lot
more traffic than a collection of hosts connected at the edge of the Internet, and
often represent services able to amplify the attack. In an amplification attack, the
attacker sends a small request that will result in a large response, directing the
response to the victim. Second, these services are not often blocked; since they are
large, publicly known services, and normally crucial to the proper operation of
the Internet as a whole, they are normally given a “special pass” when it comes
to any sort of packet filter. Third, if the actual botnet devices are used, their use
reveals their locations to the device and/or network being attacked, as well as the
upstream provider to which the systems within the botnet are connected. Once
their locations have been revealed, they are often blocked, or some form of miti-
gation takes place, making the devices used in a direct attack much less useful
in future attacks. Direct attacks are sometimes called burner attacks because of
how they reveal the botnet itself; the resources have been outed and hence burned.

The Solution Space 575

Modifications to Host Operating Systems
Some modifications can be made to host operating systems that will allow the server
to withstand the traffic of a DDoS attack while continuing to provide service (though
perhaps more slowly). These modifications primarily relate to making more
resources available, closing incomplete connection requests more quickly, more
quickly aging out cached information that is not currently being used, and other
measures.

Blocking Half-Open and Malformed Sessions
Server protocol implementations, and even (to some degree) on-edge routers, can
block half-open and malformed sessions. A normal Transmission Control Protocol
(TCP) session setup has multiple steps:

 1. The client requests a connection by sending a synchronize (SYN) packet to the
server.

 2. The server replies with an acknowledgment of the connection request
(SYN-ACK).

 3. The client acknowledges receipt of the SYN-ACK with an ACK; the three-way
handshake is complete, and data can be transmitted over the session.

In some TCP DDoS attacks, the client will send the SYN but never acknowledge
the SYN-ACK. This is called a half-open session. Open ports represent consumed
resources on the server while costing the attacker very little. Many routers and state-
ful packet inspection devices can drop half-open TCP sessions.

Another option in the case of TCP-based DDoS attacks is for the server to push
processing work back onto the systems used in the attack. One way to do this is to
allow the server to respond to TCP SYN messages with a malformed SYN-ACK.
If the client is running a well-designed, unmodified TCP implementation, this will
cause the system used in the attack to spend processing and memory resources
reporting the error back to the server. This additional load will reduce the amount of
bandwidth and processing power the botnet has available to pursue the attack.

Very few of these responses will work as responses to attacks based on sessionless
transport protocols, such as the User Datagram Protocol (UDP).

Rate Limiting
Many operating systems offer the ability to limit the number of incoming connec-
tion requests over a specific time scale (usually something like x hundred/thousand
connection requests per second). Some network devices extend this concept to con-
trol plane protection, which limits the rate at which information is transmitted from

Chapter 21 Security: A Broader Sweep576

the data plane into the control plane for processing. These schemes do save resources
but often at a cost: both good and bad traffic are dropped. Schemes may be applied
to drop just bad traffic, but defining bad traffic is difficult. There is no evil bit in the
IP packet.

Spreading Traffic across Multiple Servers
For operators with a very large (or dispersed) edge, it is possible to use routing con-
trols to spread the DDoS traffic among as many entry points into the network as
possible. For instance, a 1T attack, if spread across 1,000 servers/network edge entry
points, becomes a 1k data stream at each server/entry point, which can be ignored.
Figure 21-7 is used to illustrate.

In Figure 21-7, AS65000 has six entry points, each feeding a separate server (or set
of servers).

Assume the attacker has IoT devices scattered throughout AS65002 that are being
used to launch an attack. Due to policies within AS65002, the DDoS attack streams are
forwarded into AS65001, and thence to A and B. It would be easy to shut down these
two links, forcing the traffic to disperse across five entries rather than two (B, C, D, E,
and F). If you split the traffic among five entry points, it may be possible to eat the traf-
fic. Each flow is now less than one-half the size of the original DDoS attack, perhaps
within the range of the servers at these entry points to discard the DDoS traffic.

AS65000

AS65001

AS65002

AS65003

AS65004

AS65005A

G

B C

D

E

F

botnet

Figure 21-7 Dispersing a DDoS attack

The Solution Space 577

However, this kind of response plays into the attacker’s hand, as well. Now
any customer directly attached to AS65001, such as G, will need to pass through
AS65002, from whence the attacker has launched the DDoS, and enter into the same
five entry points. How happy do you think the customer at G would be in this situa-
tion? The most likely answer is not very.

Is there another option? Instead of shutting down these two links, it would
make more sense to try to reduce the volume of traffic coming through the links
and leave them up. To put it more shortly, if the DDoS attack is reducing the total
amount of available bandwidth you have at the edge of your network, it does not
make a lot of sense to reduce the available amount of bandwidth at your edge in
response. What you want to do, instead, is reapportion the traffic coming in to
each edge so you have a better chance of allowing the existing servers to discard the
DDoS attack.

One possible solution is to prepend the Autonomous System (AS) path of the any-
cast address being advertised from one of the service instances. Here, you could add
one prepend to the route advertisement from C and check to see if the attack traffic is
spread more evenly across the three sites. However, this isn’t always an effective solu-
tion. Further, if this is an anycast service, the address space cannot be broken up into
smaller bits. So what else can be done?

There is a way to do this with the Border Gateway Protocol (BGP): using com-
munities to restrict the scope of the routes being advertised by A and B. For instance,
you could begin by advertising the routes to the destinations under attack toward
AS65001 with the NO_PEER community. Given that AS65002 is a transit AS (assume
it is for this exercise), AS65001 would accept the routes from A and B but would
not advertise them toward AS65002. This means G would still be able to reach the
destinations behind A and B through AS65001, but the attack traffic would still be
dispersed across five entry points, rather than two. There are other mechanisms you
could use here; specifically, some providers allow you to set a community telling them
not to advertise a route toward a specific AS, whether the AS is a peer or a customer.
You should consult with your provider about this, as every provider uses a different
set of communities, formatted in slightly different ways; your provider will probably
point you to a web page explaining its formatting.

If NO_PEER does not work, it is possible to use NO_ADVERTISE, which blocks
the advertisement of the destinations under attack to any of AS65001’s connections
of whatever kind. G may well still be able to use the connections to A and B from
AS65001 if it is using a default route to reach the Internet at large.

It is possible to automate this reaction through a set of scripts, but as always, it is
important to keep a short leash on such scripts. Humans need to be alerted to either
make the decision to use these communities or to continue using these communities;
it is too easy for a false positive to lead to a real problem.

Chapter 21 Security: A Broader Sweep578

Filtering Unroutable Addresses
Since (at least some) attack traffic is originated from unused and/or unroutable
address space (called bogon routes), filtering these routes can be useful in blocking
some amount of DDoS attack traffic.

Unicast Reverse Path Forwarding (uRPF)
Figure 21-8 is used to explain uRPF filters.

Assume A is infected with a virus, making it part of a botnet; at some point, the
host is going to be configured to send some stream of packets to a public server, which
will then be reflected to a target machine. The botnet could instruct the host to use its
actual address, but this will not work for some forms of attack. For instance, a DNS
server will respond to the source address in the packet containing the DNS request.

The preferred method for an attacker is this: instruct A to use a spoofed, or
hijacked, address. For instance, the botnet controller may instruct A to use an address
in 2001:db8:3e8:100::/64 address space because C is the attack’s target.

There is a somewhat simple way for B to block this spoofed traffic. When switch-
ing traffic, B can look up the route to the source address of the packet being switched.
If the source address is

 • Not reachable, the packet should be dropped; this is loose uRPF.

 • Reachable only through some interface other than the one the packet was
received on, drop the packet; this is strict uRPF.

If B is configured with strict uRPF, at least on the ports to which customers are
connected (such as the port that A is connected to), then traffic sourced from A, with
B’s source address, would be dropped.

A

C

B D

2001:db8:3e8:100::/64

20
01

:d
b8

:3
e8

:1
01

::/
64

Figure 21-8 Unicast reverse path forwarding filters

The Solution Space 579

If uRPF can prevent many forms of reflection DDoS attacks, why is it not con-
figured on every port? Strict uRPF does not work in all situations; there are many
legitimate reasons why a packet may not be entering the same interface the router
would use to reach the source address. The primary reason for this is dual-homing
situations, where the provider installs just one route to the destination, but packets
are transmitted along both routes by the actual hosts. It is also difficult to implement
uRPF in a way that does not impact the performance of very high-speed links.

Blocking a DDoS Upstream
One of the problems with a large-scale DDoS attack is that your entire upstream link
can be consumed in the attack. One solution is to signal your upstream provider to
block the DDoS flows. Flowspec can be used to carry packet-level filter rules in BGP.
The general idea is this: you send a set of specially formatted communities to your
provider, who then automagically uses those communities to create filters at the
inbound side of your link to the Internet. There are two parts to the flowspec encod-
ing, as outlined in RFC5575bis: the match rule and the action rule. The match rule is
encoded as shown in Figure 21-9.

There are a wide range of conditions you can match on. The source and des-
tination addresses are pretty straightforward. For the IP protocol and port num-
bers, the operator sub-TLVs allow you to specify a set of conditions to match on,
and whether to AND the conditions (all conditions must match) or OR the con-
ditions (any condition in the list may match). Ranges of ports, greater than, less

length type

1 prefix length prefix

prefix length prefix2

3

4

5

6

operator 1 operator 2 operator n

operator 1 operator 2 operator n

operator 1 operator 2 operator n

operator 1 operator 2 operator n

destination prefix

source prefix

IP Protocol

Port

Destination Port

Source Port

Figure 21-9 Flowspec encoding

Chapter 21 Security: A Broader Sweep580

than, greater than or equal to, less than or equal to, and equal to are all supported.
Fragments, TCP header flags, and a number of other header information can be
matched on, as well.

Once the traffic is matched, what do you do with it? There are a number of rules,
including

 • Control the traffic rate in either bytes per second or packets per second

 • Redirect the traffic to a VRF

 • Mark the traffic with a particular DSCP bit

 • Filter the traffic

If you think this must be complicated to encode, you are right. This is why most
implementations allow you to set pretty simple rules, and handle all the encoding
bits for you. Given flowspec encoding, you should just be able to detect the attack,
set some simple rules in BGP, send the right “stuff” to your provider, and watch the
DDoS go away. If you have been in network engineering since longer than “I started
yesterday,” you should know by now—nothing is ever this simple.

If you do not see a tradeoff, you have not looked hard enough.

First, from a provider’s perspective, flowspec is an entirely new attack surface.
You cannot let your customer just send you whatever flowspec rules it likes. For
instance, what if your customer sends you a flowspec rule blocking traffic to one
of your DNS servers? Or, perhaps, to one of its competitors? Or even to its own
BGP session? Most providers, to prevent these types of problems, will apply any
flowspec-initiated rules to just the port connecting to your network directly. This
protects the link between your network and the provider, but there is little way to
prevent abuse if the provider allows these flowspec rules to be implemented deeper
in its network.

Second, filtering costs money. This might not be obvious at a single link scale, but
when you start considering how to filter multiple gigabits of traffic based on deep
packet inspection sorts of rules—particularly given the ability to combine a number
of rules in a single flowspec filter rule—filtering requires a lot of resources during
the actual packet switching process. There is a limited number of such resources on
any given packet processing engine (ASIC) and a lot of customers who are likely
going to want to filter. Since filtering costs the provider money, it is most likely going
to charge for flowspec, limit which customers can send it flowspec rules (generally
grounded in the provider’s perception of the customer’s cluefulness), and even limit
the number of flowspec rules that can be implemented at any given time.

The Solution Space 581

Using a DDoS Scrubber Appliance or Service
A number of appliances will use local information, along with analytics gathered
from a wide range of networks, to discover and block DDoS-specific flows. These
appliances can be deployed inside your network, in front of or behind your edge
router, as a security device. DDoS protection services can scrub your inbound traffic,
as well; Figure 21-10 illustrates one way in which these services work.

There are five steps in Figure 21-10:

 1. A host, A, requests the IP address for some domain, say example.com, from a
DNS server.

 2. The DNS server responds with an IP address pointing to the DDoS scrubber
service, hosted in a content or service provider’s network.

 3. The host sends its traffic to the scrubber service at B.

 4. B removes any DDoS traffic, leaving just the goodput, and then tunnels the
remaining traffic across the Internet to the original server, C.

 5. The server responds to the request as normal, sending the information directly
back to the requesting host.

Any device that is part of a botnet will also receive the scrubber’s address as the
correct one to reach the service under attack. The scrubber service is normally posi-
tioned in a network able to consume many gigabits of traffic, remove any traffic that
appears to be part of a DDoS attack, and send the remaining traffic on to the original

A

B

C

2001:db8:3e8:100::1/64

2001:db8:3e8:101::1/64

DNS server

1
2

3
4

5

Figure 21-10 DDoS scrubbing service operation

http://example.com

Chapter 21 Security: A Broader Sweep582

server. Such scrubbing services go far beyond examining the traffic, using near-real-
time information about active botnets, information from DNS queries, and other
factors to determine which traffic is goodput and which is part of the DDoS attack.

The OODA Loop as a Security Model

The OODA loop was originally developed by Colonel John Byrd of the United States
Air Force to help fighter pilots manage decisions quickly in life-or-death situations.
While network security might seem to be far outside the realm of military aircraft,
the OODA loop has proven useful in a number of different security-related (and
more generally reaction-related) situations. The OODA loop consists of four steps:

 • Observe

 • Orient

 • Decide

 • Act

The four steps begin with the letters O, O, D, and A—hence the OODA loop.
 Figure 21-11 illustrates.

Figure 21-11 The OODA loop

The OODA Loop as a Security Model 583

If you have ever heard the expression you need to get inside the loop, this comes
from the OODA loop. The person who has the “tightest loop,” or who can move
through the loop the fastest, will win the contest. In terms of network security, you
must be able to get inside the threat actor’s loop to get ahead of him and to find ways
to stop the attack in progress.

Each of the four steps deserves a closer look.

Observe

What should you observe, and where should you observe it? In some cases, this is the
most important question to ask and the hardest to answer. Should you measure the
average traffic flow across specific points in the network? The average jitter across
specific points? The average delay? The number of routes in the routing table? The
rate at which the routing table changes?

The right answer is to measure everything that will give you a good feel for the day-to-
day operation of the network—with some caution. There may seem to be little harm in
acquiring telemetry data from every device and every part of the network possible, and
throwing the information away after a short period of time if it does not prove useful.
The realistic answer, however, is you must choose your observation points carefully, after
much trial and error, and after much thought about traffic flows, failure modes, etc.

There is a second point hidden in observe, however: how do you know what you’re
observing unless you record? As the old saying goes, “if you didn’t write it down, it
didn’t happen”—and nothing is truer than this in the world of observation. There’s
no point in knowing what’s happening right now unless you know what has hap-
pened in the past.

Orient

Once you’ve made a set of observations, you need to decide what it is you’re observ-
ing. Consider the simple optical illusion shown in Figure 21-12.

In Figure 21-12, there are two sets of squares, one of which is imposed on a back-
ground of geometric lines. On the right, the squares are actually square. On the left,
however, the squares do not look square; they appear to be distorted. What you see is
often determined by the context as much as what is there. Observing, therefore, is a
skill you can develop over time. Observing a network to understand its normal state
is like any other observational skill. How can engineers develop observation skills?

First, understand the operation of the network, protocols, and applications at
a theoretical level. Reaching beyond the command line, and into the actual opera-
tion of the devices in the network—understanding how a router forwards packets, or
how OSPF builds and processes packets, can make a huge difference in your ability to
orient yourself to what you are observing.

Chapter 21 Security: A Broader Sweep584

Second, learning and applying models is a huge help. The reason you probably
have trouble with the optical illusion in this figure is the boxes appear close to being
squares, so you immediately think they must be squares. You have a “model of a
square,” in your head, and when you see things close to the model, you try to make
the object fit. So it is important to know a wide array of models into which any
problem can fit—or, in the networking world, a wide array of models you can use to
“see” protocol, application, device, and network operation. Each additional model
you add to your “mental model set” allows you to orient yourself a bit faster.

This entire process is much like orienteering. First, get the map pointing north.
Then, find the features on the map matching your location, and work from there to
the destination, feature by feature. Not orienting the map is failing to separate the
background from the information. Not being able to see the surrounding area is fail-
ing to collect the information necessary to match the map to the reality. Not knowing
the symbols on the map is failing to have enough mental models to make the match
between map and reality happen.

Decide

The worst time to make any sort of decision is at 2 a.m., in the middle of a network
outage, when you are under pressure to get the business back up and running. But
given network outages never happen at a convenient time, how can you avoid making
these kinds of decisions?

Figure 21-12 An observational illusion

The OODA Loop as a Security Model 585

You can decide what you are going to decide before you must decide.
This might sound a little roundabout; perhaps an example from the world of self-

defense training classes would be helpful. When is the best time to decide where you
are going to go if someone attacks you? Before he does so, or while he is doing so?
Defensive driving is no different: it is always best to know where you would go if the
car in front of you suddenly spins out, or the wheels fall off, or some other thing you
might not expect to happen.

This pre-decision process can be very helpful in a network environment. For
instance:

 • Where would you put a filter to block this particular type of traffic?

 • Which parallel links would you remove to kill off the positive feedback loop
keeping your routing protocol from converging?

 • What servers can you shut down for a time while you are trying to figure out
why the data center fabric has become so hot all of a sudden?

All of these decisions are choices you can make before the action starts—before
you have to decide to do something. In other words, decide what you need to do so
that when it comes time to do it, you will have a plan in place.

Act

It should be easy to act once you have observed the situation, oriented yourself to
what is happening, and considered the preplanned decisions you made before the 2
a.m. call that the network is down—but it often harder to act than it should be.
Why?

First, it is often hard to believe “this is actually happening.” This is a common
problem in self-defense situations; when you first encounter a problem, you do not
want to adjust to the new situation. Rather, you would rather just ignore the problem
and “move on with life.” This is Scrooge, in A Christmas Carol, saying to Marley,
“there is more gravy than grave about you.” In the real world, however, this can be a
very costly way to react.

Second, a storm of doubts will naturally accompany the actual moment of deci-
sion. Did you really observe this particular attack? What if you are wrong—will the
consequences be worse than the attack itself?

The answer to both of these problems lies in the OODA loop itself. If you have
staked out observation points, if you have oriented yourself against the background
information you have, if you are following premade decisions made in more rational
times, then acting is the right next step to take.

Hone your skills, know your network, know your monitoring points, know what you
are looking at, know your plan, and do it. Make your plan, and then trust your plan.

Chapter 21 Security: A Broader Sweep586

Final Thoughts on Security

Security is not simple; it is a broad field with a lot of potholes you can step in to,
often without realizing you have, in fact, just stepped into a pothole. The castle walls
of firewalls and demilitarized zones (DMZs) are in the distant past. Cannons have
long since been invented, and the castle walls of the older world of network engi-
neering are just testaments to a time long gone. Threat actors are everywhere, so
defense must be everywhere, as well.

This chapter has not considered every possible defense, including such popular
topics as microsegmentation and white listing, but it has described a set of helpful
mental tools for understanding the world of network security.

Further Reading

Bacher, Martin, Robert Raszuk, Susan Hares, Danny R. McPherson, and Christoph
Loibl. “Dissemination of Flow Specification Rules.” Internet-Draft. Internet
Engineering Task Force, February 2017. https://datatracker.ietf.org/doc/html/
draft-hr-idr-rfc5575bis-03.

CNN and Mary Kay Mallonee. “Hackers Publish 20,000 FBI Employees’ Contact
Information.” CNN. Accessed April 23, 2017. http://www.cnn.com/2016/02/08/
politics/hackers-fbi-employee-info/index.html.

Czyz, J., M. Luckie, M. Allman, and M. Bailey. “Don’t Forget to Lock the Back Door!
A Characterization of IPv6 Network Security Policy.” In Network and Dis-
tributed Systems Security (NDSS), 2016. https://www.caida.org/publications/
papers/2016/dont_forget_lock/.

“Data Breach Affects 80,000 UC Berkeley Faculty, Students and Alumni.” Text.Article.
FoxNews.com, February 28, 2016. http://www.foxnews.com/tech/2016/02/28/
data-breach-affects-80000-uc-berkeley-faculty-students-and-alumni.html.

Dobbins, Roland, Robert Moskowitz, Nik Teague, Liang Xia, Kaname Nishizuka,
Stefan Fouant, and Daniel Migault. “Use Cases for DDoS Open Threat Sig-
naling.” Internet-Draft. Internet Engineering Task Force, March 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-dots-use-cases-04.

“EANS-Adhoc: FACC AG / UPDATE: FACC AG—Cyber-Fraud,” January 20, 2016.
http://www.facc.com/en/content/view/full/3958.

Ferguson, Paul. Network Ingress Filtering: Defeating Denial of Service Attacks
Which Employ IP Source Address Spoofing. Request for Comments 2827. RFC
Editor, 2000. doi:10.17487/rfc2827.

https://datatracker.ietf.org/doc/html/draft-hr-idr-rfc5575bis-03
https://datatracker.ietf.org/doc/html/draft-hr-idr-rfc5575bis-03
http://www.cnn.com/2016/02/08/politics/hackers-fbi-employee-info/index.html
http://www.cnn.com/2016/02/08/politics/hackers-fbi-employee-info/index.html
https://www.caida.org/publications/papers/2016/dont_forget_lock/
https://www.caida.org/publications/papers/2016/dont_forget_lock/
http://FoxNews.com
http://www.foxnews.com/tech/2016/02/28/data-breach-affects-80000-uc-berkeley-faculty-students-and-alumni.html
http://www.foxnews.com/tech/2016/02/28/data-breach-affects-80000-uc-berkeley-faculty-students-and-alumni.html
https://datatracker.ietf.org/doc/html/draft-ietf-dots-use-cases-04
https://datatracker.ietf.org/doc/html/draft-ietf-dots-use-cases-04
http://www.facc.com/en/content/view/full/3958

Further Reading 587

Gorrell, Mike. “Salt Lake County Data Breach Exposed Info of 14,200 Peo-
ple.” Salt Lake Tribune. Accessed April 23, 2017. http://www.sltrib.com/
home/3705923-155/data-breach-exposed-info-of-14200.

Herley, Cormac. “Unfalsifiability of Security Claims.” Proceedings of the National
Academy of Sciences of the United States of America 113, no. 23 (June 7,
2016): 6415–20. doi:10.1073/pnas.1517797113.

“How Does Micro-Segmentation Help Security? Explanation.” SDxCentral, March
8, 2016. https://www.sdxcentral.com/sdn/network-virtualization/definitions/
how-does-micro-segmentation-help-security-explanation/.

Khandelwal, Swati. “World’s Largest 1 Tbps DDoS Attack Launched from 152,000
Hacked Smart Devices.” Hacker News. Accessed April 25, 2017. http://
thehackernews.com/2016/09/ddos-attack-iot.html.

Krupp, Johannes, Michael Backes, and Christian Rossow. “Identifying the Scan
and Attack Infrastructures Behind Amplification DDoS Attacks.” In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, 1426–37. CCS ’16. New York, NY, USA: ACM, 2016.
doi:10.1145/2976749.2978293.

Leary, Judy. “IRS Data Breach Grows.” IdentityForce®, February 29, 2016. https://
www.identityforce.com/blog/irs-data-breach-more-taxpayers-affected.

———. “UCF Data Breach.” IdentityForce, February 8, 2016. https://
www.identityforce.com/blog/ucf-data-breach-affects-63000.

———. “Verizon Enterprise Data Breach.” IdentityForce, March 25, 2016. https://
www.identityforce.com/blog/verizon-enterprise-data-breach.

Marsh, Jennifer. “How to Detect and Analyze DDoS Attacks Using Log Analysis.” Log-
gly, March 2, 2016. https://www.loggly.com/blog/how-to-detect-and-analyze-
ddos-attacks-using-log-analysis/.

McKinney, Matt. “Data Breach Exposes Information on More than 3,000 TCC
Employees.” Virginian-Pilot. Accessed April 23, 2017. http://pilotonline.
com/news/local/crime/data-breach-exposes-information-on-more-than-tcc-
employees/article_6ab72a2f-52a0-533e-8060-a2d245c7f151.html.

Mortensen, Andrew, Flemming Andreasen, Tirumaleswar Reddy, Christopher
Gray, Rich Compton, and Nik Teague. “Distributed-Denial-of-Service Open
Threat Signaling (DOTS) Architecture.” Internet-Draft. Internet Engi-
neering Task Force, October 2016. https://datatracker.ietf.org/doc/html/
draft-ietf-dots-architecture-01.

Mortensen, Andrew, Robert Moskowitz, and Tirumaleswar Reddy. “Distrib-
uted Denial of Service (DDoS) Open Threat Signaling Requirements.”

http://www.sltrib.com/home/3705923-155/data-breach-exposed-info-of-14200
http://www.sltrib.com/home/3705923-155/data-breach-exposed-info-of-14200
https://www.sdxcentral.com/sdn/network-virtualization/definitions/how-does-micro-segmentation-help-security-explanation/
https://www.sdxcentral.com/sdn/network-virtualization/definitions/how-does-micro-segmentation-help-security-explanation/
http://thehackernews.com/2016/09/ddos-attack-iot.html
http://thehackernews.com/2016/09/ddos-attack-iot.html
https://www.identityforce.com/blog/irs-data-breach-more-taxpayers-affected
https://www.identityforce.com/blog/irs-data-breach-more-taxpayers-affected
https://www.identityforce.com/blog/ucf-data-breach-affects-63000
https://www.identityforce.com/blog/ucf-data-breach-affects-63000
https://www.identityforce.com/blog/verizon-enterprise-data-breach
https://www.identityforce.com/blog/verizon-enterprise-data-breach
https://www.loggly.com/blog/how-to-detect-and-analyze-ddos-attacks-using-log-analysis/
https://www.loggly.com/blog/how-to-detect-and-analyze-ddos-attacks-using-log-analysis/
http://pilotonline.com/news/local/crime/data-breach-exposes-information-on-more-than-tcc-employees/article_6ab72a2f-52a0-533e-8060-a2d245c7f151.html
http://pilotonline.com/news/local/crime/data-breach-exposes-information-on-more-than-tcc-employees/article_6ab72a2f-52a0-533e-8060-a2d245c7f151.html
http://pilotonline.com/news/local/crime/data-breach-exposes-information-on-more-than-tcc-employees/article_6ab72a2f-52a0-533e-8060-a2d245c7f151.html
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-dots-architecture-01

Chapter 21 Security: A Broader Sweep588

Internet-Draft. Internet Engineering Task Force, March 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-dots-requirements-04.

Muncaster, Phil. “Every Voter in Philippines Exposed in Mega Hack.” Infosecu-
rity Magazine, April 8, 2016. https://www.infosecurity-magazine.com/news/
every-voter-in-philippines-exposed/.

“1 Billion Yahoo Accounts Compromised in Data Breach | IdentityForce.” Accessed
April 23, 2017. https://www.identityforce.com/blog/one-billion-yahoo-
accounts-compromised-new-data-breach.

“Premier Healthcare Faces Possible Data Breach That Could Affect 200,000 Patients.”
Healthcare IT News, March 9, 2016. http://www.healthcareitnews.com/news/
premier-healthcare-faces-possible-data-breach-could-affect-200000-patients.

Richter, Andy, and Jeremy Wood. Practical Deployment of Cisco Identity Services
Engine (ISE): Real-World Examples of AAA Deployments. 1st edition.
Waltham, MA: Syngress, 2015.

Rigney, Carl. RADIUS Accounting. Request for Comments 2866. RFC Editor, 2000.
doi:10.17487/rfc2866.

Rubens, Allan, Carl Rigney, Steve Willens, and William A. Simpson. Remote Authen-
tication Dial In User Service (RADIUS). Request for Comments 2865. RFC Edi-
tor, 2000. doi:10.17487/rfc2865.

Santuka, Vivek, Premdeep Banga, and Brandon James Carroll. AAA Identity Man-
agement Security. 1st edition. Indianapolis, IN: Cisco Press, 2010.

“Securing Apache, Part 8: DoS & DDoS Attacks.” Open Source for You, April 1, 2011.
http://opensourceforu.com/2011/04/securing-apache-part-8-dos-ddos-attacks/.

Siciliano, Robert. “Yahoo Data Breach: Almost 500 Million Affected.” IdentityForce,
September 22, 2016. https://www.identityforce.com/blog/yahoo-data-breach-
almost-500-million-affected.

Simeonovski, Milivoj, Giancarlo Pellegrino, Christian Rossow, and Michael Backes.
“Who Controls the Internet?: Analyzing Global Threats Using Property Graph
Traversals.” In Proceedings of the 26th International Conference on World
Wide Web, 647–56. WWW ’17. Republic and Canton of Geneva, Switzer-
land: International World Wide Web Conferences Steering Committee, 2017.
doi:10.1145/3038912.3052587.

“Understanding and Mitigating NTP-Based DDoS Attacks.” Cloudflare Blog, Jan-
uary 9, 2014. http://blog.cloudflare.com/understanding-and-mitigating-ntp-
based-ddos-attacks/.

Vacca, John R., ed. Network and System Security. 2nd edition. Waltham, MA:
 Syngress, 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-dots-requirements-04
https://datatracker.ietf.org/doc/html/draft-ietf-dots-requirements-04
https://www.infosecurity-magazine.com/news/every-voter-in-philippines-exposed/
https://www.infosecurity-magazine.com/news/every-voter-in-philippines-exposed/
https://www.identityforce.com/blog/one-billion-yahoo-accounts-compromised-new-data-breach
https://www.identityforce.com/blog/one-billion-yahoo-accounts-compromised-new-data-breach
http://www.healthcareitnews.com/news/premier-healthcare-faces-possible-data-breach-could-affect-200000-patients
http://www.healthcareitnews.com/news/premier-healthcare-faces-possible-data-breach-could-affect-200000-patients
http://opensourceforu.com/2011/04/securing-apache-part-8-dos-ddos-attacks/
https://www.identityforce.com/blog/yahoo-data-breach-almost-500-million-affected
https://www.identityforce.com/blog/yahoo-data-breach-almost-500-million-affected
http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/
http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/

Review Questions 589

Vempati, Jagannadh, Mark Thompson, and Ram Dantu. “Feedback Control for
Resiliency in Face of an Attack.” In Proceedings of the 12th Annual Conference
on Cyber and Information Security Research, 17:1–17:7. CISRC ’17. New York,
NY: ACM, 2017. doi:10.1145/3064814.3064815.

White, Russ, and Bora Akyol. Considerations in Validating the Path in BGP. Request
for Comments 5123. RFC Editor, 2008. doi:10.17487/RFC5123.

Review Questions

 1. Find a real-life data breach; identify the threat actor, the exploit, the vulnera-
bility, the assets, and the risks.

 2. While many engineers argue validating the path calculated through routing
will improve the security of the traffic flowing over the path, there appear to
be a number of problems with this approach, some of which are outlined in
RFC5123. Explain what you think is the relationship between securing routing
and securing traffic flowing through the network.

 3. RADIUS is called out as a form of AAA in the text; find one other form of
AAA and briefly describe it.

 4. What is an intrusion detection system? Describe what it does.

 5. What is a data exfiltration detection system? Describe what it does.

 6. If unicast RPF would be effective at blocking attacks in the global Internet,
why do so few providers offering transit connectivity in the global Internet
deploy it?

This page intentionally left blank

591

Chapter 22

Network Design Patterns

Learning Objectives

When you are finished reading this chapter, you should understand:

 0 The relationship between business problems and network design

 0 The different network ownership models

 0 How network investment cycles relate to waste

 0 What a choke point is and how it is used in network design

 0 How hierarchical design is used

 0 Common network topologies

 0 The concepts of planar, nonplanar, and regular topologies

After “yet another outage,” a large service provider called on its primary vendor with
a demand: send these 16 (specific, by name) people to our office for one week so they
can redesign our network and prevent this kind of outage from ever happening
again. On hearing of the plan, one of the 16 engineers chosen for the “field trip” con-
vinced the vendor’s management not to send such a large group of designers in to
rebuild this network. The reason? When you get 16 designers in a room, what you
will have is 1 person drawing on the white board, and the other 15 erasing.

This story encapsulates one of the primary truths about network design: there is
no one right way to design a network. Of course, there are better designs and worse
designs, but the protocols and systems that networks are built out of are designed

Chapter 22 Network Design Patterns592

to be very forgiving in the face of imperfect conditions. If they were not, networks
would be very fragile, failing completely with the first network device or link failure.
So, given you can pretty much “slap stuff together” and “make it work,” what makes
a design better or worse? This chapter will focus on answering this question.

Getting to the answer, however, will require working through a range of ideas and
concepts, beginning with the problem space itself.

The Problem Space

What problem are designers trying to solve? While this might seem like an obvious
question, it is far too often forgotten in the design process. What generally happens
is this:

 1. Engineers are given a set of objectives to fulfill.

 2. A rough sketch is made of two or three possible solutions.

 3. These two or three solutions are considered and compared at a technical level.

 4. A solution is chosen, and the equipment and configurations are determined
and deployed.

This is not a bad process, necessarily; rather, this process tends to take some
points that should be considered in every step and push them into a “corner.” Once
the first stage is passed, it is never revisited. Just like security is often left to the last,
the larger questions of network design are often pushed to the first part of the pro-
cess, and forgotten about when the real “geek-level stuff” of selecting equipment and
building configurations arrives. It is better to use the basic problem set as a backdrop
in every stage of the design.

Solving Business Problems

The network exists to solve business and real-world problems. When you are in the
thick of choosing which forwarding engine is better, or which network software
package has the greatest number of features, what is the fundamental question that
network design needs to answer—the one that should be kept in mind at every stage
of the design process?

What is the least expensive and most flexible way to provide transport for the
applications required to solve a real-world problem?

The Problem Space 593

This single question has many components, of course; it is worth looking at some
of them in more detail.

What does the least expensive really mean? This is actually a difficult question
with many different facets—and any answer given is probably the result of a good
deal of crystal ball gazing and reliance on assumptions. Some expenses that engi-
neers often remember to include are

 • Hardware: The cost of the actual, physical devices, cabling, power, racks, and
other gear required to physically build the network. This should include the
cost of physical devices to connect the network through providers, for instance,
spare equipment and tools.

 • Software: The cost of licenses for the network operating system, routing stack,
monitoring tools, and any ongoing maintenance costs.

 • Services: The cost of having a technical assistance center to call, design
 services, offsite backup services, etc.

These kinds of costs, both in terms of capital expenses (CAPEX) and operational
expenses (OPEX) are generally well understood, even if they are difficult to predict.
A number of costs, however, are not generally included in any sort of planning, nor
are they even well understood.

Many of these can be described as different forms of opportunity costs, and they
often revolve around difficult operations and network modification driven by design
complexity. Specifically, during the time it takes to bring the network up, modify the
network, or troubleshoot and repair the network when there is a failure, the network
is either not operational or is not fully supporting the business.

The key problem with opportunity costs is how difficult they are to measure. Con-
tent providers, for instance, tend to have very good systems for measuring the impact
of a less than optimal network, because it is actually possible to translate slower
page speed (for instance) to reduced engagement or reduced product purchases (the
conversion rate). The key is to learn the specific business that the network you are
building supports, and find some way to measure the impact of a network running in
a less than optimal way. This kind of feedback comes back to the network engineer-
ing team as a set of unquantifiable complaints far too often. As a network engineer,
you cannot wait for your customers to complain to find creative ways to measure
how effective the network is at supporting the business. You must be proactive in this
area, especially if you expect to convert the network from a cost center into a strate-
gic asset for the company.

What does the most flexible really mean? Networks tend to be sold as
 “multiple-use systems,” meaning they can support any application and any change

Chapter 22 Network Design Patterns594

in the business. In real life, however, this is rarely true. There are two enemies of flex-
ibility in network design: ossification and the forklift.

Ossification is the process of hardening (petrification) that turns wood, bones,
and even sacks of flour into stone. What was originally a pliable, changeable object
becomes something difficult to modify, and prone to massive, degenerative, and
often unexpected failure states. Networks ossify over time, as well, in several ways:

 • New systems are layered on top of old, creating interaction surfaces, which are
difficult to understand, difficult to troubleshoot, and difficult to replace.

 • The network is successively tuned to meet the requirements of an ever-
expanding array of applications and requirements. On the other hand, as
older applications and requirements are removed, the corresponding tweaks
and nerd knobs are not removed from the network. The resulting accretion
of configuration often goes undocumented, and also creates a lot of state and
unnecessary interaction surfaces in the network.

 • Network architectures are often built at the intersection of vendor designs and
products, “industry best practices,” and business needs. Vendors are (under-
standably) constantly trying to build future sales into current sales, and to con-
vert the entire vertical to their product. At the same time, business leadership is
often out reading reports and articles telling them about the latest trends and
offerings, and then asking, “Why don’t we deploy these?” The result is a cru-
cible of politics, trends, and practical considerations, often resulting in a less
than optimal design, particularly in the area of flexibility.

Ossified systems are generally fragile; while they appear to be “rock solid” from
the outside, they break unexpectedly, and far too easily, in the face of what might
appear to be small amounts of change or pressure.

The forklift is a related but different problem in building flexible networks. The
first half of the forklift problem is the general tendency to build networks out of
appliances containing all the hardware and software in a single appliance; a router
is purchased as a single appliance containing the routing protocols, the forwarding
software and hardware, the power and cooling components, etc. This tie between
the various parts of the system tends to result in strong vertical integration. While
many systems from many different vendors will work together in a significant way,
most vendor-driven appliance-based systems will enable special features and modes
of operation only when their appliances are used in a single vendor environment.

The process of upgrading such systems usually involves a forklift—hence the
industry shorthand a forklift upgrade. To change the control plane architecture, the
entire device must be replaced. If the control plane acts as an integrated whole in

The Problem Space 595

some way, with special features available just on a small range of devices, the entire
network must be forklift upgraded. This is a challenging situation, to say the least.
Networks designed for the maximum flexibility are designed, instead, using some
form of disaggregation. Figure 22-1 illustrates.

Figure 22-1 illustrates a number of different options in terms of network
ownership:

 • If you buy everything needed to build the network, including using vendor-
proprietary extensions to the control plane, then your network is vendor
driven. In this case, if the vendor changes its product architecture, or the
 philosophy behind its control plane in order to support some new network
architecture, then you must change your network design to follow the vendor.

 • You can, instead, buy all your hardware and software from vendors, but use
open-standards-based protocols to interconnect the equipment and build
a network. Theoretically, this should make your network vendor independ-
ent (although it does not always work out this way in real life). When you are
deploying this kind of network, it is important to keep up with new standards,
and whether new features implemented by a single vendor are implemented in
a way that allows routers from multiple vendors to successfully interoperate.

 • In the disaggregated model, you might purchase a network operating system
and hardware from one or more vendors, and rely on an open source (whether
“tweaked” for your network or not) implementation of the routing stack.
There are various other “modes” within this model, as well, such as relying
on an open source network operating system as well as an open source rout-
ing stack, or perhaps relying on an open source network operating system and
creating your own control plane.

 • In the roll your own model, you are just buying hardware from a vendor—and
perhaps you are even giving the vendor a set of standards to build hardware to.

control plane

routing stack

network operating system

hardware

vendor driven

open standards

disaggregated

roll your own

Figure 22-1 Network ownership

Chapter 22 Network Design Patterns596

Note

In the real world, the model that most network operators use might be called old
and moldy, which means you buy your equipment and leave it in place until it falls
apart. This is the “normal” way of managing network growth and management
over time for a lot of operators.

None of these models are as clear cut as Figure 22-1 implies; there are many dif-
ferent gradations between these various models. The important point for you, as
a network engineer, designer, or architect, is to understand there are many other
options than simply purchasing from a vendor. It is important to choose a model that
provides the most value and flexibility for your company, rather than simply relying
on what other companies are doing, or what has been done before.

Figure 22-2 illustrates another problem in the area of flexibility and fit to business
in network design.

Figure 22-2 illustrates company and network size (or capacity) overlaid on top of
one another. Networks, particularly appliance-driven networks, tend to be upgrada-
ble only in large chunks, and often through some form of forklift upgrade. The
business, on the other hand, tends to grow in spurts, with occasional retrenchment.
When the business size and network capability are mismatched—which is almost all
the time in the real world—one of two situations is occurring:

 • The network is undersized, which holds the business back from being able
to support as many customers, or as much operational load; this creates an
opportunity cost.

business size

waste

lost opportunity

network size

Figure 22-2 Waste and lost opportunity in network scaling flexibility

The Problem Space 597

 • The network is oversized, which means money is being spent unnecessarily—
money invested in infrastructure that could have (most likely) been invested in
some other way more profitably. This is another form of opportunity cost.

The more flexible a network design is, the more the network engineering staff will
be able to make the business size and the network capacity track closely. This can
reduce waste and lost opportunity.

Translating Business Requirements into Technical

Understanding the business side and translating business requirements into technical
solutions are two different things. What tools does the network designer have to
apply these business problems to network design? Modularity is the primary tool;
just as nature often places a choke point between complex systems, network design-
ers use choke points to separate complexity from complexity in network designs.
Figure 22-3 illustrates this concept.

The idea behind modularity is to split up a single problem into multiple pieces,
solving each piece separately, and then using a set of connectors to allow information
to flow edge to edge in the overall system. This concept is used almost everywhere in
network engineering; you might recognize at least the following:

 • Layering protocols into functional and topological units; in Day’s RINA
model, there are two protocols, each with two functions, layered on top of one
another. There are a pair of such protocols across each link, between each pair
of hosts, and between each pair of applications.

 • Building layers of virtual topologies on top of a single physical topology. Com-
plexity is controlled by carrying a subset of the topology and reachability
information in each virtual topology, and restricting policy to the destinations
attached to the virtual topology.

module 1

choke point 1

choke point 1

module 2 module 3

Figure 22-3 Modularity

Chapter 22 Network Design Patterns598

 • Breaking up a network into flooding domains in a link state protocol, and
patching the network back together with L1/L2 intermediate systems, or Area
Border Routers. The flooding domain boundary represents the boundary at
which the topology information is summarized, and reachability information
may potentially be.

Information hiding and modularity are closely related concepts. Any time infor-
mation is being hidden, modules are being created. Just considering network design,
modularizing a network can offer a number of solutions for business problems.
Some specific examples:

 • Choke points provide a point at which information can be hidden to control
the scope and speed of state in the control plane. This, in turn, allows the net-
work to scale.

 • Choke points provide a point at which packets must move, providing a conven-
ient place to implement packet forwarding policy, such as Quality of Service
marking, security-focused filtering, etc.

 • If modules can be sorted into “classes,” with each class having repeatable
designs and configurations within the module, then building at least some
parts of the network can be simplified into deploying the right module for a
particular purpose. For instance, if modules 1 and 3 in Figure 22-3 are both
campus networks of a similar size and scope, then they can be built in the same
way, saving design and deployment effort. Repeatable modules also help make
the network scale more closely with the business, as modules can be added or
removed as complete units as needed.

 • Modules can be sorted into “generations,” with newer designs replacing mod-
ules using older modules over time. This can help reduce the impact of the
forklift upgrade problem, and hence allow the network to be more flexible in
the face of business changes.

With all the positive points around modularization, are there negatives? In all
areas of network design, it is important to remember:

If you have not found the tradeoff, you have not looked hard enough.

Although you have probably read this statement several times in this book, it
applies to so many areas of network design and operation, it is well worth repeating.
Several rules of thumb might be helpful.

The Problem Space 599

The first is the size of the modules. If you make the modules too large, you are
(probably) reducing the repeatability, not giving yourself enough places to hide infor-
mation (which harms scaling), and not giving yourself enough places to insert policy
into the network. If you make the modules too small, you reduce the effectiveness of
the information hiding process. Finding the proper size is much like finding porridge
that is just the right temperature—there is no clear-cut answer (or, perhaps a better
answer, how many balloons fit in a bag?).

The second is the optimization tradeoff. Each time you hide information, you
(more than likely) lose some form of optimization in the network. This is a fun-
damental rule, built into network and protocol design just because of the shape of
reality.

The third is using network complexity as your guide in determining where to
place module boundaries. In general, the best rule here is to separate complexity
from complexity. For instance, if you have a large-scale spine and leaf data center
fabric connected to a large partial mesh network core, it is probably best to put them
into two different modules.

What Is a Good Network Design?

Finally, with this background, it is possible to return to the original question this
chapter began by asking: what is a good network design? The first point should be
obvious: it should fulfill the business requirements laid out previously. This means
the network should provide the connectivity needed to run the business at the lowest
practical cost, and it should be easily adaptable to the size and scope of the business.
Flexibility inherently implies scale, as well.

A second point is this: good network designs degrade gracefully, rather than fall-
ing over a cliff. Figure 22-4 illustrates.

Any system that performs well under one set of conditions and fails to adapt to
any change under less than optimal conditions is fragile; it has either ossified, or

rapid degradation
(the cliff)

gradual degradation

Figure 22-4 Network degradation styles

Chapter 22 Network Design Patterns600

it was initially poorly designed. Another term sometimes applied to these sorts of
 systems is Robust Yet Fragile, which means these systems are apparently robust, and
yet truly fragile under the right conditions.

A third point is this: good network designs allow operational staff to quickly find
and repair failures. In other words, good network design interacts with the Mean
Time to Repair (MTTR).

Hierarchical Design

The rules of thumb on how to break up a network into modules are a good start, but
they do not give you an entire picture. While they do give you a good set of ideas
around what the goals of modularization should be, they do not provide a frame-
work grounded in an intentional, systemic view of the network. Hierarchy is one
design pattern that can be overlaid on top of modularization, or rather one pattern
of modularization, and is often used to build large-scale networks. The essential
points of modularization are as follows:

 • Break up the functionality of the network into distinct pieces.

 • Build modules around each piece, or purpose.

 • Connect these modules through a set of special-purpose “interconnection”
modules in a roughly hub-and-spoke topology.

Figure 22-5 is used to consider the basic three-layer hierarchical design model,
which is often used in medium-scale networks.

Module 1 in Figure 22-5 is the network core. The primary—really the only—
function assigned to the core module is to forward traffic as quickly as possible between
distribution layer modules. There should be no control plane policy in this core; there
should only be forwarding policy aimed at differentiated forwarding rules for Quality
of Service and virtualization. This module will tend to be one of the more complex in
terms of transports and equipment, and is also “unique” because there is just one core,
so offsetting simplification in other areas allows the core to remain maintainable.

Modules 2 through 5 are considered the distribution layer. This layer is primarily
responsible for carrying traffic within a region and all control plane policy. Each of
the four modules in this layer should be as similar as possible; the physical configura-
tion, at least, should be completely repeatable within a generation of each module
across the entire network. Standardizing the hardware configuration across all of
the modules in the distribution layer simplifies one part of the problem, allowing the

Hierarchical Design 601

complexity in this layer to reside in control plane policy, which is normally a complex
problem.

Modules 6 through 13 reside in the access layer. Modules in the access layer are
primarily responsible for providing connections into the network. Because of this,
there will likely be many kinds of modules in the access layer. For instance, there may
be one kind of module for supporting campus environments, another for supporting
data center fabrics, and another for supporting Internet and extranet access. Traf-
fic classification and security access should be focused in this layer of the network.
Physical and logical configurations should be as repeatable as possible between mod-
ules of the same kind within the access layer.

An alternate form of hierarchy is the two-layer hierarchy, often used in smaller
networks, illustrated in Figure 22-6.

The two-layer hierarchy appears to be a three-layer hierarchy with the access layer
removed—but there are other subtle changes involved, as well. The aggregation layer,
modules 2 through 5, are primarily responsible for providing connectivity into the
network, as well as packet filtering and classification. Security functions also tend to
be focused in the aggregation layer. As with the three-layer hierarchy, these modules
should be physically and logically repeatable where possible.

The core, as in the three-layer model, is focused on forwarding traffic at high
speed. The missing piece seems to be control plane policy; in the core/aggregation
model, control plane policy is implemented along the edge between the core and
aggregation modules.

1

2
3 4 5

6 7

8 9 10 11
12 13

core

distribution

access

Figure 22-5 A three-tier hierarchical design

Chapter 22 Network Design Patterns602

Figure 22-7 shows an example of a recursively layered hierarchy, often used in very
large-scale networks.

Figure 22-7 illustrates what appears to be a simpler core/aggregation hierarchy.
Looking more closely at module 2 in the aggregation layer, however, exposes an inter-
nal core/aggregation hierarchy, as well. The layer functions are the same; the core
within module 2 (6) is focused on forwarding traffic quickly between the different
aggregation modules (7 through 9) within module 2; the aggregation modules within
module 2 are focused on providing connection, security, and classification; and con-
trol plane policy is imposed at the core/aggregation edge. This may appear to be a
slightly modified version of a three-layer hierarchy, but there are several important
differences:

1

2
3 4 5

core

aggregation

Figure 22-6 A two-layer hierarchy

1

2

3 4 5
67

8 9

core

core

aggregation

aggregation

Figure 22-7 A recursive hierarchy

Common Topologies 603

 • Regional policy is handled regionally, providing more flexibility in this area. Of
course, this also means the modules are less likely to be logically repeatable, so
there is more complexity in this kind of design.

 • It is possible to build layers within layers more than once; module 6 may con-
tain core and aggregation modules, as well. Because of this, the recursive layer-
ing architecture is a very powerful paradigm for building and understanding
network topologies.

Common Topologies

Another basic pattern in network design is the network topology. While it might seem
there would be an infinite number of possible topologies, there are a few basic kinds
that this infinite variety will fit into. Control planes tend to converge on any particular
topology type based on the basic components—rings, meshes, and triangles. This sec-
tion will consider a few basic topology types and some of their characteristics.

Ring Topologies

Ring topologies are among the simplest to design and understand. They are also the
least expensive option, especially when long haul links are involved, so they tend to
predominate in wide area networks.

Scaling Characteristics
Ring topologies have been scaled to large sizes; the additional cost to add a node is
minimal. Generally, one new router (or switch), moving one circuit, and adding
another new circuit is all that is needed. With careful planning, the addition of a new
node into the ring can be accomplished without any real impact to overall network
operations. Figure 22-8 depicts adding a node to a ring.

A A

B B

C CD D

E

original link

added node

Figure 22-8 Adding a node to a ring

Chapter 22 Network Design Patterns604

Adding new nodes to the ring increases the total hop count through the ring (from
4 to 5 in this case), and it does spread the available bandwidth across more devices.
However, every device on the ring still has just two neighbors; this constant neighbor
count is much of the secret behind the scaling properties of ring networks.

As ring size increases, it becomes difficult to manage Quality of Service and opti-
mal traffic flows. Figure 22-9 illustrates.

In Figure 22-9, assume F has a voice over Internet Protocol (VoIP) stream con-
nected to H, while G has some large file transfer (perhaps a complete backup). One
of these streams requires very small amounts of bandwidth, low delay, and small
amounts of jitter; the other requires large amounts of bandwidth but can tolerate a
lot of delay and jitter. These two streams, however, share the [D,E] link. One option
may be to force traffic along the “back side” of the ring to avoid the problem of hav-
ing two kinds of traffic on the same link, but this would require tunneling one of the
two streams using something like Multiprotocol Label Switching (MPLS). Another
option may be to use a well-designed Quality of Service (QoS) mechanism to ensure
the two streams can coexist. Either of these two solutions, however, adds complex-
ity into the control plane and forwarding process. In terms of complexity, then, the
ring topology requires just two neighbors per device, but it can require a lot more
traffic engineering work to support all the requirements that applications place on
the network.

A

F

G

H

K

B

C
D

E

Figure 22-9 Traffic engineering in a ring topology

Common Topologies 605

Resilience Characteristics
Rings can withstand a single failure anyplace in the ring; any two failures will cause
the ring to split. However, a single failure can make the kinds of traffic engineering
problems considered in the preceding section much more difficult to manage; a sin-
gle failure essentially turns a ring into a bus, with just one path between each pair of
connected devices. The “middle segment,” in this case, will be a bandwidth choke
point in a very negative way.

Convergence Characteristics
Convergence in ring topologies lays the foundation for truly understanding the con-
vergence of every other network topology ever designed or deployed. After you
understand the principles of routed convergence in a ring topology, it’s simple to
apply these same principles to quickly understand the convergence of any other
topology you might encounter.

In other words, pay attention!
The crucial point to remember when considering how any control plane

 protocol—routed or switched—will operate on a particular topology is to think in
terms of the “prime directive”: thou shalt not loop packets! This aversion to looping
packets explains the convergence properties of ring topologies. Consider the rings in
 Figure 22-10.

While it is common to think of routing as using every link in the network, pro-
tocols build a spanning tree per destination. For any given destination, specific links
are blocked out of the path to prevent a packet forwarded toward the destination
from looping in the network. In the two rings shown in Figure 22-10, the links over
which a routing protocol will not forward packets toward 2001:db8:3e8:100::/64 are
marked.

A E

B

F

C
G

D

H

K

do not
forward

here do not
forward

here

do not
forward
here

2001:db8:3e8:100::/64 2001:db8:3e8:100::/64

Figure 22-10 Convergence in a ring topology

Chapter 22 Network Design Patterns606

In the case of the four-hop ring toward 100::/64:

 • The link between B and C appears to be unidirectional toward B.

 • The link between C and D appears to be unidirectional toward D.

Why are these links blocked in this way by the routing protocol? To follow the
prime directive—thou shalt not loop!

 • If a packet destined to 100::/64 is forwarded from D to C, the packet will loop
back to D.

 • If a packet destined to 100::/64 is forwarded from B to C, the packet will loop
back to D.

In the case of the five-hop ring toward 100::/64, the link between G and H appears
to be completely blocked. But why should this be? Suppose a packet destined to some
host in 100::/64 is forwarded from G to H. This packet will be forwarded correctly to
F, then to E, and finally to the destination itself.

But what if G is forwarding traffic to H for 100::/64, and H is also forwarding traf-
fic to G for 100::/64? A permanent routing loop results. This means

 • If the link between A and D fails, D has no way to forward traffic toward
100::/64 until the routing protocol converges.

 • If the link between E and K fails, H has no way to forward traffic toward
100::/64 until the routing protocol converges.

Generalizing Ring Convergence
Why is all this so important to understand? Because virtually every topology you can
envision with any sort of redundancy is, ultimately, made up of rings (full mesh
designs are considered by many to be an exception, and Clos fabrics are exceptions).
To put it another way, virtually every network topology in the world can be broken
into some set of interconnected rings, and each of these rings is going to converge
according to a very basic set of rules:

 • Every ring has, for each destination, a set of links not used to forward traffic.

 • The failure of any link or node on a ring will cause traffic to either be dropped
(distance vector) or looped (link state) until the routing protocol converges.

Common Topologies 607

Given the speed at which a routing protocol can converge is directly related to the
number of routers notified of a particular topology change, and hence the number
of routers that must recalculate their best paths to any given destination, a third rule
for control plane convergence on a ring is

 • The larger the ring, the more slowly the routing protocol will converge (and
thus stop throwing packets on the floor or resolve the resulting microloop).

These three rules apply to virtually every topology you encounter. Find the rings,
and you have found the most basic element of network convergence.

Mesh Topologies

While ring topologies are the cheapest to deploy and the simplest to scale, full
mesh topologies tend to be the most expensive to deploy and the most difficult to
scale. Full mesh topologies, however, are simpler to understand (in terms of con-
vergence and scaling) than ring topologies. Figure 22-11 illustrates a full mesh
topology.

A

C

D E

B

2001:db8:3e8:100::/64

2001:db8:3e8:101::/64

Figure 22-11 A full mesh topology

Chapter 22 Network Design Patterns608

There are ten paths from 2001:db8:3e8:101::/64 to 2001:db8:3e8:100::/64:

 1. [E,A]

 2. [E,C,A]

 3. [E,D,A]

 4. [E,B,A]

 5. [E,D,B,A]

 6. [E,D,C,A]

 7. [E,C,B,A]

 8. [E,C,D,A]

 9. [E,B,C,A]

 10. [E,B,D,A]

Traffic engineering techniques can be used to direct specific traffic onto any of
these paths, allowing the network designer to design traffic flows for optimal perfor-
mance. The number of paths through the network and the number of links required
to build a complete mesh between a set of nodes are given by

N(n−1)/2

For the five-node network in Figure 22-11, this is

5(5−1)/2 = 10

This property of full mesh networks, however, also points to the weaknesses of
this topology: scale and expense. These two weaknesses are closely related. Each new
node added to the network means adding as many links as there are nodes already in
the network. Adding a new node to the network in Figure 22-11 would mean adding
five new links to bring the new node fully into the mesh.

Each new link added means not only a cable, but also a new port used, and new
ports mean new line cards, and so on. Each new link also represents a new set of
neighbors for the control plane to manage, increasing memory utilization and pro-
cessing requirements. There are protocol-level techniques that can reduce the control
plane overhead in full mesh topologies, if they are properly managed and deployed.
Open Shortest Path First (OSPF) and Intermediate System to Intermediate System

Common Topologies 609

(IS-IS) both have the capability to build a mesh group, which treats the full mesh
topology similar to a broadcast network; a small number of routers at the edge of
the mesh are designated to flood topology information onto the mesh, while the
remainder of the attached routers passively listen.

The one place where network engineers often encounter full mesh topologies is
in virtual overlays, particularly in deployments where traffic engineering is a funda-
mental part of the reason for deploying the virtual overlay. Although the port and
link costs are reduced (or eliminated) when building a full mesh of tunnels, the cost
of managing and troubleshooting a full mesh remains.

A more commonly used mesh variant is a partial mesh topology. In a partial mesh,
only some nodes are connected to one another, generally based on measured traffic
patterns and perceived resilience requirements. Partial mesh topologies often reduce,
in convergence and scaling terms, to a set of interacting ring topologies. Each “ring”
within the partial mesh will scale and converge in the same way as the description of
ring topologies already covered.

Hub-and-Spoke Topologies

Hub-and-spoke topologies are built in just the way they sound; there is one or more
hub router that is connected to a much larger number of remote routers. Figure 22-12
illustrates two such topologies.

In Figure 22-12, there is just one path from 2001:db8:3e8:101::/64 and
2001:db8:3e8:100::/64, along [B,A]. If this path fails, connectivity fails between these
two networks; this is called a single-homed network. To prevent a single point of
failure from causing a complete outage for a particular site or application, many
hub-and-spoke networks are designed with two hub routers, as shown in the net-
work on the right side of Figure 22-12; this is called a dual-homed network. Special

A C D

B E

2001:db8:3e8:100::/64 2001:db8:3e8:102::/64

2001:db8:3e8:101::/64 2001:db8:3e8:103::/64

Figure 22-12 Two hub-and-spoke topologies

Chapter 22 Network Design Patterns610

techniques are often used to scale such networks to support thousands of remote
sites, such as

 • Sending the remote site a minimal amount of routing information, such as just
a default route.

 • Reducing neighbor state toward these remote sites; for instance, Open Shortest
Path First has the concept of a demand circuit, which allows the hub router to
advertise its routing information once, blocking the periodic reflooding nor-
mally required to synchronize the database.

 • Not calculating routes through the remote sites, as they should never be
used to transit traffic. For instance, the Enhanced Interior Gateway Routing
 Protocol (EIGRP) has the ability to mark a remote site router as a stub, which
blocks calculation of alternate paths through the remote site. OSPF has the
ability to mark a route through a remote site with the maximum metric, which
discourages routing through the remote site.

Without such special techniques, a dual-homed remote site will converge like a
triangle; with them, it will converge more like a single-homed remote site. Because
of the scaling, configuration, and management difficulties involved with managing
large-scale hub-and-spoke networks, many such networks are now built using differ-
ent options, such as

 • A service-provider-provided service, where the hub and remote routers are
actually managed by a service provider, and the customer receives the correct
routing information and packets routed through the service provider network.
This transfers the entire management load from the customer to the service
provider.

 • A Software-Defined Wide Area Network (SD-WAN) solution, which may be
provided by a service provider, or installed and managed by the network opera-
tor. These services operate “over the top” of the standard Internet, using tun-
nels to build a virtual hub-and-spoke or full mesh network.

Planar, Nonplanar, and Regular

Network topologies can be described in terms of their properties, as well as the
shape of the topology. Three important concepts are planar, nonplanar, and regular.

Common Topologies 611

Planar topologies can be described using a single plane; this means links do not
cross in a way that forces one link to “hop” over another link. In a nonplanar topol-
ogy, at least two links will cross no matter how the topology is arranged. Figure 22-13
illustrates the difference between these two concepts.

Four networks are shown in Figure 22-13, marked A, B, C, and D. Network A is
a planar topology; there are no points at which two links cross, and hence would
require one link “jumping” over the other—or rather requiring a second plane to
accurately represent. The topology in B is a nonplanar topology.

When examining networks to discover if they have a planar or nonplanar topol-
ogy, try rearranging the links to see if they can be moved so that no two links will
cross or overlap. For instance, network C in Figure 22-13 appears to be a nonplanar
design, because of the two links crossing at the gray dashed circle; however, the same
network is illustrated as D, but with one of the links moved so they no longer cross.
The links in B cannot be rearranged to prevent any overlap in this way.

Regular topologies have one characteristic: they are made up of smaller, repeating
topologies. Figure 22-14 illustrates a fabric of four hop rings (or cubes), which is a
regular topology.

In Figure 22-14, the four routers A, B, D, and E are a small four-router loop within
the same topology. Because any other four-router loop that you can pick out can
replace any other four-router loop in the network, this is a regular topology; any set
of four routers could be moved anyplace else in the network without changing the

A

C

B

D

Figure 22-13 Planar and nonplanar network topologies

Chapter 22 Network Design Patterns612

overall topology, and the network topology can be increased in size by simply repli-
cating one piece of the topology and adding it back on.

Being able to pick out these kinds of topologies is helpful in understanding the
way a particular network will converge, and what kinds of fast reroute and other
options are available. It would take much more space than is available here in this
chapter to draw these lessons out in detail, but being aware of these different design
patterns is a good place to start.

Final Thoughts on Network Design Patterns

Network design is often treated the same way network security is—left until the last
moment, done as quickly as possible, with as little thought and fuss as possible. Real
design, beginning with business requirements rather than speeds and feeds, or ports
and racks, is often ignored in the tyranny of the immediate. “This project needs to be
done now, forget the design stuff, just get it working.” This is the path to technical
debt and—ultimately—crashed networks and failed businesses.

Proper network design needs to take a systemic view. This chapter, although a
short overview, provides you with some of the basic mindsets and tools you need to
start thinking through design problems and solutions. The next chapter will con-
tinue examining design topics by considering resilience and redundancy.

A D

B

F

E

G

Figure 22-14 A regular topology

Review Questions 613

Further Reading

Oppenheimer, Priscilla. Top-Down Network Design. 3rd edition. Indianapolis, IN:
Cisco Press, 2010.

White, Russ, and Denise Donohue. The Art of Network Architecture:
 Business-Driven Design. 1st edition. Indianapolis, IN: Cisco Press, 2014.

White, Russ, Alvaro Retana, and Don Slice. Optimal Routing Design. 1st edition.
Indianapolis, IN: Cisco Press, 2005.

White, Russ, and Jeff Tantsura. Navigating Network Complexity: Next-Generation
Routing with SDN, Service Virtualization, and Service Chaining. Indianapolis,
IN: Addison-Wesley Professional, 2015.

Review Questions

 1. Consider the objective of network design laid out in the text—to build the
least expensive, most flexible way to provide transport. How does this goal set
relate to the State/Optimization/Surface (SOS) model of managing network
complexity?

 2. Research an example of opportunity cost in the real world.

 3. Explain why ossified systems appear to be well built and solid, but are often
actually fragile.

 4. Consider the disaggregated versus the vendor-independent model in terms of
the State/Optimization/Surface tradeoff triad. Would either model increase
state? Surfaces? In what way?

 5. Give examples of when you might use a two-layer hierarchy versus a three-layer
hierarchy.

 6. Explain convergence in a ring topology.

This page intentionally left blank

615

Chapter 23

Redundant and Resilient

Learning Objectives

When you are finished reading this chapter, you should understand:

 0 What control plane failures and convergence look like to applications

 0 The different ways in which you can measure network availability

 0 Graceful restart and in-service software upgrades as tools to provide net-
work resilience

 0 The interaction between modularization and resilience

Networks are designed to support applications, which in turn support specific busi-
ness needs (or perhaps the application itself is the business). When the network is
down, it obviously cannot support applications, but “down” is a rather ambiguous
term. There are more kinds of “down” than “not forwarding packets at all.” The
question this chapter asks is

What does network resilience mean?

There are a number of tools network engineers can use to create a resilient net-
work. Fast Reroute, Exponential Backoff, and other fast convergence technologies
can make a large difference in the speed at which the network converges. Graceful
restart is another set of tools engineers can use, but they are not covered in this book
(see the “Further Reading” section at the end of this chapter for pointers to more

Chapter 23 Redundant and Resilient616

information on this topic). Redundancy, however, has always been one of the pri-
mary tools engineers of every kind have turned to, to build in resilience.

The first part of this chapter, then, will describe resilience; the second part will
consider the use of redundancy to create resilience in a network.

The Problem Space: What Failures Look Like to
Applications

Slow performance and complete failure are the two most common application prob-
lems associated with network failures of any kind. How does the operation of the
network relate to application problems of these kinds? Figure 23-1 will be used to
consider the answers to this question.

In Figure 23-1, assume there is a long-standing flow between A and F flowing
across the [B,D] link. If the [B,D] link fails, the application driving the flow could see
several results:

 • The flow could fail entirely. If some form of packet or route filtering is con-
figured at any of the four routers illustrated, a [B,D] link failure may result in
a complete loss of connectivity between A and F. In this case, traffic between A
and F will stop flowing, and the application will fail.

 • The end-to-end delay could change. Once the routing protocol converges on
the only other available path, [B,C,E,D], there will be two more queues, two
more switches, and two more deserialization/serialization delays added to the
path. The application will see this as a sudden change in the amount of delay
across the network.

 • Jitter could increase. The additional queues, serialization, and deserialization
could also increase jitter through the network. Some packets will variably be
delayed while the routing protocol converges, particularly if there is a microloop
formed during the convergence process. The total impact will likely look like a
short burst of high jitter, followed by a general increase in jitter across the path.

A
D

E

FB

C

Figure 23-1 Application Impacts of Network Failures

Resilience Defined 617

 • Packets could be dropped. Whatever packet is transmitted by B toward D just
at the moment the link fails will likely be dropped.

 • Duplicate packets could be delivered. It is possible, particularly if a microloop is
formed during convergence, for one or two packets to be transmitted through the
network twice. One simple example of this is if the retransmission timer at A is set
very short before the failure, so packets are delayed longer than this timer during
convergence, A could retransmit a packet while another copy of the same packet
is already “in flight,” resulting in two copies of the same packet being received at F.

 • Packets could be delivered out of order. Consider what happens if a micro-
loop forms between B and C during convergence. It is possible a packet is being
forwarded from C toward B just at the moment the microloop resolves. If this
happens, a packet transmitted by A and received by B, before the packet loop-
ing between B and C, will be forwarded by B before the packet caught in the
microloop is. The earlier packet will be delivered after the later packet.

It is virtually impossible to resolve these problems in a packet switched network.
In fact, while many networking technologies have been developed over the years seek-
ing to prevent these failures from ever occurring, most of these technologies end up
adding so much complexity to the network that they have an overall negative impact
on network performance. Tradeoffs are the hard-and-fast rule in engineering of all
kinds; network engineering is no exception.

Resilience Defined

Resilience is easy enough to understand: the network does not fail nor produce the
kinds of effects in applications discussed in the previous section. Resilience needs to be
measured, as well as understood, however. This section will consider several ways in
which resilience is measured. Three specific measures will be considered in this section:

 • The Mean Time Between Failures (MTBF)

 • The Mean Time to Repair (MTTR)

 • Availability

Figure 23-2 is used to illustrate these concepts.
Three different measures of resilience are shown in Figure 23–2.
MTBF is the amount of time between failures in a system. Just divide the number

of failures in any slice of time into the total amount of time, and you have the MTBF
for the system (during this time slice). In Figure 23-2, the MTBF is the amount of

Chapter 23 Redundant and Resilient618

time between the first and second failures. The longer the time slice (without changes
in the system) you use, the more accurate the MTBF will be.

MTTR is the amount of time it takes to bring the system back up after it has
failed. To find the MTTR, divide the total length of all outages by the total number
of outages. To find the MTTR in Figure 23-2:

 • Find the length of time between the first failure and the first repair.

 • Find the length of time between the second failure and the second repair.

 • Sum (or add) these two lengths of time.

 • Divide this total by the number of outages—in this case, two.

Availability is the total time the system should have been operational (without
counting outages) divided by the amount of time the system was not operational. To
get to availability from MTBF and MTTR, you can take the MTBF as a single opera-
tional period and divide it by the MTTR, like this:

Availability
MTBF

MTBF MTTR
=

+

Note

Most of the time, you’ll see availability calculated by adding the uptime to the
downtime, and then dividing the result by the downtime. This arrives at the same
number, however, because the total uptime added to the total downtime should
(in the case of networks) be the total amount of time the network should have
been operational. You might also see this expressed using the idea of Mean Time
to Failure (MTTF), which is just the MTBF minus the MTTR—so adding the
MTTF and the MTTR should result in the same number as the MTBF.

first failure

MTBF

MTTR MTTR

availability

first repair
second repairsecond failure

Figure 23-2 Measuring Resilience

Redundancy as a Tool to Create Resilience 619

Availability is often expressed as a number of nines; for instance, one network
may have four 9s of availability, while another may have five 9s of availability. This is
shorthand for the fraction of time the network is available:

 • Four 9s of availability means the network is available 99.99% of the time, or is
not operational for about an hour a year.

 • Five 9s of availability means the network is available 99.999% of the time, or is
not operational for about 5.2 minutes each year.

The concept of availability needs to be considered in light of the meaning of
availability for a particular network. Does the entire network need to be down to
be considered unavailable? Or perhaps service needs be unavailable to a particular
set of applications of users? Or perhaps the network can be considered inoperable
when some particular application (or set of applications, or set of users, etc.) suf-
fers degraded performance. Answering these kinds of questions is very important in
defining network availability.

Other “Measures”

There are other measures of network resilience for which no number can be produced, but
are often just as important as the more commonly used measures. There is a good bit of
humor in these measures, but the humor is backed by a good deal of serious experience.

The Mean Time Between Mistakes (MTBM) which measures how long, on aver-
age, it is between mistakes causing an application performance problem or network
failure of any size. The MTBM is related to the complexity of configurations in the
network, including how the configurations of widely dispersed forwarding devices
interact. A widely used rule of thumb is called the 2 a.m. rule: if you cannot explain
the configuration at 2 a.m. to a technical support engineer whose primary language
is not the same as yours, it might be worth reconsidering the configuration.

The Mean Time to Innocence (MTTI) is the amount of time required to prove the net-
work is not at fault for a particular application problem. Proving this often requires a lot of
“before” and “after” network measurements to show none of the changes in the network
could cause the observed problem. It is important to pay close attention to the various ways
an application can “see” a failure in the network considered in the preceding section.

Redundancy as a Tool to Create Resilience

Perhaps the primary tool used by network engineers use to create resilience in a net-
work design is adding redundancy. One of the primary concepts to understand when
considering adding redundancy to increase resilience is the single point of failure.
Figure 23-3 illustrates.

Chapter 23 Redundant and Resilient620

In Figure 23-3, from the perspective of A and G, the network has two redundant
paths. But the redundancy is a deception; there is a single point of failure at D in the
center of the network. If D itself fails, no traffic can flow between A and G. Figure 23-4
illustrates how adding a second (redundant) link would improve resilience.

In Figure 23-4, there are now two parallel paths through the network, one through
[B,E], and a second through [C,F]. If both links fail on a fairly regular basis (they
have similar availability), the odds are low that both links will fail at the same time.
While there may be a small chance of both links failing at the same time, there is
some chance this will happen. You can calculate the chance of both links failing at
the same time, if you know the availability for each link, by calculating the combined
availability of both links, using this formula:

a

a a

1
1 1t

1 2

=
+ + …

A

B

C

D

E

F
G

Figure 23-3 A Single Point of Failure

A

B

C

E

F
G

[B,E] failures

[C,F] failures

overlapping failure

Figure 23-4 Increasing Resilience Through Redundant Paths

Redundancy as a Tool to Create Resilience 621

Substitute each parallel item in the network into a1, a2, etc., and you can calculate
the availability of the entire system, at. This will tell you how often, over the course
of a year, both links are likely to be down.

Note

This is called the availability calculation for parallel links of devices; it is also pos-
sible to calculate the total availability of devices or links connected in series, but
this discussion is beyond the scope of this book.

There is a rule of thumb that works pretty well here without working through all of
the math; it is called the halving rule. If you have two paths connected in parallel, each
with a total downtime each year of 1 second, then the combined total downtime is likely
to be half of the probable downtime of either link. The combined downtime of both
links, then, should be around 500ms. Adding a third link will halve this number again to
around 250ms. Although availability is essentially the opposite of downtime, increasing
redundancy quickly produces very little increased availability. If you begin with a single
link with four 9s of availability—so it would be unavailable, or down about 5 minutes
in each year—adding a second link in parallel will mean the pair of links is now unavail-
able about 2.5 minutes each year. Adding a third link reduces the unavailable time to
1.25 minutes per year, and a fourth reduces the unavailable time to about 37 seconds.

Each link added in parallel also increases the complexity of the network from the
perspective of the control plane; more adjacencies must be formed, there are more
paths to calculate through, there are more sets of databases to synchronize, etc. Each
of these will slow down the convergence of the control plane at least some small
amount. There is no clear point where decreasing downtime by increasing parallel
links will be completely offset by increasing convergence time. Experience shows two
links is often optimal, three links is good in exceptional situations, and four needs
a careful look at the math to ensure the additional links are not decreasing overall
availability, rather than increasing it. There are some exceptions, of course, in the
case of tuned protocol deployments in fabrics (such as in a data center).

Because of diminishing returns, you simply cannot build a truly resilient system
through redundancy alone. Real resilience must be built into the entire network, and
the entire stack, with each part of the system playing its own role, from applications
to control planes to redundant links.

Shared Risk Link Groups

Links are one crucial place to look for single points of failure—and one place where
redundancy is often introduced to increase resilience. Adding parallel links does not
always increase resilience, however; Figure 23-5 illustrates.

Chapter 23 Redundant and Resilient622

In Figure 23-5, the network operator has purchased links from two different pro-
viders to provide connectivity between A and H. From the outside, these two links
appear completely unrelated; they terminate in different locations, are managed by
two different providers, etc. However, someplace in the transit path, both provid-
ers have leased virtual circuits over a single fiber, and both links pass through this
single optical link. A backhoe pulling this single fiber out of the ground—a backhoe
fade—will take both circuits down.

Any time virtual circuits are laid over a physical infrastructure, there are Shared
Risk Link Groups (SRLGs). Further, SRLGs are surprisingly difficult to discover and
plan around, particularly in dynamically routed packet switched networks. There
are systems for calculating SRLGs within a single operator’s network, which can be
very useful for preventing SRLGs from causing a problem in data center fabrics or
corporate networks, but they are outside the scope of this book.

Network engineers should be aware of SRLGs, and careful to plan around
them where possible, particularly in relation to redundancy added to increase
resilience.

In-Service Software Upgrade and Graceful Restart

Many times links are not the problem, but the rather complex network devices the
links connect to. There are several solutions available to resolve problems with net-
work devices, including

 • Running multiple devices in parallel and allowing the control plane to route
around failures. This essentially transfers any complexity from the device soft-
ware into the network and applications running on top of the network—a
valid design choice in many situations.

 • Using Graceful Restart (see the “Further Reading” section at the end of the
chapter for more information on graceful restart) to reduce the amount of time

A

B

C

E

D

F

G

H

Figure 23-5 Shared Risk Link Group (SRLG)

Redundancy as a Tool to Create Resilience 623

required to reconverge the control plane in the case of a device reboot or some
other short-lived failure. In the case of graceful restart, each device maintains
its forwarding state, resynchronizing and recalculating the set of loop-free
paths through the network once the control plane processes have restarted.

 • Using In-Service Software Upgrades (ISSU), or hitless restarts to restart the
control plane without impacting packet forwarding at all.

Graceful Restart (GR) and ISSU rely on the device being able to forward traffic in
hardware while the control plane is restarting; the hardware must be able to hold a
forwarding table, and forward packets, without the control plane feeding new rout-
ing information into the forwarding table. There is some amount of risk in forward-
ing without the control plane, as the network topology can change while the control
plane is restarting, causing a loop until the control plane reconverges. This is another
instance of a microloop occurring because of topology unsynchronized databases.

Each of these solutions has advantages and disadvantages—each one is applicable
in some situations and not in others—but engineers should be aware of these tools
and their application to the problem of building a resilient network.

Dual and Multiplanar Cores

While they are rarely used, dual plane and multiplanar cores are sometimes deployed to
ensure the highest levels of availability. Figure 23-6 illustrates these two types of cores.

In Figure 23-6, each core is represented with a different kind of dashed line to make
it easier to see both of the cores. In both of these core types, everything is different:

A B

C D

dual plane

multiplane

Figure 23-6 Dual and Multiplanar Cores

Chapter 23 Redundant and Resilient624

 • Equipment from two different vendors, or at least two different hardware lines
using two different protocol implementations, is used to prevent a single bug
or kind of failure from impacting the entire network.

 • Two different interior gateway protocols, such as Open Shortest Path First
(OSPF) and Intermediate System to Intermediate System (IS-IS), are used, one
for each core, so a problem in a single protocol cannot impact the entire network.

 • Two different providers, one for each core, are contracted to supply the links
between the sites.

By creating two completely separate cores, you can avoid the problems associ-
ated with monocultures, or a bug that allows a problem to propagate throughout the
network.

The primary difference between these two core types is shunt links, which are rep-
resented as dash-dot in the multiplanar core illustration on the right in Figure 23-6,
such as the curved link between C and D. These shunt links are set to a very high
metric, so they are used to forward traffic only if there is no other path available. An
exterior gateway protocol, such as the Border Gateway Protocol (BGP), is used to tie
the entire network together; each site edge router, such as A, would have two routes
to any given destination in the network. One would be learned through BGP over one
core, and the second through BGP over the second core.

Modularity and Resilience

MTTR can be broken down into two pieces:

 • The time it takes for the network to resume forwarding traffic between all
reachable destinations

 • The time it takes to restore the network to its original design and operation

The first definition relates to machine-level information overload; the less informa-
tion there is in the control plane, the faster the network is going to converge. The second
relates to operator information overload; the more consistent configurations are, and
the easier it is to understand what the network should look like, the faster operators
are going to be able to track down and find any network problems. The relationship
between MTTR and modularization can be charted as shown in Figure 23-7.

Moving from a single flat failure domain into a more modularized design, the
time it takes to find and repair problems in the network decreases rapidly, driving

Modularity and Resilience 625

the MTTR down. However, there is a point at which additional modularity starts
increasing MTTR, where breaking the network into smaller domains causes the net-
work to become more complex. To understand this phenomenon, consider the case
of a network where every network device, such as a router or switch, has become its
own failure domain (think of a network configured completely with static routes
and no dynamic routing protocol). It is easy to see there is no difference between
this case and the case of a single large flat failure domain. How do you find the right
point along the MTTR curve? The answer is always going to be, “it depends,” but it
is important to develop some general rules.

First and foremost, the right size for any given failure domain is never going to be
the entire network (unless the network is really and truly very small). Almost any size
network can, and should, be broken into more than one failure domain.

Second, the right size for a given failure domain is always going to depend on
advances in control plane protocols, advances in processing power, and other factors.
There were long and hard arguments over the optimal size of an OSPF area within
the network world for years. How many LSAs could a single router handle? How fast
would SPF run across a database of a given size? After years of work optimizing the
way OSPF runs, and increases in processing power in the average router, this argu-
ment has generally been overcome by events.

Over time, as technology improves, the optimal size for a single failure domain
will increase. Over time, as networks increase in size, the optimal number of fail-
ure domains within a single network will tend to remain constant. These two trends
tend to offset one another, so most networks end up with about the same number of
failure domains throughout their life, even as they grow and expand to meet the ever-
increasing demands of the business.

So how big is too big? Start with the basic rules: building modules around policy
requirements and separating complexity from complexity. After you get the lines

optimal
modularization

increasing
modularization

in
cr

ea
si

ng
M

TT
R

Figure 23-7 Modularization Tradeoff with MTTR

Chapter 23 Redundant and Resilient626

drawn around these two things, and you’ve added natural boundaries based on busi-
ness units, geographic locations, and other factors, you have a solid starting point for
determining where failure domain boundaries should go.

From this point, consider which services need to be more isolated than others,
simply so they will have a better survivability rate, and look to measure the network’s
performance to determine if there are any failure domains that are too large.

Final Thoughts on Resilience

While redundancy is the “go-to tool” for engineers building resilience into a net-
work, redundancy has as many negative aspects that must be managed as it does
positive aspects. Resilience requires much more than redundant links and devices; it
must include many other techniques that involve the entire network stack from the
physical links, through the control plane, and into the application itself.

Resilience, as with security, must be built into the network, rather than bolted on
at the very end.

Further Reading

Papadimitriou, Dimitri. “Inference of Shared Risk Link Groups.” Internet-Draft.
Internet Engineering Task Force, November 2001. https://datatracker.ietf.org/
doc/html/draft-many-inference-srlg-02.

Pillay-Esnault, Padma, and John Moy. Graceful OSPF Restart. Request for Com-
ments 3623. RFC Editor, 2003. https://rfc-editor.org/rfc/rfc3623.txt.

Rekhter, Yakov, and Rahul Aggarwal. Graceful Restart Mechanism for BGP with
MPLS. Request for Comments 4781. RFC Editor, 2007. https://rfc-editor.org/
rfc/rfc4781.txt.

Rekhter, Yakov, John Scudder, Srihari S. Ramachandra, Enke Chen, and Rex Fer-
nando. Graceful Restart Mechanism for BGP. Request for Comments 4724.
RFC Editor, 2007. https://rfc-editor.org/rfc/rfc4724.txt.

Torrell, Wendy, and Victor Avelar. “Mean Time Between Failure: Explanation and
Standards.” White Paper. APC. Accessed May 13, 2017. http://www.apc.com/
salestools/VAVR-5WGTSB/VAVR-5WGTSB_R1_EN.pdf.

———. “Performing Effective MTBF Comparisons for Data Center Infrastructure.”
White Paper. APC. Accessed May 13, 2017. http://www.apc.com/salestools/
ASTE-5ZYQF2/ASTE-5ZYQF2_R1_EN.pdf.

White, Russ, and Denise Donohue. The Art of Network Architecture:
 Business-Driven Design. 1st edition. Indianapolis, IN: Cisco Press, 2014.

https://datatracker.ietf.org/doc/html/draft-many-inference-srlg-02
https://datatracker.ietf.org/doc/html/draft-many-inference-srlg-02
https://rfc-editor.org/rfc/rfc3623.txt
https://rfc-editor.org/rfc/rfc4781.txt
https://rfc-editor.org/rfc/rfc4781.txt
https://rfc-editor.org/rfc/rfc4724.txt
http://www.apc.com/salestools/VAVR-5WGTSB/VAVR-5WGTSB_R1_EN.pdf
http://www.apc.com/salestools/VAVR-5WGTSB/VAVR-5WGTSB_R1_EN.pdf
http://www.apc.com/salestools/ASTE-5ZYQF2/ASTE-5ZYQF2_R1_EN.pdf
http://www.apc.com/salestools/ASTE-5ZYQF2/ASTE-5ZYQF2_R1_EN.pdf

Review Questions 627

Review Questions

 1. Find or create a chart showing how much time per year three, four, and five 9s
of availability translates to. Do you think these are realistic numbers? Is there
anything interesting in the amount of downtime allowed at each point, or in
how much the amount of allowable downtime changes?

 2. Increased delay is not listed among the effects of a link failure in Figure 23-1.
If you changed the network so the original link was a local circuit, and the
backup path traveled over a much longer distance, would delay be something
to look for in the case of the described failure?

 3. Find the calculation for links or devices connected in series. What is the dif-
ference between this calculation and the calculation for devices or links in
parallel?

 4. Will running multiple devices in parallel, and allowing the control plane to
route around failures, eliminate the need for graceful restart or ISSU in all net-
works? Why or why not?

 5. Consider a multiplanar core with shunt links in light of the State/Optimization/
Surface (SOS) model. What are the tradeoffs when deciding whether or not to
include shunt links?

This page intentionally left blank

629

Chapter 24

Troubleshooting

Learning Objectives

When you are finished reading this chapter, you should understand:

 0 The concept of narrowing as a part of the troubleshooting process

 0 How to break a network down into components for troubleshooting

 0 The difference between how and what models for troubleshooting

 0 The importance of finding tools able to measure the problem

 0 The importance of models in troubleshooting

 0 The concept of half split and move

 0 The concept of technical debt

It’s 2 a.m., the network is down, and the CEO is on the phone asking when it is going
to be back up. The overnight job crucial to the business opening in the morning has
failed, and the company stands to lose millions of dollars if the network is not fixed
in the next hour or so. Almost every network engineer has faced this problem at least
once in his career, often involving intense bouts of shouting (and/or screaming)
intermixed with panicked attempts to find the root cause and fix it.

And yet troubleshooting is a skill that is hardly ever taught. There are a number of
computer science programs that do include classes in troubleshooting, but these tend
to be mostly focused on tools, rather than technique, or focused on practical skill
application. While this chapter cannot be a complete course in troubleshooting, it
will provide a basic overview of troubleshooting, including the problem set and some

Chapter 24 Troubleshooting630

tools you will find helpful in locating and fixing problems (more) quickly. The basic
question this chapter will answer is

What is the most effective process for finding and fixing problems in a
network?

Each of the following sections will address one part of the answer to this question.

Note

In many cases, the points made in this chapter will be exemplified through stories
told in the first person; these are true stories of troubleshooting success and fail-
ure supplied to help you understand the point being made.

What Is the Purpose?

Troubleshooting tends to be an exercise in narrowing—starting from a broad and
imprecise description of the problem, moving to a more focused description, and
finally finding one or more things to change in the network to resolve the problem.
As with design, however, it is often easy to narrow too quickly and then to hop
around rather than remembering to refocus on the overall purpose of the system if
your first attempt at solving the problem does not turn out to be “the” problem.

In the middle of a long, exhausting troubleshooting session, it is easy to think of
the system as the network path the application runs over and the application itself.
To use an example from electronics, rather than networking:

One of the pieces of equipment on the flightline was a wind speed indicator. This
is fancy name for a really simple device; there was a small “bird” attached to the
top of a pole with a tail guiding the bird into facing the wind, and then at the
nose of the bird an impeller attached to a Direct Current (DC) motor. The DC
motor drove a simple DC voltmeter graduated with wind speeds, and the entire
system was calibrated using a resistive bridge in the wind speed indicator box,
and another in the wind bird itself. The power from the impeller was passed to the
voltmeter, several miles away, through a 12-gauge cable. These cables were par-
ticularly troublesome, as they were buried, and had to be spliced using gel-coated
connectors, with splices buried in gel-filled casing. This was all before the advent
of nitrogen-filled conduit to keep water out.

What Are the Components? 631

In one particular instance, a splice failed, requiring the cable to be dug up by
hand, and the splice opened and repaired. A special team was called in to resplice
the cable, but even with the new splice in place, the wind system could not be cali-
brated to work correctly. The cable team argued the cable had all the right voltage
and resistance readings; we argued back that the equipment had been working
correctly before the splice failed, and all tested on the bench okay, so the prob-
lem must still be in the splice. The argument lasted for days. From the view of
the cable team, their “system” was working properly. From the perspective of the
weather techs, the system was not, even though the testable components were.
Who was right? It all came down to this: What does the “system” consist of, and
what does “working properly” mean?

Eventually, by the way, the cable splice was fingered as the problem in a capacitive
crosstalk test. The splice was redone, and the problem disappeared.

The purpose is ultimately what the system is supposed to do, not just what you
can measure. It does not matter if the network, or some component of the network,
appears to be working fine. What matters is whether or not the system is accomplish-
ing its purpose.

Of course, this means you need to understand what the purpose of the system is.
In the broadest view, this means what the system is supposed to accomplish from a
business perspective. A network can be running just fine from the perspective of the
engineers who built it, but if it is not solving a business problem the way the business
problem needs to be solved, it is still broken.

On the other hand, it is important to remember business folks do not always
understand precisely how the business and the network relate, or they may have
unrealistic expectations of what the network is capable of, or what is possible. In
these cases, resist the urge to ask, “How high?” when the business says, “Jump!”
Rather, cultivate a conversation in which you, the network engineer, have the right
to say, “No, this will add too much complexity,” or “The tradeoff here is too high.”

Moving from the business to the network itself, there is a different, but still large,
context: the network components.

What Are the Components?

Saying “a network is made up of components” is like saying “a menagerie of hand-
made glass animals is made up of…glass”—it is not very useful. More specifically,
what are the components of a network? In the network world, there are

Chapter 24 Troubleshooting632

 • Hardware devices that process and forward traffic, such as routers, switches,
and stateful packet filters

 • The environmentals, such as the power and cooling

 • The cabling, interfaces, and other hardware

 • The software running on these devices (the operating system)

 • The software applications providing the information needed to forward pack-
ets; the control plane

 • The specifications to which the network was designed and needs to operate in
order to fulfill business requirements

 • The requirements placed on the network by the applications the network is
supporting

A broader, and simpler, set of terms might be: requirements + network software
+ protocols + equipment. Again, this might be a little obvious, but it is easy to forget
the entire picture at 2 a.m. when the fires are burning hot, and you are trying to put
them out.

How well can you know each of these four systems? Can you know them in fine
detail, down to the last packet transmitted and the last bit in each packet? Can you
know the flow of every packet through the network, and every piece of information
any particular application pushes into a packet, or the complete set of ever-changing
business requirements?

Obviously, the answer to these questions is no.
As these four systems within a network interact (remember interaction surfaces

from the first chapter?), they create a larger system that suffers from a combinatorial
explosion. Figure 24-1 illustrates.

There are far too many combinations, and far too many possible states, for any
one person to know all of them. How can you reduce the amount of information so
you can reasonably understand the state of an entire system, and hence be able to
troubleshoot it? By building abstract models of the system’s components, the inter-
action points between those components, and, ultimately, of the system itself.

This is the first skill of effective troubleshooting: build a set of models
 describing the system.

All models will necessarily be incomplete; a model can represent only some
aspects of an entire system or subsystem. Thus, models are a two-edged sword: they
present a more readily understandable version of a system, but they also present a
necessarily incomplete version of a system.

Models and Troubleshooting 633

Models and Troubleshooting

There is no single way, nor a single set of tools, you can use to build an effective
model. This section will consider some common kinds of models—how models and
what models—and discuss how to build them. The importance of accurate models
and the ability to use models in the troubleshooting process effectively are also con-
sidered here.

Note

This has some interesting implications, of course. For instance, when a system is
a “black box,” which means you are not supposed to know how the system works,
your ability to troubleshoot the system itself is nonexistent, and your ability to
troubleshoot any larger system of which the black box is a component is severely
hampered.

Build How Models

How models are built using problem/solution sets. This entire book, in fact, is an
exercise in building how models, using a three-step process:

 1. Determine the problem that needs to be solved.

 2. Investigate the range of possible solutions for the particular problem.

 3. Understand how this particular implementation uses a particular solution to
solve a particular problem.

hardware

protocolsnetwork
software

combinatorial
explosion

requirements

Figure 24-1 Combinatorial Explosion of Systems in a Network

Chapter 24 Troubleshooting634

A potential fourth step beyond these three is integrating many solutions
together into a complete system, considering the interaction between the solutions
(such as where one solution reduces or increases the effectiveness of some other
solution, etc.).

How models, of course, do not answer only one sort of question; for instance,
when considering how Border Gateway Protocol (BGP) peers are formed:

 1. How does BGP manage flow control, error control/correction, and data mar-
shaling between two BGP speakers?

 2. How does BGP manage the peering state between two BGP speakers?

 3. How does an operator configure BGP to properly form peering relationships
between two BGP speakers?

Each of these is a separate kind of how question. Where many engineers go wrong
in building a solid foundation for troubleshooting is knowing the answers to the sec-
ond and third questions, while never spending time on the first. Engineering tends to
end up being focused on the question how do I get this done? rather than how does
this work?, specifically why does this work this way? The result is a “hunt and peck”
sort of troubleshooting style—combining small snippets of past problems with lots
of knowledge about how things should be configured to make them work. This is
generally a very inefficient way to not only design networks and protocols, but also
to troubleshoot them.

You need to be able to build how models of all three types. There are several use-
ful ways to build up your stock of how models, including

 • Reading protocol theory and specifications, so you understand how and why
a protocol operates (what problems are being solved and how they are being
solved)

 • Examining the designs of protocols and networks, and how they have per-
formed in the real world

 • Learning basic algorithms and heuristics, along with the problems they are
designed to solve

Essentially, building how models is more about theory than practice; this is why
engineers often skip learning how models—which prevents them from growing their
engineering skills over the long term. How models are sometimes best expressed in
a graphical format, such as Universal Modeling Language (UML) sketches, or flow
charts.

Models and Troubleshooting 635

Build What Models

What models are different from how models in describing the state of a particular
network or application, or a common pattern found across many networks or appli-
cations. These kinds of models generally answer questions such as

 • What is the normal path of this traffic flow (the signal path) through the system
(such as a network, application, etc.)?

 • What is the normal set of top talkers on this network?

 • What is the normal distribution of load between these two paths in the
network?

 • What is the normal startup process between two BGP speakers?

The only real way to learn what is to observe and summarize many times over.
For instance, observing the top talkers across a large number of networks, or even
in a single network across a number of years, will give you a good sense of where to
look for top talkers, and a good sense of when the top talkers in this situation do not
make sense.

Manipulation in the observation process is important here, as well; Figure 24-2
illustrates.

In Figure 24-2, some value (representing, perhaps, an event or a property of an
object) is assigned a variable, X. The question causation answers is: does X some-
how cause Y? To answer this question, a range of possible interventions, or rather
actions that will potentially modify X, are considered. In order to show X causes Y,
all other potential interventions, Z1 through Zn, are held constant, while one poten-
tial intervention, Zi, is manipulated. Manipulability is useful in building how models

X Y
Z1

Zi

Z2

Z3

Zn

. .
 .

va
ria

bl
e

se
t V

these are
held constant

Figure 24-2 Manipulation and Causation

Chapter 24 Troubleshooting636

by helping you understand the relationship between the different parts of a system; if
you manipulate the impact of X on Y by changing Zi, then you can better understand
the relationship between X and Y.

For instance, assume you want to understand how a specific application uses the
network in terms of traffic flow, one possible way to go about discovering this infor-
mation is by setting up a test instance of the application that passes through a router
on which you can manipulate the Quality of Service (QoS) settings. By manipulating
the QoS settings while watching the traffic flow, you can get a better sense of how
the application works; you are literally building a what model of the application’s
operation.

It is important to build such models under as close to real-world conditions as
possible, rather than in a “lab environment.” A real-world example might be helpful
here, told in the first person:

One time I was called out with another tech from my shop to work on the FPS-
77 storm detection radar. There was some problem in the transmitter circuit; the
transmitter just was not producing power. A resistor blew in the “right area” all
the time, so we checked the resistor, and sure enough, it seemed like it was shorted.
We ordered another resistor, shut things down, and went home for the morning
(by the time we finished working on this, it was around 3 a.m.). The next day, the
part came in and was installed by someone else. The resistor promptly showed a
short again, and the radar system failed to come back up.

What went wrong? I checked what was simple to check, what was a common
problem, and walked away thinking I had found the problem, that is what. It took
another day’s worth of troubleshooting to pin the problem down, a component in
parallel with the original resistor, but not on the same board, or even in the same
area of the schematics, had failed. This second component was an inductor—
essentially just a piece of wire wound tightly around a ceramic core. Inductors
only show resistance when alternating current passes through them; they will
always show a short when direct current is passed through them. Because the
resistor and the inductor were in parallel, and the ohmmeter (a device which
measures resistance) only uses direct current to measure resistance, the entire
 circuit appeared to be shorted.

In reality, the inductor failed, but the ohmmeter, because it cannot produce alter-
nating current at the right frequency and power level, simply could not “see” the
correct failure, and I was too tired, and too convinced I had found the problem in
the first try (because it was the “common” problem in this signal path), to check
beyond the first discovery.

Models and Troubleshooting 637

There are several kinds of what models engineers should build, including

 • A description of the normal state of each system in a production environment.
This is often called the baseline, and should include traffic levels measured at
different points in the network at different times of the day, different seasons,
and during different kinds of regular events; the amount of time it takes for any
particular process to run, such as the Shortest Path First (SPF) runtime in a net-
work running a link state control plane; jitter and delay through the network
on a per application basis, etc. These measures are important because you can-
not know what “broken” looks like unless you know what “normal” looks like.

 • A description of the normal configuration of each system in a production
environment. Many networks will have a single source of truth that contains
the proposed configuration for each device. Many automation systems are
designed to ensure each device matches the proposed configuration contained
in this single source of truth. These systems should also contain the intent
behind each configuration, as a single intent can be expressed in many differ-
ent ways.

 • A description of the “normal” reaction of the network to different types of
events.

 • A description of the signal path of every application running on the network,
including the origination of information from the application, the paths the
traffic normally takes through the network, queuing, and other ways in which
the traffic is processed.

 • A description of the security boundaries in the network, including the bounda-
ries of each security domain (logical or topological), why the security domain
exists, and how the various security domains interact.

While some of these will necessarily be complete, in containing every available
piece of information within a particular domain, it is also important to be able to
summarize each one into a model. Knowing what to abstract is a skill that takes
years to develop, and can never said to be perfected.

Build Accurate Models

In fact, choosing which information to abstract into a model is such a difficult prob-
lem that network engineers often live with poorly built models that simply do not
represent the underlying system accurately—or simply do not provide the

Chapter 24 Troubleshooting638

information needed to ground good troubleshooting or design. Chapter 3, “Mode-
ling Network Transport,” discusses one such (controversial) example, the widely
used Open Systems Interconnect (OSI) model. The OSI model is a good example of a
useful model in a narrow range of contexts, but is often used far outside the domain
in which it adds value. Figure 24-3 illustrates the OSI and the Recursive Internet
Architecture (RINA) models for reference.

A simple question illustrates the differences between these two models of forward-
ing information through a network: what functionality does this model describe?
The Open Systems Interconnect (OSI) model generally describes the kinds of infor-
mation contained at each layer in the network, which is also useful in describing the
kind of information carried between layers to carry information through the net-
work. The RINA model, on the other hand, focuses on functionality: what problem
is solved where in the network stack for this particular connection (whether hop by
hop or end to end).

While the OSI model is often useful for coding a network stack, because it
describes information and APIs, the RINA model is often more useful for under-
standing a network stack—knowing what is happening where and why. The RINA
model, in other words, more closely aligns with the problem/solution mindset needed
to troubleshoot a network problem.

Accuracy does not mean perfection, in the sense that every aspect of the system
is represented, but rather fit to purpose. Different models may be required to under-
stand different aspects of a particular system; one model may be useful for trouble-
shooting one sort of problem, and another model may be useful for troubleshooting
another sort of problem (or another part of the same overall problem).

application

presentation

session

transport

physical

data link

network

transport/multiplex

error/flow control

transport/multiplex

error/flow control

transport/multiplex

error/flow control

transport/multiplex

error/flow control

layer 1

layer 2

layer 3

layer 4

OSI Model RINA Model

Figure 24-3 The OSI and RINA Models

Models and Troubleshooting 639

Shifting between Models

Having a lot of models in your head to describe various aspects of the system is not
helpful, however, if you do not know how to apply these models to the problem at
hand. If you just take all these models and add them to the store of knowledge you
already have about the system, you can make troubleshooting harder, rather than
easier. The key lies in knowing how to apply models to the troubleshooting process.

The first step in applying models to troubleshooting is to learn how to shift
between the various models as you need to, as you move between needing to under-
stand a broader view of the system and a more detailed view of any piece of the
system. Figure 24-4 illustrates.

In Figure 24-4, the overall system is depicted as a network path. Of course, there
would be a larger context, such as business requirements, an application, or a set of
applications, in real-life situations, but using the network path as a larger context
will work for this example. Assume you are troubleshooting a problem with a spe-
cific flow through the network; the overall model you would keep in your head is the
entire network path. As you encounter individual pieces of information about the
problem, however, you might realize the problem appears to be something in the data
plane, which might include QoS. Further information might indicate the problem is
the application’s reaction to jitter on the network, which should move you from the
QoS model into a jitter model, which evokes a different model.

network
path

control
plane data

plane

Quality
of Service

queueing

bandwidth

jitter &
delay

convergence
characteristics

failure
detection

loop &
topology

timers &
tuning

shortest
paths

Figure 24-4 Using Models in Troubleshooting

Chapter 24 Troubleshooting640

Each model, as you move down the tree, is going to contain more detail within
the specific area, but it is going to exclude more information from other areas of the
network. Each model should accurately represent the problem and system at hand;
using a model that “does not fit” at any point in this process can lead you down the
wrong path in the “model tree.”

Another problem engineers often face in troubleshooting is an unwillingness to
mentally move back toward the top of the tree; in this case, it would be easy to focus
on the jitter problem without considering how the convergence characteristics of the
control plane might interact with jitter. Once an idea has been formed about what
the problem is, it is important to start back at the top of the “model tree” and work
back down toward the more specific models from the more abstract ones taking the
new information into account. An example might be helpful here, told in the first
person:

Two engineers were called into a major network failure at a rather important
bank; for some reason, the routing protocol, the Enhanced Interior Gateway
Routing Protocol (EIGRP), simply would not converge under some conditions.
The Technical Assistance Center (TAC) had tried various troubleshooting tech-
niques, reconfiguring EIGRP in various ways; finally the problem was escalated to
the Global Escalation Team.

To begin, the escalation engineers started gathering all the information they could
on the state of EIGRP during the outage; thus the primary model in use was
around the operation of the EIGRP protocol and its convergence process. Over
time, it became apparent the problem related to missed EIGRP packets; so the
engineers began looking at the packet processing and the transport links between
the routers. Thus the model in use for troubleshooting moved towards the trans-
port and packet processing side. It appeared the packets were being transmitted,
but not received, so the focus again shifted to packet processing on the impacted
routers. As almost every router in the network appeared to be impacted, this was
still a very wide scope, but it quickly dove into rather detailed considerations
about how packets were received, queued, and forwarded on to the EIGRP pro-
cess, and how information about what was going on in this processing could be
gathered in a production network.

To discover this information, a server was set up to capture the input queue of
several routers periodically. Each time there was a failure in an EIGRP neigh-
bor state, the log file was pulled to see what, specifically, was in the queue at
the moment in time to cause the EIGRP packets to not be delivered. The results
were puzzling, to say the least; the packets in the queue were always from the
same Internet Protocol (IP) address. No one could identify this IP address, so the

Half Split and Move 641

engineers began to suspect some form of denial of service attack. Ultimately,
however, the offending server was found: it was a security server. The routers in
the network had been configured to send a per command authorization request
to this server to ensure the user currently logged in to the router had permission
to run the specific command. The packets in the input queue each time the com-
mand completed and printed its output were the reply from the authentication
server allowing the command to be executed. Needless to say, this rabbit trail did
not help solve the problem any faster.

Eventually, the command level authentication was turned off, and the problem
was found. A new backup software package had been installed on every host in
the network—the server version had been installed on every host, rather than the
client version. The server version, in order to find clients, attempted to contact
every host on the network using subnet broadcasts across the entire IP address
range, at a very high packet rate. These subnet broadcasts were being consumed
by the actual routers, clogging the local process input queue, and hence causing
EIGRP packets to be dropped.

The problem here ultimately required shifting between a number of different
mental models, each one covering a different part of the network’s operation, but
it was important, when shifting between models, to refocus on the “larger context,”
so the problem at hand would not be forgotten. For instance, progress on the actual
problem was completely left aside while the “rogue IP address” was being chased
down.

Half Split and Move

While being able to shift between models is important, shifting between models ran-
domly is generally not the most efficient way to go about troubleshooting a problem
(although it is a common enough technique in the real world). What you need, once
you have models built up and you have developed the ability to shift between models,
is some way to guide how you move up and down the “model tree” while trouble-
shooting. Essentially, you need to know three things:

 1. What question do you need to ask?

 2. How do you ask this question?

 3. Once this question has been answered, where should you move next in the sys-
tem to continue troubleshooting?

Chapter 24 Troubleshooting642

One method stands out as a guide across many years of experience across many
fields of study: the half split method. The steps for the half split method are as
follows:

 1. Map out the path of a signal through the system.

 2. Split the path (roughly) in half.

 3. Test the signal at the halfway point to determine if it is correct or incorrect.

 4. If the signal is incorrect, move toward the source.

 5. If the signal is correct, move toward the destination.

The connections between the half split method and the concept of having models
should be fairly apparent:

 • The path of a signal through a system can be described as a set of overlap-
ping models, with “lower level,” more detailed models being components of
the larger context, more abstract models.

 • The path of the signal is going to rely on the overall operation of standard
components; each of these components either intersects or underlies one of the
system models you encounter when tracing out the path of the signal.

The half split method can be used to guide your troubleshooting process through
the subsystems within the system, using models to abstract enough information so
you can “contain” the pieces you are trying to test in one step through the process.
The half split method also helps you form the questions you need to ask of the sys-
tem to know whether it is operating properly, such as

 • What is the actual state of the system, and the result on the signal, at this point?

 • What should a “normal” state look like?

The half split method can also force you to take your time and think through each
step of the process. It is easy, when troubleshooting, to simply jump to where you
think the problem might be and then dive into that small piece of the problem. Using
the half split method will force you to look at what you are seeing, compare it to what
should be there, and return to the larger context (move back up the “model tree”) on
a regular basis. These are all crucial to not getting lost in the weeds, troubleshooting
something that is either not a problem or is a symptom instead of a problem.

Half Split and Move 643

When considering the concept of half splitting in a network, what is the signal?
Essentially, it is anything you can look at to verify the state of the system. For instance:

 • The state of a neighbor adjacency in a routing protocol

 • The jitter or delay on a given set of packets within a flow

 • The existence of a flow of packets at a particular point in the network

 • The completeness of a flow of packets at a particular point in the network
 (primarily looking for dropped packets)

To find the signal, figure out what you would expect to be true of any particular
information flow at this point (whether local, between peers, or end to end, host to
host, etc.), and then determine what you think it should look like at the point you
intend to test in the network. You might only need to shift between models during
troubleshooting, but you might also need to shift between signals. For instance, in
the example given in Figure 24-4, you need to shift from examining the jitter in a
flow of packets through a network to the way in which the control plane converges,
which may involve the signal path of distributing information about changes in
the network topology. Both getting stuck in a single signal path and hopping from
signal to signal are errors to be avoided in troubleshooting. These can be avoided
using the two methods outlined in the following sections—using manipulability and
 simplification—but sometimes experience is the only and best guide.

Using Manipulability

Manipulation—and manipulability—is a key tool for testing theories and discover-
ing the difference between correlation and causation. For reference, Figure 24-2 is
repeated as Figure 24-5 here.

X Y
Z1

Zi

Z2

Z3

Zn

. .
 .

va
ria

bl
e

se
t V

these are
held constant

Figure 24-5 Manipulation and Testing

Chapter 24 Troubleshooting644

In troubleshooting, the key point is to find some Z you can use to modify the
output of X in a way that impacts Y. In other words, if Y is the measured signal, you
want to find some way to modify X to either show X is the cause of the current state
of Y, or it is not. Figure 24-6 is used to explain this concept through an example.

Returning to the jitter example, assume there is some application passing traffic
between A and H showing poor performance. After some work with the application,
you determine the problem is with the jitter along the path between the host and the
server. Examining the logs for the various devices, you notice the problem appears
to correlate with SPF running on E. Using the half split method, you first trace the
signal path, or, in this case the path of the flow, and find packets between these two
devices follow the path [A,B,D,F,H]. You divide the circuit in half and decide to
examine the signal at D.

How can you measure the jitter at D? The most obvious solution is to capture
the packet flow on a packet trace device (or software loaded onto a standard host),
then cause (or wait for) whatever problem to occur that is causing the event at E, to
determine if there is jitter at the output of D when the event occurs. Assume you find
the jitter is, in fact, present at the output of D; the next step is not to simply assume
this is where the problem is. Rather, the next step is to move toward the source and
determine if the jitter is also present at the input to D. In this case, it would be logi-
cal to examine the output at B during the event at E, to see if the jitter is also there.
Skipping this half split step might seem like it would speed up your troubleshooting
process—you know where the problem is, why not just move directly to finding out
why this is happening? The reason is simple: by skipping the step moving toward the
source and looking for the symptoms, you are failing to isolate the problem to a sin-
gle point in the network. It is all too easy to spend a lot of time trying to understand
why the problem is happening at D, only to discover the problem is not at D at all; it
is someplace earlier in the network.

Assuming the signal is correct at the output of B, the next step is to find some way
to manipulate the conditions at D to cause the problem; this will verify the problem

A

B

D

E

C

F

G
H

Figure 24-6 An Example of Manipulation in Testing

Half Split and Move 645

showing up at D and the event occurring (SPF at E) is not just correlation but is caus-
ally related in some way. The best way to do this is to examine any logs at E that can
tell you why SPF is running at E and then replicate those conditions while measuring
the signal at D.

Once the problem can be replicated, you can know, for certain, what the cause is
and start thinking about how to solve the problem.

Note

Real life is messier than the example given here. In real life, there can be multi-
ple interacting causes and no way to manipulate the network into causing the
problem. Sometimes, then, correlation must be taken at face value, and you must
guess, trying solutions until you find one that makes the problem go away, or just
relying on your knowledge of the internal workings of the system to find a resolu-
tion without taking on the full process. The half split process, as described here,
is an ideal case; you will likely need to modify it on a per case basis in the field.
On the other hand, the closer you can come to the ideal, especially when starting
out on simpler problems, the faster you will be able to develop the “troubleshoot-
ing sense” required to speed up the process. Further, when you are stumped, it is
always best to stop relying on your “troubleshooting sense,” and go back to the
basics of half splitting, finding the signal, testing the signal, and finding a way to
manipulate the signal.

Simplify before Testing

Returning to Figure 24-5 (and Figure 24-2), there are many different Z’s (and proba-
bly many different X’s). This raises an interesting question: how do you know which
particular variable among the many available variables to concentrate on? Knowl-
edge of the system, combined with a liberal dose of experience, will be your primary
guides here, but there is one other thing you can do to make your life simpler: sim-
plify the system.

For instance, in a network with a lot of parallel paths, you might make more head-
way in troubleshooting a problem if you begin by eliminating components until the
problem goes away, or until the network is down to a bare minimum functioning
set of links and devices. This might seem counterintuitive—why would you remove
redundancy to troubleshoot, when the network is already having problems?—but it
is sometimes the only way to narrow down where a problem is.

If the problem does, in fact, “go away” before you reach some minimal set, then
you should suspect there is some form of positive feedback loop in the network caus-
ing the failure, there is some problem with the amount and/or speed of state being

Chapter 24 Troubleshooting646

carried in the control plane, or you have removed the problem in the process of reduc-
ing complexity (for instance, a flapping link, or device failing to forward traffic). In
this case, you can add complexity back into the network until the problem reappears,
which gives you a good manipulation test scenario. If the problem does not go away
during the simplification process, then you now have a simpler signal path to trou-
bleshoot, which will help you focus the half split process into a more confined space.

Fixing the Problem

Once the problem has been identified, you should fix it. However, the concept of fixing
it isn’t always so simple in the real world. There are normally two stages to fixing it:

 1. Solving the immediate problem with a configuration change, hardware replace-
ment, etc.—a temporary fix

 2. Preventing the problem in the future through design or through replacement of
equipment, etc.—a permanent fix

It is often very difficult to tell the difference between a temporary fix and a perma-
nent one; a good rule of thumb might be

A temporary fix incurs technical debt; a permanent fix either reduces technical
debt or leaves it constant.

Technical debt is very hard to explain, but essentially it means doing something
that will either cause fixing a problem in the future to be more complex or will result
in a similar failure mode happening in the future. Perhaps an example will be the
most useful way to explain these concepts.

Assume you are in a situation where a number of different virtual networks
suddenly stop carrying business-critical traffic at the same time. Investigating the
problem, you find a broadcast storm is causing the problem; a particular network
interface card (NIC) is pushing random broadcast packets onto the physical network
in a way that prevents traffic from being carried across any of the virtual topologies
(an example of fate sharing).

Unplugging the system with the faulty NIC is the obvious first solution: is this a
temporary fix or a permanent one? The host is there for a reason, so this must be a
temporary fix, correct? Yes…and no. Shutting down this host provides an immediate
fix, but to determine if this should be the temporary or permanent fix, you need to

Final Thoughts on Troubleshooting 647

determine what the host is used for, and whether or not it is still needed. Leaving a
host attached to a network if it is no longer needed, even once it is repaired, simply
increases technical debt. Some other problem with this host in the future is going to
cause a problem again, a problem that could have been avoided by simply removing
the host entirely from the network.

Assume the host is required, replacing the NIC becomes the permanent fix, cor-
rect? Again, not necessarily. The host may be older and should simply be replaced
entirely. Replacing the NIC in an older host may, again, simply increase technical
debt, as the host may fail in some other way that causes a network failure at some
point in the future.

Assume the host does need to be replaced. In that case, replacing the host should
be the permanent fix, correct? Again, not necessarily. It could be time to reconsider
the design of the network. If a single failed NIC should not be able to cause a system-
wide failure, it may be worth considering a permanent fix that includes redesigning
the network to reduce fate sharing or to reduce the scope of the failure domains.

The concepts of temporary and permanent fix are, then, flexible. Look to the
business and the business drivers to think through where to stop when fixing a prob-
lem; don’t assume replacing the hardware is the final fix, nor that every problem
requires a complete network redesign.

Final Thoughts on Troubleshooting

The half split method, grounded in accurate models of the system, is an effective
method to use when troubleshooting large-scale problems in any system. It is not
perfect, of course; the real world is far too messy for a single process to be “perfect”
at solving all problems, but long experience has shown the half split method to be the
best general guide to finding problems quickly. To reiterate:

 • Build accurate models, particularly the business, the applications, the proto-
cols, and the equipment. This is probably where most failures to effectively
troubleshoot problems occur, and the step that takes the longest to complete.
In fact, it is probably a truism to say that no one ever completes this step, as
there is always more to learn about every system, and more accurate ways to
model any given system.

 • Have a problem/solution mindset. This is probably the second most common
failure point in the troubleshooting process.

 • Half split, measure, and move.

Chapter 24 Troubleshooting648

Some final points to consider:

 • Never assume the problem is a result of a configuration or design change;
always remember equipment failures, new traffic patterns, and other situations
can (and often do) cause failures. Some management systems focus on change
control to the point of excluding other failure modes from view, which can dis-
courage effective troubleshooting, and increase technical debt over time.

 • Do not take shortcuts. Do not start with what can be easily tested. Do not
assume you have found the problem on the first test. Always try to find a way to
both prove, and attempt to disprove, your theory.

 • If something does not look right, it probably is not.

 • Many of the concepts used in troubleshooting can be applied to testing, as
well—validation, etc.—before placing things into the network

Troubleshooting is an art grounded in technique, knowledge, and experience. Do
not become frustrated if it proves difficult to learn this art; it often takes long hours
of work with those who have more experience and have a better understanding of the
system—and of what questions to ask—to have a strong set of troubleshooting skills.
On the other hand, once you learn the art of troubleshooting, you will not likely forget
it—and you will be able to apply it to many different areas of technology, not just
 network engineering.

Further Reading

Day, J. Patterns in Network Architecture: A Return to Fundamentals. Pearson Edu-
cation, 2007. http://books.google.com/books?id=k9sFgIM-z6UC.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3rd edition. Boston, MA: Addison-Wesley Professional, 2003.

Huang, Peng, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. “Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems.” In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, 150–55. HotOS ’17. New York, NY, USA: ACM, 2017.
doi:10.1145/3102980.3103005.

Lieberman, Norman. Troubleshooting Process Operations. 4th edition. Tulsa, OK:
PennWell Corp., 2009.

Mostia, William L. Jr. Troubleshooting: A Technician’s Guide. 2nd edition. Interna-
tional Society of Automation, 2016.

http://books.google.com/books?id=k9sFgIM-z6UC

Review Questions 649

Review Questions

 1. Consider the Observe, Orient, Decide, Act (OODA) loop as described in
the context of network security. How could the OODA loop be applied to
troubleshooting?

 2. Research the concept of a gray failure (look at the “Further Reading” section).
How should gray failures change your troubleshooting process? What would
you look for in troubleshooting gray failures?

 3. Explain the difference between how and what models for network
troubleshooting.

 4. You are troubleshooting a problem where a small percentage of packets are
dropped when being forwarded through a network. What does the percentage
of packets dropped indicate about the tools required and the amount of infor-
mation you will need to manage in order to troubleshoot this problem?

 5. Describe different kinds of signals you might find in a network that can be
used to trace out the operation of a particular system or application.

This page intentionally left blank

651

Up to this point, this book has focused on problems and solutions. Part IV is a bit
different, in that it primarily focuses on some of the newer trends in network
engineering:

 • What is the virtualization of functions, what does this accomplish in terms of
business requirements and usage of networks, and how does virtualizing func-
tions interact with network design and performance?

 • What is the Internet of Things, and what impacts might this concept have on
the design and future of networks?

 • Cloud is moving from the new and exciting to the normal and operational;
what is cloud computing, and how are clouds built?

 • Networks are becoming so large that it is becoming difficult for administrators
and engineers to actually manage each piece of equipment individually in near
real time. How and where do automation and development operations play a
role in solving these problems?

These chapters are simply overviews of each of these areas; there is not enough
space in a book, even of this size, to cover each area in any sort of detail. It is impor-
tant, then, to pay attention to the “Further Reading” sections at the end of each
chapter to find more material to learn about each topic.

When reading these chapters, you should focus on understanding and analyz-
ing these technologies and ideas in the framework presented throughout this book.
Ultimately, there is nothing really new here in terms of problems solved or solutions

 PART IV

Current Topics

Part IV Current Topics652

offered at a technology level. The constraints of the physical world, no matter how
deeply buried in logical abstractions, will always impose reality checks on any solu-
tion set or design that must be deployed in the real world. Ultimately, you must look
for the tradeoffs in design, security, privacy, cost, and fitness to the purpose of the
network—complexity cannot be avoided; it can only be moved from one place to
another in the network.

If you are reading this book after one of the trends in this section have “come and
gone,” you should still read these chapters for their ability to make you think about
larger scale, hard-to-solve problems. The intent of this book is to be timeless, in that
it will still be a useful learning guide and reference 20 years from now (when you are
reading this, not when it is being written). While not every component of the future
can be found in the past—there are always surprises in technology and ideas—the
fundamental building blocks can always be found in the past.

The chapters in this part of the book will help you understand how the many
pieces considered up to this point can be put together in different ways to make
something new. The chapters in this section include:

 • Chapter 25: Disaggregation, Hyperconvergence, and the Changing Net-
work, which considers the application of disaggregation to building networks,
and data center fabrics

 • Chapter 26: The Case for Network Automation, which considers network
automation and Development Operations

 • Chapter 27: Virtualized Network Functions, which considers Network
Function Virtualization, Service Chaining, and scale out service design

 • Chapter 28: Cloud Computing Concepts and Challenges, which considers
the business drivers, tradeoffs, and challenges in moving processing to public
cloud services

 • Chapter 29: The Internet of Things, which considers the widespread deploy-
ment of sensors and other “things” attached to the Internet, and the challenges
and possible solutions resulting from this movement

 • Chapter 30: Looking Forward, which considers the future of network engi-
neering, including some further thoughts on network automation, block-
chains, and named data networking

653

Chapter 25

Disaggregation,
Hyperconvergence, and
the Changing Network

Learning Objectives

After reading this chapter, you should understand:

 0 What disaggregation is and what advantages it brings to the business

 0 The concepts of converged, disaggregated, and hyperconverged
architectures

 0 The basic design concepts of a network fabric

 0 The basic design concepts of a spine and leaf fabric

 0 The difference between a nonblocking and noncontending fabric

 0 The components necessary to build a disaggregated network

The network engineering world has, since the very beginning, been appliance-based;
you buy a router, switch, or some other piece of networking gear, you rack it, cable it,
power it on, and configure it to fulfill the functions you need. This is far different
than the rest of Information Technology (IT), which has always had many more
diverse models of software and hardware. This chapter will begin with a look at two
specific movements within the broader IT world and then relate these movements to
network engineering.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network654

Changes in Compute Resources and Applications

In the distant past, computers were all built the same way. There was a case, a moth-
erboard, memory, a hard drive, a keyboard, and a monitor. When companies started
building networks, they began placing sets of servers into server rooms, including
specially built furniture designed to hold 15–20 servers, and a Keyboard Video
Mouse (KVM) switch so a single set of input and output devices could be used to
manage all of the servers at once. The amount of space involved in such installations,
along with the power and cooling problems, quickly led to the use of specially
designed rack-mounted systems.

Each system, even in a rack-mounted case, was a single, standalone server of some
type. One server might have file sharing, directory, and email services running (such
as a Novell Netware, Banyan Vines, Lantastic, or IBM OS/2 server). Another server
might have a database running on it, such as Oracle. As more resources were needed,
the server would have additional memory installed, a bigger processor, more drive
space, etc. This is called scaling up.

Over time, the processing and storage requirements simply became too large to
build a single server able to handle the load, so applications were redesigned to run
across multiple servers connected to the same segment. This is called scaling out.

Eventually, of course, through the work of Intel, VMware, and others, the appli-
cations, or processes, were disconnected from the physical compute resources—
processor, storage, and memory—and placed into virtual machines (VMs), or later,
containers. This virtualization process, however, had a side effect.

Converged, Disaggregated, Hyperconverged, and Composable

Once compute resources are virtualized, why should they be located on the same
physical server? For instance, the hard drive does not need to be in the physical server,
so long as it can be accessed as a virtual resource over the network connection. Thus,
the compute resources themselves could be moved anyplace on the network, so long
as they would be accessible, within specific performance requirements, to the appli-
cations that needed them.

The original physical format of these compute resources is called converged; all of
the resources are converged in a single device. Only applications running on a physi-
cal processor can access resources such as disk, memory, and network interfaces,
connected to the processor. Virtualizing access to these compute resources led to dis-
aggregation. In a disaggregated system, the compute resources can live anywhere as
long as they are accessible over the network. This brings the scale-out model to a new
level. Rather than scaling out by crossing servers, you can scale out by actually pull-
ing resources from various systems connected to the network as needed.

Changes in Compute Resources and Applications 655

There is another side effect of the move to virtualize interfaces in this way. The
virtual interface that applications use to connect to and use these resources essen-
tially becomes a standardized Application Programming Interface (API), which
means there is no reason to buy one brand of hardware over another, so long as the
hardware meets the required performance metrics.

When you can buy hardware for its performance versus price profile, and use it with
any other hardware (or software) you happen to have, the result is that the brand of
equipment is deemphasized. This leads to the idea of a white box—buying hardware
because of its components rather than the brand. Of course, white box is a somewhat
loaded term; it somehow implies a couple of people sitting in a garage soldering boards
together from whatever components they can come up with. This new “white box
movement” might better be called disaggregation, as there is a wide range of hardware
available, from basic features and functionality to fully supported branded devices.

The disaggregation movement, however, has a specific downside. Moving storage
off the local system bus, connected directly to the processor, forces the processor and
the applications running on the processor to access stored data through the network.
The side effect is slower access to data. Although some databases are designed to
allow the correct data set for specific operations to reside entirely in memory on a
single node, carrying data to and from a disk over the network can still introduce
serious limitations in a design.

The most obvious way to solve this problem is to move the data back onto the
local system; however, then you lose the ability to build a set of compute resources
dynamically. The solution to this problem is hyperconvergence. Here, the storage,
memory, and network resources are still connected to individual processors, but they
are virtualized in a way that allows all the processors attached to the network to
access them. With good planning, storage, memory, and other resources can be allo-
cated nearby, so network traffic is kept to a minimum, while still allowing VMs to be
built out of a diverse set of resources.

Figure 25-1 illustrates the concepts of a converged, disaggregated, and hypercon-
verged architecture.

In Figure 25-1:

 • In the traditional illustration, in the upper-left corner, each processor is
attached to storage, memory, and network access through a local bus; applica-
tions running on the process have access to these resources.

 • In the converged illustration, in the upper-right corner, a single process is
attached to storage, memory, and network access through a bus. Multiple
virtual machines are created using processor features; each of these virtual
machines runs applications that can access the resources attached to the local
processor bus.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network656

 • In the disaggregated illustration, in the lower-left corner, the storage has been
centralized onto a device reachable through the network. Virtual machines
running on the various processors access local memory and network resources
but connect to storage through the network, which is accessible through the
local processor’s bus.

 • In the hyperconverged illustration, in the lower-right corner, each virtual
machine runs on a particular processor, accessing memory and network
resources connected to a processor through the local bus. An agent runs
on each processor, as well, which redirects the locally attached storage to a
network-based interface, and presents a single storage pool based on these
resources. The storage manager will often attempt to locate data as close as
possible to the processor using it.

Storage

Processor Memory

Network

Processor Memory

Network

VM1

VM2

VM3

Processor

Processor

Network

Storage

Memory

VM1

VM2

VM3

Memory

Storage

Network
st

or
ag

e
po

ol

Processor

Processor

Storage

Storage

Memory

Memory

Network

Network

“traditional”

Processor

VM1

VM2

VM3

Storage

Memory

Network

converged
(and virtualized)

hyperconvergeddisaggregated

Figure 25-1 Converged, disaggregated, and hyperconverged

Changes in Compute Resources and Applications 657

Note

The term processor can be confusing in the context of virtualization. Many hosts
contain one to four processors, with each processor containing one to eight cores.
A single VM or container may run on a single core, consume all the processors
and cores in a single host, or any combination of the above. To simplify the expla-
nation here, however, the term processor was selected to represent any potential
set of cores and/or processors a VM or container may run on.

You might note these illustrations focus specifically on the location of storage.
This is because storage not only tends to be the easiest resource to move around the
network, but it is also often one resource where you can save a lot of expense through
some form of centralization. For instance:

 • While data can be compressed on multiple devices, it is often better to run
specialized hardware able to compress and decompress data to and from stor-
age on the fly. Such specialized hardware can not only run compression much
faster, but it can be tuned to compress more deeply and use less energy in the
compress process than a general-purpose processor.

 • The same holds true for encryption; most modern processors can certainly
handle encrypting data while it is being written and deencrypting data while it
is being read, but specialized processors are often so much more efficient, they
are worth the investment if large amounts of storage are involved.

 • Data deduplication can reduce the amount of storage used, also reducing costs.
If, say, a company memo is sent with a 1MB attachment, and 1,000 people save
it, the result will be 1GB of storage consumed. A data deduplication system
can save one copy of the attachment, replacing each “copy” with a point to the
single copy, saving 999 copies of the attachment. Data deduplication works for
operating system files, applications, databases, and any other sort of informa-
tion; it can dramatically decrease storage requirements in many cases.

In each of these solutions, applications are still limited to the physical memory
and network resources attached to the local processor. In a composable system, even
these resources can be shared among processors. Figure 25-2 illustrates one way to
build a composable system.

In Figure 25-2, a processor bus has been extended so it has many different proces-
sors, network interfaces, memory banks, and storage devices that can be attached.
A system manager composes sets of resources out of this large pool of resources for
individual virtual machines to run on. Not all composable systems use an extended

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network658

processor bus in this way; some attach each individual device to an internal Ethernet
network, using the network to transport information from the processor to the
 external network interface, or a storage device. This sort of configuration allows a
system to scale out to very large sizes, while continuing to treat each resource as a white
box; it does not matter who makes each device, so long as they can all present a
 uniform set of APIs to the composable system manager.

Applications Virtualized and Disaggregated

A second disaggregation movement happened as a result of virtualization at the
server level—the disaggregation of applications. Most applications were designed

Processor

Processor

Processor

Memory

Memory

Memory

Storage

Storage

Storage

Network

Network

Network

storage
pool

memory
pool

network
pool

proc
pool

Figure 25-2 A composable system

The Impact on Network Design 659

to run on a single device, with full access to an entire range of local hardware
resources, and to complete a task from start to finish. For instance, an application
tracking customer orders might hold customer information, product information,
current orders, past orders, inventory, etc., all in a single set of databases. Over
time, such applications were broken into a database back end and a business logic
front end, but these two pieces were still somewhat unified, identifiable
applications.

With the rise of virtualization, it started to make more sense to break up an appli-
cation into many pieces, with each piece running on a set of virtual servers. In this
way, any piece of the application could be scaled up to meet demand or scaled back
to use less resources when demand was low—another version of scale out, but in
terms of applications.

Breaking an application into smaller pieces, each of which represents a single ser-
vice within the larger application, and then interconnecting those applications even-
tually leads to microservices, a form of computing where each individual module of
an application is broken out into a smaller app, each of which does one thing very
well. The apps are connected over the network so the application actually runs on the
entire network.

Not only do such systems tend to scale out well, but they can also manage change
and failure in more graceful ways. If a single host or router in the data center net-
work fails, it will likely represent just some small part of the processing the entire
application does; such failures can more easily be dealt with than a single host that
runs an entire processing system failing.

The Impact on Network Design

These three trends—the disaggregation of server hardware, hyperconvergence, and
the trend toward virtualized services rather than applications in the traditional
sense—have had a marked impact on the design parameters for data center networks.
This section will consider two of these changes specifically: the rise of east/west traf-
fic and the rise of jitter and delay sensitivity in the network.

The Rise of East/West Traffic

In converged and virtualized converged systems, the network is primarily used for
carrying traffic to and from hosts, whether the host is virtualized or not. The server
is, in effect, a black box to the network; traffic of various sorts enters the device from
the outside world, and traffic is transmitted from the device to the outside world.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network660

Traffic being carried to and from servers from outside the data center is called north/
south traffic, as it is traveling between the top and bottom of the network diagram as
“traditionally drawn.” Figure 25-3 illustrates.

In Figure 25-3, the entire server H appears to be one black box; moving traffic
between storage, memory, processor, and the network interface is handled through
the processor bus, which is, in effect, a small internal network. The primary traffic
flows in this network will be from A to H and back again, which is along the north/
south axis of the network.

Figure 25-4 illustrates what happens when the storage is centralized through
disaggregation.

network

A

B C

D

H K M N

north
south

E F G

Processor

Storage

Memory

Network

Figure 25-3 North/south traffic flow in a network with converged compute resources

The Impact on Network Design 661

In Figure 25-4, any time the processor needs to copy information from storage into
memory, the data must travel across the network. This data is called east/west traffic,
as it is flowing from one device connected to the data center network to another. The
disaggregation of applications into services, and potentially microservices, has the
same effect as the disaggregation of hardware resources. Combining these two reali-
ties, a single request from a host, such as A, will represent a small amount of north/
south traffic but will drive a lot of east/west traffic.

How much more? Most web and hyperscale network operators report about a
10-to-1 ratio—for each bit of north/south traffic, there will be about 10 bits of east/
west traffic. It is not unusual for web scale networks to carry multiple terabits of data
a day in response to several hundred gigabits of actual user requests.

network

A

B C

D

H K M N

north
south

E F G

Processor

Storage
Memory

Network

Figure 25-4 The impact of disaggregation (centralized storage)

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network662

The Rise of Jitter and Delay

The disaggregation of applications and compute resources has caused jitter and
delay through the network to become a very big problem. Specifically:

 • Once you separate the storage from the rest of the compute resources, the per-
formance of the application and the performance of the network are intrin-
sically linked. If the network is congested, for instance, taking even some
fraction of a second to transfer data from a storage device to a processor, the
impact on the performance of the application can be devastating.

 • Once you break up the application into services and move toward microser-
vices, the performance of any one service will impact the performance of the
entire application.

A convenient way to think about this is: The processor bus itself has been
extended over the data center network. The application, as a whole, is now running
on the network in the same way it once ran on a single host or within a single device.
The network, as a whole, is now a system and must be treated as a system.

Any delay or jitter in the network can cascade through the system, causing the
entire application to perform poorly. When your revenue depends on user engage-
ment, and user engagement depends on the speed at which your application loads,
any problem in the data center network shows up directly as a loss of revenue.

Packet Switched Fabrics

How can network architectures be adapted to meet the requirements of an applica-
tion running on the network itself, treating the network as a system? To solve this
problem, network engineers returned to some old ideas about the best way to build
circuit switched networks, merging them with packet switching principles to create
the packet switched fabric. This section will consider some aspects of fabric design.

The Special Properties of a Fabric

How is a fabric a special case of a network? To begin, it is best to discard various
marketing uses of the term fabric, such as

 • Any network with an overlaid virtual topology, including a “core fabric” and a
“campus fabric”

Packet Switched Fabrics 663

 • Any high-performance network, with high performance meaning high
bandwidth

 • Any network with a lot of equal cost multipath (ECMP) availability

 • Any network where the entire network is treated as a single “thing,” rather
than as a set of separate components

These uses of the concept of a fabric almost always come down to marketing;
engineers and managers have become comfortable with a fabric being some sort of
special network and hence more desirable than a “plain old-fashioned network.” This
is much like the marketing craze in the mid-1990s around calling a router a “layer 3
switch” because it performed a header rewrite in hardware. The last definition in
the preceding list—any network treated as a single “thing”—is very clever, because
it implies you cannot build a fabric out of individual components. Rather, in this
definition, a fabric is something you must buy as a unit from a vendor as “one thing.”

Leaving aside these sorts of marketing definitions, what makes a network a fab-
ric? There are three specific characteristics of a fabric:

 • The regularity of the topology

 • The way in which the topology scales in bandwidth and connectivity

 • The specific performance goals the topology is designed to fulfill in terms of
forwarding

Each of these deserves a closer look.
Topological regularity means the topology of the network is well defined

and repeating. To say a topology is repeating is to say the topology consists of a
large number of identical pieces repeated to create the scale required; Figure 25-5
illustrates.

The difference between the regular and irregular topologies should be apparent:

 • If you “pick up” [A1,A2,B1,B2] as a unit, and move A1 to the same position
as B2, the two pieces of the topology are identical. In fact, [A1,A2,B1,B2];
[B1,B2,C1,C2]; [A2,A3,B2,B3]; and [B2,B3,C2,C3] are identical “subtopolo-
gies” of the larger topology. Each of these subtopologies is interchangeable
within the larger topology.

 • The same is true of [D1,D2,E1,E2] in the second network topology illustrated;
these four routers can be moved to any other position in the network without
any modifications to the overall topology.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network664

 • [G1,G2,H1,H2], however, is unique within the third network, at the lower-left
corner of the illustration. There is no other place in the network with the same
topology. This is an irregular topology.

 • While [L1,L2,M1,M2] has the same topology as [M2,M3,N2,N3], neither of
these sets of four routers has the same topology as [L2,L3,M2,M3]. Again, this
is an irregular topology.

Why is this an important point when deciding if network is a fabric? First, because
fabrics are generally designed to use completely replicable hardware, software, and
configurations at the subtopology level. You can think of this as a form of micro-
modularization, perhaps, with each piece of the network designed to be fully replica-
ble in very small pieces primarily for ease of configuration and management, rather
than for breaking up failure domains. In fabric designs at scale, the physical layout is
separated from the logical layout of the network as much as possible.

The scaling characteristics of the network topology are the second marker of a
fabric. Specifically, fabrics tend to scale out instead of scale up. These two concepts

2

2

2

2

A

G

D

L

1

1

1

1

3

3

3

3

B

H

E

M

C

K

F

N

Figure 25-5 Regular and irregular topologies

Packet Switched Fabrics 665

have already been discussed in relation to servers and applications. How do they
apply to a network? Figure 25-6 illustrates.

The upper network in the illustration is configured as a fabric, while the lower
one is configured in a hierarchical topology. The problem at hand is, how do you
add enough bandwidth to connect a new pod of equipment? In the lower network,
the hierarchical design, you can add a new aggregation router at the edge of the net-
work, and connect the new equipment there. However, adding this new router and
new equipment may also mean the bandwidth in the core of the network needs to be
increased to support the additional load. Generally, this means adding more links or
perhaps adding parallel links and either running ECMP or bonding the links in some
way. In either case, this means larger ports or more ports, higher-speed links, etc. The
older equipment must either be replaced or augmented to add capabilities.

In the upper network, adding a single new pod requires adding three new routers to
the network and the links associated with the new routers. However, the total bandwidth

repeated additional
topology

increased
link bandwidth

added router/ports

Figure 25-6 Network scale up versus scale out

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network666

of the network increases as the new connection point is added. Hence, the network
scales by adding more equipment of the same kind, rather than by modifying the exist-
ing equipment. The difference between adding more modules and replacing or augment-
ing existing equipment is the key differential between scaling up and scaling out.

The general rule of thumb is this: fabrics scale out, rather than up; hierarchical
designs scale up, rather than out. This is not always true, of course; fabrics do have
a scaling limit based on the number of ports connected to each device, and other
designs can be built so they have some measure of “scale out” before the hardware
must be augmented or replaced, but the general rule holds in most cases.

Performance goals are the third differentiator between a network and a fabric.
Networks typically have performance goals centering around Quality of Service
(QoS) handling and uptime. Fabrics have similar, but sometimes slightly different,
sorts of performance goals. For instance:

 • Failure rates are often measured in terms of the pods and/or other components
of the fabric, rather than the “entire network,” or a particular application.
Most applications designed to run on hyper- or web-scale fabrics are designed
to tolerate being moved between racks of servers, so a single rack, pod, or link
failing can be countered by moving the application to a different rack or pod
attached to the fabric.

 • The movement of workloads to different places in the fabric places an often
difficult-to-manage mobility requirement on fabrics. Mobility is not often a
factor in other network topologies. Workload moves on a fabric must be dealt
with very quickly; application users do not often wait for the network to con-
verge around a failed rack or pod.

 • Fabric design is often focused on the fabric’s oversubscription, which means the
amount of bandwidth available in the network core compared to the amount of
bandwidth available at the edge ports. For instance, if an edge switch or router
(called a Top of Rack [ToR] or leaf) offers 320Gb of bandwidth down to serv-
ers, but has just 180Gb of fabric connections, it is described as being 2:1 over-
subscribed. Another way to describe oversubscription is in terms of how much
bandwidth is available from any port to any other port on the fabric. If every
port on a ToR can send traffic at a full rate to some other set of ports attached
to the fabric, then the fabric is said to have 1:1 (or no) oversubscription.

 • Many network designs focus on reducing delay using traffic engineering and
Quality of Service techniques. Fabrics, on the other hand, try to reduce jitter as
well as delay, and mostly try to reduce end-to-end queueing, rather than imple-
menting any sort of complex QoS. Many fabrics do, however, use some form
of traffic engineering.

Packet Switched Fabrics 667

Spine and Leaf

One of the most commonly used topologies to build fabrics is the spine and leaf,
which is not really a single design, but rather a family of designs based on the same
basic building block. Figure 25-7 illustrates a basic spine and leaf design.

The bottom and top stages are called either Top of Rack (ToR) or leaf nodes;
these are where hosts and other devices are connected to the network. The remain-
ing stages are generally called spines of some sort; there are two rules for spines in a
standard spine and leaf:

 • There are no connections between spine routers.

 • No devices of any sort are connected to spine routers; all connectivity into the
fabric is carried through a leaf node.

An alternate form of numbering is shown on the right side of the fabric. Fabrics
can be drawn folded, but the stage count is given based on the total distance through
the fabric; the fabric shown in the illustration is a five-stage or ary fabric. The num-
ber of stages can be confusing in some configurations of spine and leaf topologies.

Note

Some spine and leaf designs do have connections between spine routers; this can
solve some problems when you are aggregating routes on the fabric, but it also can
add a lot of complexity into the network design and control plane convergence.

leaf or ToR

spine

superspine

stage 1 T0

T1

T2

T1

T0

stage 2

stage 3

stage 4

stage 5

Figure 25-7 A five-stage spine and leaf

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network668

In the standard configuration, as shown in Figure 25-7, adding stages does not
really add more ports; instead you would scale out this kind of fabric. The scaling
limit is the number of ports available on each device in the fabric, and the oversub-
scription rate is the difference between the amount of bandwidth offered by the ToR
routers and the amount of bandwidth available from the ToR routers into the fabric.

One of the key points about spine and leaf fabrics is they do not need a complex con-
trol plane to forward traffic correctly. While most hyperscale networks do use a complex
control plane, it is normally used to compensate for cross links, to provide information
for an overlay virtual network, or to provide for some form of traffic engineering.

Nonblocking versus Noncontending

What is the difference between nonblocking and noncontending networks?
In a nonblocking network, there is no way for any packet to be blocked while
traversing the network. Packet switched networks cannot be nonblocking.
Consider, for instance, the network illustrated in Figure 25-8.

A

B FC GD HE K

Figure 25-8 Nonblocking versus noncontending

Packet Switched Fabrics 669

Two other helpful concepts in the fabric world are the type of tree. Skinny tree
fabrics have the same link between every stage within the fabric (this does not include
the ports provisioned for servers, however). Fat tree fabrics use a smaller number
of higher-speed links in the center stage of the fabric, generally between the super
spine and the spines, and lower-speed links between the spines and the ToR devices.
In either case, the same oversubscription concepts apply; the primary difference
between the two is optical, just in the amount of cabling and how the ports are con-
figured on the various devices in the fabric.

If every link in this network is the same bandwidth, then it is possible for
B, C, D, and E to each send a stream the same size as their connected links
to F, G, H, and K. Because the number of edge ports offered to servers, 4, is
the same as the number of fabric side ports on each ToR, it is possible for
each device connected to the fabric to fill its connection link into the fabric
without anything being dropped. On the other hand, if B, C, D, and E each
send a large stream toward A, the link from A to its connected ToR will need
to switch four times more traffic than it has in available bandwidth. At this
point, the fabric itself does not block any traffic, just the edge port facing the
attached server. However, if F sends a full rate stream with A as the destina-
tion, there are now five full rate streams that the ToR at A needs to receive,
and just four links on which to receive them. In this situation, one of the spine
switches is going to need to block traffic (or, in this situation, throw enough
traffic away to reduce the amount of traffic on the fabric to a level the avail-
able links can support).

In a circuit switched network, this problem would be solved on the inbound
side through traffic scheduling, so the fabric itself does not block any traffic.
In a packet switched network, however, it is still possible for multiple attached
devices to send an overwhelming amount of traffic toward a single destina-
tion, causing the fabric itself to block traffic. There are two ways to resolve
this kind of problem.

First, QoS controls can be placed on the network to control which traffic
is forwarded and which is either dropped or at least queued for some amount
of time. Second, the application can be designed to sense this sort of problem
and slow down the rate at which it is transmitting. If these first two mecha-
nisms sound familiar, it is because they are the same kinds of techniques used
in any network to deal with congestion.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network670

Traffic Engineering on a Spine and Leaf

Why would you ever need to deploy traffic engineering on a fabric designed with no
oversubscription? Figure 25-9 is used to illustrate.

In Figure 25-9, assume A has some large flow destined to C, consuming just about
all of A’s local link into the fabric, and is persistent; it will last for more than two or
three seconds, potentially into the realm of days or months. These large, persistent
flows are called elephant flows in the context of a data center fabric. Generally, ele-
phant flows relate to large data transfers (such as those involved in moving a Hadoop
job around on the fabric, or a database replication), and are not sensitive to jitter.
Assume this flow is placed on the path [V1, W2, X3, Y2, Z1]. At some point during
the duration of this elephant flow, B starts a short session with low bandwidth use
requirements, in support of an delay or jitter sensitive application. Assume this flow
is placed on the path [V2, W2, X3, Y2, Z3].

Both of these flows are going to share the [W2, X3] and [X3, Y2] links. Given the
nature of the two flows, the smaller flow, sometimes called a mouse flow, will not
meet its jitter requirements even if there is plenty of bandwidth available on other

C D

A

W W

V V

1

1

2

2

3

3

4

4

X X

Y Y

Z Z

B

Figure 25-9 Traffic engineering in a fabric

Packet Switched Fabrics 671

paths on the fabric. To resolve this, the elephant flow needs to be pinned to a single
path, and the path taken out of consideration for use by other flows passing through
the network. This is the primary use case for traffic engineering in a noncontending
data center fabric.

A Larger-Scale Spine and Leaf

Many large (web- or hyper-) scale networks use a butterfly fabric, which is a variant
of a Benes, and also a type of spine and leaf fabric. Figure 25-10 shows a small
example.

In Figure 25-10, there are two fabrics, each of which might also be called a core,
and a set of ToR devices. Each fabric is a full spine and leaf; each ToR connects to
one point in each fabric. Depending on your perspective, this can be considered a
five-stage fabric, ToR to ToR, or it can be considered a three-stage fabric with an
additional set of access devices (though you would still never connect any devices or
external access to the leaf nodes of the two fabrics in this network—all connectivity
would be through one of the ToR routers or switches).

fa
br

ic
 1

fa
br

ic
 2

top of rack

top of rack

Figure 25-10 A butterfly or Benes fabric

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network672

The primary advantage of such a design is the oversubscription rate and scal-
ing can be adjusted within the limits of the fabric side ports of the ToR devices.
To decrease the oversubscription rate, increase the number of cores. To increase the
scale, increase the number of cores and ToR devices in parallel.

Disaggregation in Networks

Disaggregation has caused a revolution in the way compute resources are built and
used. Can these same concepts be applied to the network?

Networks have, “since forever,” been built out of appliances. A device is pur-
chased from a vendor, racked, cabled, powered on, and configured through some
sort of semiproprietary interface. Each device has a fairly unique feature set; in fact,
the feature set of the software and hardware combined is the primary selling point,
because the wide range of features (and nerd knobs) allows a single piece of gear to
be used in a wide variety of networks, under a wide variety of conditions. This abil-
ity makes the appliance “future proof,” in the sense that no matter what problem you
throw at the appliance, it is likely to have some feature that can be enabled to “solve”
the problem (for some value of “solve”).

The result is an engineering world that

 • Chases features whether or not they are needed to solve a particular problem
right now, leading to overengineering in many cases.

 • Chases service and support, because the devices themselves are so complex,
and the networks built from them tend to use a combination of features found
nowhere else in the world; hence each network is the same and yet each net-
work is completely unique.

 • Splits the work of design and architecture between the vendor, who shapes
architecture by building products for the widest possible audience, and the
operator, who tries to use as many square pegs as possible, because this is what
vendors offer, regardless of the shape of the problem.

Looking over the history of compute resources, these are precisely the same prob-
lem set that disaggregation was designed to solve. Perhaps, then, disaggregation in
the network can help solve these same problems. There is one more lesson from the
compute and applications to consider before looking at disaggregation in the net-
work, however.

Disaggregation does not look the same in applications and compute resources;
this is primarily due to the physical limitations of each kind of system, and where

Disaggregation in Networks 673

there are points at which efficiency can be improved. Given this experience, disaggre-
gation will probably look different in the network, while still driving the same sorts
of efficiency and operational gains.

The key points in disaggregation in applications and compute resources have been

 • Decoupling hardware from software

 • Commoditizing the hardware so it is usable across a wider range of
functionality

 • Specializing the software (such as services- and microservices-based applica-
tion development)

 • Pooling resources as needed to solve specific problems using the principle of
scale-out design

How can these be applied to the network? The first step is to consider where soft-
ware and hardware can be decoupled, which drives the remaining steps. Returning to
a sketch of how a router is built can be helpful here; Figure 25-11 illustrates.

Note

The kind of diagram shown in Figure 25-11 is notoriously difficult to draw, sim-
ply because there are so many different ways of building software. What is shown
here is one possible representation just to illustrate the various pieces required to
build a router (or other network device).

PHY

configured
routes

configuration system
IS-ISBGP

data bus

kernel
configuration

databaseRouting Information Base (RIB)

Hardware Abstraction Layer (HAL) Platform Abstraction Layer (PAL)

forwarding ASIC Fan/LED/etc.

routing stack

network

Figure 25-11 Router components

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network674

In Figure 25-11:

 • The forwarding Application-Specific Integrated Circuit (ASIC), fans/LEDs/
etc., and PHY (physical network interface chipset) are the only hardware
devices shown; the remainder are software components.

 • The software components are assumed to run on some local processor, mem-
ory, and storage resources; these are not normally shown when considering the
architecture of a network device.

 • The routing stack consists of two components: the actual routing protocol (or
other control plane) applications and the Routing Information Base (RIB).

 • The kernel primarily manages processes, including memory and processor
usage; the kernel may also provide a communication channel between some
pairs of components.

 • There may be no, one, or two data busses in the system. If this component
exists, it is responsible for providing a standard way of carrying information
between the other components in the system, and potentially acting as a data
store for system state. The data bus can be implemented as a database or a
publish/subscribe system.

 • There may or may not be a configuration database. If it exists, the configura-
tion database is responsible for holding configuration state for all the other
systems on the device.

 • The configuration system provides some way to read and write the configu-
ration of the device. Generally, this will include both a machine-readable (an
API) and human-readable interface (a command-line interface [CLI]). The
machine-readable interface will be considered more fully in Chapter 26, “The
Case for Network Automation.”

There is a single term, the Network Operating System (NOS), that is often used
to describe either

 • All of the software components

 • The kernel, data bus, and (sometimes) other components, such as the HAL and
PAL

Because the meaning of NOS is variable, you need to make certain you under-
stand precisely which components are being included when the term is used, and
which are not.

Disaggregation in Networks 675

Given this set of components, the interesting disaggregation question becomes:
which components can, or should, be split off and developed, owned, etc., by differ-
ent people? There are several different logical places to place such a divide:

 • Between the routing protocols and the RIB

 • Between the HAL and the rest of the components

 • Between the PAL and the rest of the components

 • Between the hardware and the software

 • Between the RIB and the data bus

 • Between the configuration system and the configuration database

 • Between the configuration database and the data bus

Traditionally, all of these components are purchased as a single item—an appli-
ance. To disaggregate the network, you want to be able to break this appliance apart
into multiple pieces. It is possible, in a disaggregated model, for an operator to

 • Purchase the hardware, HAL, and PAL from one vendor, build his own control
plane to run on top of an open source or vendor-provided RIB, and purchase
the remainder of the system, which might be called the NOS, from another
vendor

 • Purchase the hardware from one vendor and the software from another (where
the entire software piece may be called the NOS)

 • Purchase everything except the system configuration system from a single ven-
dor and build his own configuration system

The key point is the operator must choose which pieces of the network he wants
to own, which he wants to purchase, and which disaggregation model makes the
most sense for his business. The specific model chosen is going to depend on the
business drivers and requirements in a particular environment. Some specific cost
advantages that can be realized by disaggregating hardware from software in the net-
work include

 • Commoditizing hardware by separating it from the software. If a suite of soft-
ware can be used across multiple hardware platforms, the hardware capabili-
ties and cost become driving factors, rather than the brand on the outside, and
the software bundled with the hardware. This is the primary goal of the white
box movement among network operators.

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network676

 • Providing operational stability through many generations of hardware. If
the software and hardware can be replaced or modified separately, then the
 hardware can be replaced with newer, more capable devices without modifying
operational processes and cadence. At the same time, the software can be
modified over time without replacing the hardware, allowing for the network
to grow and mature without resorting to using a forklift to replace all the
 equipment at once.

Like disaggregation on the compute and applications front, disaggregation
in the network space goes far beyond cost savings. Decoupling the software from
the hardware allows the software to be built specifically around the application
 architecture—remember that disaggregated applications treat the entire network
as a single “thing.” Just like building a high-performance computer requires tuning
and adjusting the hardware to support the specific computing task at hand, building
a high-performance distributed application often requires building a network as
a platform, tuned to the application to increase performance and focus where the
operator spends time into areas with higher returns on investment.

Note

Network engineers do not tend to think about removing features, rather than
adding them, as a method of tuning for optimal performance. When you build
a race car, you do not start by adding a bigger engine; you start by removing the
weight of unnecessary things. This simplifies the problem set, reduces the number
of components needed, and generally makes replacing or refitting the remaining
parts a lot simpler, as well as making the car itself simpler to maintain. It is crit-
ical for network engineers to get into the habit of thinking about what can be
removed, as well as what can be added.

The result is a two-front gain. On one side, hardware is commoditized, driving
the cost down. On the other side, the software is customized, providing greater
value, and allowing the software to move at the pace of the business. Even in a
fully supported disaggregated environment (which are available at the time of
this writing), it is possible to disconnect the software life cycle from the hard-
ware life cycle. This allows for hardware replacement on a much faster schedule
to gain new speeds and feeds, and new switching features, while keeping software
in place for a longer cycle, allowing business processes to adjust and work around
the software.

Further Reading 677

Final Thoughts on Disaggregation

The network world is changing rapidly, and disaggregation has played a major role in
driving these changes. Will the network, itself, eventually be disaggregated in the
same way and for the same reasons? The final chapter, Chapter 30, “Looking For-
ward,” will take a look at the future of networking and try to answer these
questions.

Disaggregation in the compute and application space have driven many more
changes in the world of IT and in network management. For instance, another form
of disaggregation in the network is to divide the services offered by the network itself
from the network appliance.

Further Reading

Churchill, Elizabeth F. “Patchwork Living, Rubber Duck Debugging, and the Chaos
Monkey.” Interactions 22, no. 3 (April 2015): 22–23. doi:10.1145/2752126.

“Engineered Elephant Flows for Boosting Application Performance in Large-Scale
CLOS Networks.” Irvine, CA: Broadcom, 2014. https://docs.broadcom.com/
docs/1211168569445?eula=true.

Gill, Phillipa, Navendu Jain, and Nachi Nagappan. Understanding Network Fail-
ures in Data Centers: Measurement, Analysis, and Implications. ACM, 2011.
https://www.microsoft.com/en-us/research/publication/understanding-
network-failures-data-centers-measurement-analysis-implications/.

Lapukhov, Petr. “Routing Design for Large Scale Data Centers.” British Columbia,
Canada, June 3, 2012. https://www.nanog.org/meetings/nanog55/ presentations/
Monday/Lapukhov.pdf.

Lapukhov, Petr, Ariff Premji, and Jon Mitchell. Use of BGP for Routing in Large-Scale
Data Centers. Request for Comments 7938. RFC Editor, 2016. doi:10.17487/
RFC7938.

Martin Casado, and Justin Pettit. “Of Mice and Elephants.” Network Heresy, Novem-
ber 1, 2013. https://networkheresy.com/2013/11/01/of-mice-and-elephants/.

Pepelnjak, Ivan. Data Center Design Case Studies. ipspace.net, 2014. http://
www.ipspace.net/Data_Center_Design_Case_Studies.

Roy, Arjun, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. “Passive Realtime
Datacenter Fault Detection and Localization.” In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), 595–612. Boston,

https://docs.broadcom.com/docs/1211168569445?eula=true
https://docs.broadcom.com/docs/1211168569445?eula=true
https://www.microsoft.com/en-us/research/publication/understanding-network-failures-data-centers-measurement-analysis-implications/
https://www.microsoft.com/en-us/research/publication/understanding-network-failures-data-centers-measurement-analysis-implications/
https://networkheresy.com/2013/11/01/of-mice-and-elephants/
http://ipspace.net
http://www.ipspace.net/Data_Center_Design_Case_Studies
http://www.ipspace.net/Data_Center_Design_Case_Studies
https://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf
https://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf

Chapter 25 Disaggregation, Hyperconvergence, and the Changing Network678

MA: USENIX Association, 2017. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/roy.

Singh, Arjun, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Ban-
non, Seb Boving, et al. “Jupiter Rising: A Decade of Clos Topologies and Cen-
tralized Control in Google’s Datacenter Network.” In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, 183–197.
SIGCOMM ’15. New York, NY: ACM, 2015. doi:10.1145/2785956.2787508.

White, Russ. “The State of Open Source Routers.” Presented at the North
 American Network Operators Group, Bellevue, WA, June 7, 2017. https://
www.youtube.com/watch?v=JTQqmnVRToI.

White, Russ, and Denise Donohue. The Art of Network Architecture: Business-
Driven Design. 1st edition. Indianapolis, IN: Cisco Press, 2014.

Review Questions

 1. Research the difference between a virtual machine and a container. Provide a
short list of three or four differences between the two.

 2. Research the toroid fabric design. How does it differ from the more widely
used spine and leaf design? What would be the impact of a toroid design on
oversubscription?

 3. Explain the differences between a “normal” network and a fabric.

 4. The problem of blocking is not truly removed in nonblocking designs but
rather moved. Where is it moved to?

 5. Explain the difference between elephant and mouse flows.

 6. Find two hardware abstraction layers available for network operating systems.
Note four differences between these two abstraction layers.

 7. Find two open source routing protocol stacks. What protocols are supported?
How much support does each of these projects appear to receive?

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/roy
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/roy
https://www.youtube.com/watch?v=JTQqmnVRToI
https://www.youtube.com/watch?v=JTQqmnVRToI

679

Chapter 26

The Case for Network
Automation

Learning Objectives

After reading this chapter, you should understand:

 0 The main objectives of network automation

 0 The basic network management requirements

 0 The basic purpose and operation of NETCONF

 0 The basic purpose and operation of RESTCONF

 0 Some of the languages used in network automation and their attributes

 0 On-box automation and network controllers

A typical network consists of a collection of distributed nodes, each running an
operating system, each configured with protocols and feature sets. Networkwide
features—for example a routing protocol—require synced configurations to enable
nodes to work together. The number of nodes in addition to the distributed configu-
rations leads to complexity. New nodes or new features increase the complexities of
the system, and increased complexity increases the opportunity of failure, increases
operational cost, and retards the network’s ability to change. These monetary and
nonmonetary costs often restrict network engineers from adopting new features,
using the network to solve business problems, or understanding network failures.

Network automation can lead to better deployment, operation, and troubleshooting
of the network. It can reduce the complexity of network deployment, configurations,

Chapter 26 The Case for Network Automation680

and operations; increase agility, or the ability of the operator to reshape the network
to new requirements more quickly; and reduce cost and risk by removing the human
 element and using automation tools to interact with individual network devices.

Network Automation and Complexity

There is a general assumption in the network engineering field that automa-
tion reduces complexity. While automation can provide a simple set of tools
to perform repetitive tasks, and it reduces human interaction with individual
network devices, it does not reduce complexity in a general sense. Within the
State/Optimization/Surface (SOS) model, automation reduces the interaction
surface between humans and individual network devices, but it adds more
state, in the form of an additional database of configurations and new pro-
tocol interactions, and adds an additional interaction surface, in the form of
a new protocol to the management plane—the Application Programming
Interface (API). Someone must, ultimately, maintain the new tools and APIs
created and used in the process of automating.

This does not mean automation is a bad thing; it is a requirement at
almost anything beyond trivial scale in network operation. However, engi-
neers should always consider the tradeoffs and prepare for where and how
increased complexity may impact network operation. Rather than assuming
complexity will be reduced, assume complexity will be moved someplace else,
and consider how the movement needs to be managed.

Automation can also act as a form of abstraction, replacing a large con-
figuration with a few simple commands. This is both a good and a bad thing:
good, because it ensures the same configuration is done the same way con-
sistently; bad, because abstractions often remove state in one place, while
reducing optimization someplace else. Again, this does not mean automation
should not be deployed; in many cases, automation is the only path forward.
On the other hand, engineers should always look for where optimization
might be affected through abstraction, and understand the potential impact
on the network. All nontrivial abstractions also leak in some way; it is impor-
tant to look for and understand—where possible—these leaks.

If you have not found the tradeoff, you have not looked hard enough.
One particular place to consider the tradeoffs is in the complexity and

capability of the API and the tools used to access the API versus the amount
of state and the breadth and depth of the interaction surface. For instance, to
interact with an interface designed explicitly for human interaction generally
means a chain of interactions from human to tool, from tool to human-centered
interface, then from human-centered interface to the device configuration. The

Automation Concepts 681

movement through the human-centered interface adds a lot of complexity and
makes the interaction surface very difficult to maintain. Moving from an auto-
mation tool through some sort of API designed specifically for machine-to-
machine interaction, then to the device configuration, is much simpler, and hence
adds much less complexity in the automation system. In fact, the latter case, tool
to API to configuration, can reduce overall complexity at a system level.

Network automation can be as simple as automatically provisioning new switches
in the data center to changing configurations through dynamic software develop-
ment to automating response to Syslog events. More robust implementations enable
network teams to stop thinking about the network as a collection of individual net-
work devices and start thinking about the network as a system.

Network automation has spawned a new title within network teams: the automa-
tion engineer. Automation engineers, usually part of the operations team, require
advanced network, protocol, and troubleshooting skills; proficiency in a scripting
language such as Python or Bash; and the ability to manipulate text, such as using
regular expressions. Network automation teams are usually very small.

Note

Regular expressions are a way to match on text strings within a larger text file
(such as a network device configuration, or even a book), either to find those
strings, or to use a text processor to replace one string with another. More infor-
mation about the formatting and uses of regular expressions can be found in the
“Further Reading” section at the end of the chapter.

Automation Concepts

To automate a network device, a network automation tool requires some method to
connect, authenticate, and interact with the management plane of a network node.
Traditionally, most if not all network devices feature a command-line interface
(CLI). The CLI provides access to the management plane over Telnet or a Secure
Shell (SSH), creating what’s well known as a human-to-machine system. While CLI
interfaces are optimized for humans, they can be automated using tools such as
Expect, Puppet, Ansible, Chef, Salt, and CFEngine (see the “Further Reading” sec-
tion at the end of the chapter for links to information about these tools).

Chapter 26 The Case for Network Automation682

Taking one of these tools as an example: Expect is a scripting language to auto-
mate configurations through interactive interfaces—for example, CLI interaction
running over SSH. Expect creates a machine-to-human-to-machine system, normally
using the CLI as an API (so Expect can be leveraged for any system with a CLI).
Expect scripts run a set of commands after the SSH session returns some text. For
example, an Expect script to log in may entail the following:

expect "Username: "

send "Groot"

expect "Password: "

send "cisco123"

The Expect processor examines the text stream in real time, looking for the “User-
name:” prompt (generally by using some form of regular expression matching engine
on the incoming text stream). When this prompt is encountered, the processor sends
a text string in reply containing “Groot” based on a previously written script. The
same pattern is followed for the password. In the case of a Cisco CLI, Expect may
just respond to a command prompt at a particular level, such as the enable prompt.
Expect is very extensible and can automate any CLI-based feature on a single device
or an entire network. In most cases a network automation administrator will use
Expect with text parsing and manipulation tools (such as regular expressions) to
automate the configuration of a large number of devices, hence managing the entire
network with a small number of scripts.

While CLI scripting tools have proven to be very successful and are still in use
in modern networks, they are very difficult to build, maintain, and troubleshoot.
A common issue with Expect is dealing with what happens when something unex-
pected happens. If a vendor changes the output of a particular command or prompt,
or the order in which commands need to be entered, the change will need to be
discovered and the affected scripts modified for the new input/output pattern. For
example, a vendor might change “Username” to “username,” or even ask for the
password first. In these cases, the script will simply not run or throw an error. Addi-
tionally, because each vendor has slight variations of CLI, scripting work must be
duplicated in multivendor or multinetwork operating system environments. Finally,
Expect does not have any implicit understanding of configuration state; thus this
logic must be written in the script.

One of the first tools to emerge to better manage and automate networks was the
Simple Network Management Protocol (SNMP). SNMP enables network operators
to securely connect to a device and use a common (standardized) or vendor- specific
Management Information Base (MIB) to interact with it. SNMP was originally
designed for both monitoring and configuration management; however, using SNMP

Automation Concepts 683

for configuration management has extremely low adoption because it is very difficult
to use and usually does not reflect all the capabilities of a node.

SNMP, in dictionary terms, stores the metadata in an MIB specification, while the
corresponding state is stored in the information retrieved from the device. In order to
retrieve a particular piece of information, the information requested must be speci-
fied according to the dictionary rules; for example, a request might look like

snmpget -m ../../mibs/RFC1213-MIB localhost .iso.org.dod.

internet.mgmt.mib-2.system.sysDescr.0

In order to retrieve information about an entire subsystem, the entire MIB table
must be “walked,” item to item, with each item being returned separately. The sep-
arate items must then be reassembled into their proper form and then interpreted
based on the MIB definition to understand what the actual state of the device is. A
new method to automate networks was required.

As networks became bigger and more important to application delivery, network
operators sought better ways to manage and automate those networks. In 2002 a
small group of network engineers held an Internet Engineering Task Force (IETF)
workshop to discuss the future of network management and build a high-level archi-
tecture for future protocol developments. The results of this workshop are docu-
mented in RFC3535, Overview of the 2002 IAB Network Management Workshop.1

RFC3535 discusses current network management technologies, including SNMP and
CLI, and more importantly describes 14 requirements for network management and
automation protocols. These requirements are

 1. Ease of use is a key requirement for any network management technology
from the operator’s point of view.

 2. It is necessary to make a clear distinction between configuration data and data
describing operational state and statistics. Some devices make it very hard to
determine which parameters were administratively configured and which were
obtained via other mechanisms such as routing protocols.

 3. It is required to be able to fetch separately configuration data, operational
state data, and statistics from devices, and to be able to compare these between
devices.

 4. It is necessary to enable operators to concentrate on the configuration of the
network as a whole rather than individual devices.

1. Schönwälder, Overview of the 2002 IAB Network Management Workshop.

http://localhost.iso.org.dod.internet.mgmt.mib-
http://localhost.iso.org.dod.internet.mgmt.mib-
http://localhost.iso.org.dod.internet.mgmt.mib-

Chapter 26 The Case for Network Automation684

 5. Support for configuration transactions across a number of devices would sig-
nificantly simplify network configuration management.

 6. Given configuration A and configuration B, it should be possible to generate
the operations necessary to get from A to B with minimal state changes and
effects on network and systems. It is important to minimize the impact caused
by configuration changes.

 7. A mechanism to dump and restore configurations is a primitive operation
needed by operators. Standards for pulling and pushing configurations from
and to devices are desirable.

 8. It must be easy to do consistency checks of configurations over time and
between the ends of a link in order to determine the changes between two con-
figurations and whether those configurations are consistent.

 9. Networkwide configurations are typically stored in central master databases
and transformed into formats that can be pushed to devices, either by gener-
ating sequences of CLI commands or by pushing complete configuration files
to devices. There is no common database schema for network configuration,
although the models used by various operators are probably very similar. It
is desirable to extract, document, and standardize the common parts of these
networkwide configuration database schemas.

 10. It is highly desirable for text processing tools such as diff and version manage-
ment tools such as RCS or CVS to able to be used to process configurations, which
implies devices should not arbitrarily reorder data such as access control lists.

 11. The granularity of access control needed on management interfaces needs to
match operational needs. Typical requirements are a role-based access control
model and the principle of least privilege, where a user can be given the mini-
mum access necessary to perform a required task.

 12. It must be possible to do consistency checks of access control lists across
devices.

 13. It is important to distinguish between the distribution of configurations and
the activation of a certain configuration. Devices should be able to hold multi-
ple configurations.

 14. SNMP access control is data oriented, while CLI access control is usually com-
mand (task) oriented. Depending on the management function, sometimes
data-oriented or task-oriented access control makes more sense. As such, it is a
requirement to support both data-oriented and task-oriented access control.

Modern Automation Methods 685

Modern Automation Methods

In response to RFC3535, modern automation protocols were developed. These pro-
tocols enable better multivendor network management and automation by enabling
machine-to-machine interfaces through open standards and methods.

NETCONF

NETCONF was developed by the IETF in response to RFC3535; it is an open standard
protocol enabling device configuration and monitoring in either single or multivendor
networks. NETCONF works in a client/server model where the server is the network
node, and the client is a standalone network management station. The management
station provides holistic management of the network and supports networkwide auto-
mation, allowing network administrators to address the network as a single entity.

NETCONF features multiple configuration data stores to closely mirror the oper-
ational state of a network device, as shown in Table 26-1.

Table 26-1 NETCONF Data Stores

Data Store Purpose

<candidate>
Working copy of the configuration for validation and
testing

<running> The configuration the device is currently using

<startup> The configuration the device will run when booted

Table 26-1 shows three data stores (or tables), which represent a standard process
for updating configurations on network devices:

 • The <running> data store is the configuration currently being used, or run on
the device.

 • The <startup> configuration is what will be run the next time the device boots.

 • Candidate configurations are stored in the <candidate> data store and can be
manipulated without impacting the running configuration. When a network
operator is finished with a candidate configuration, the configuration can be
validated for proper syntax, against a set of rules to ensure no configuration
items have been missed, or sent through a dry run. For instance, a validator
might check to make certain an interface configuration always includes IPv4
and IPv6 addresses, or a routing protocol is configured for both IPv4 and IPv6,
or just IPv6. This kind of validation can catch and prevent simple mistakes.

Chapter 26 The Case for Network Automation686

If the configuration is acceptable, it is then committed, or pushed into running
configuration. Candidate configurations are often leveraged to schedule commits
during outage or change windows. This allows changes to be written and tested
before the change window. Because some devices do not support a candidate con-
figuration, NETCONF features a capability exchange with initial HELLO messages.
NETCONF configurations are atomic: if any part of the configuration fails or has
unexpected results, the entire configuration can be rolled back.

If the running configuration proves to be correct, then it can be committed to the
<startup> data store, so the device will boot with this configuration the next time it
is restarted. It is also possible for the device to boot with a very simple configuration,
which is then modified by a network management station through the <candidate>
and <running> data stores.

A key component of NETCONF is the management station. The management
station provides a networkwide viewpoint for network management and automa-
tion. It will have a graphical user interface (GUI) or CLI interface, enabling network
administrators to focus on the deployment automation of an entire networkwide
service. A sample service may be provisioning a new VPN customer or changing an
SNMP password. Network administrators can use a management station to man-
age the entire lifecycle of a service. By default, and because of NETCONF, network
management stations support multivendor networks. To provide additional extensi-
bility, some network management stations feature other southbound configuration
methods or protocols—for example, SNMP or CLI—and robust northbound API
for integration into other systems.

NETCONF is a modular protocol, organized in layers, as shown in Figure 26-1.
These layers allow for other tools or protocols to be inserted to extend

functionality.
The bottom layer is concerned with the transport of messages between devices.

NETCONF supports many different transport protocols; however, SSH is com-
monly used because it is well known and provides authentication, integrity, and

Content Content Notification Data

Operations <edit config>

Messages <rpc> <rpc reply> <notification>

Secure Transport SSH TLS BEEP/TLS SOAP/HTTP/TLS

Figure 26-1 NETCONF Layers

Modern Automation Methods 687

confidentiality. Because SSH runs over the Transmission Control Protocol (TCP), it
also provides reliable transport.

The message layer frames and encodes remote procedure calls (RPCs). An RPC
appears to be a local function (or procedure) call to the calling application, but is actu-
ally executed on a remote device (see the “Further Reading” section at the end of the
chapter for more information on RPCs). NETCONF’s use of RPC enables NETCONF
to instruct the remote device what to do with the command—for example, apply the
configuration detailed in the operations layer. NETCONF RPC messages are encoded
in the eXtensible Markup Language (XML) and must contain a message-id element
allowing NETCONF to track messages. Finally, the messages layer supports notifica-
tions, where devices notify the management station of a configuration change.

The operations layer defines the actions for NETCONF clients and servers.
 NETCONF operations are a set of create, read, update, and delete (CRUD) actions
used on the data stores. Common operations include get-config, edit-config, and
delete config.

The base protocol includes the following operations shown in Table 26-2.

Table 26-2 NETCONF Operations

NETCONF Operations Description

get
Retrieve running configuration and device state
information

get-config
Retrieve all or part of a specified configuration
datastore

edit-config
Load all or part of a specified configuration to the
specified target configuration datastore

copy-config

Create or replace an entire configuration datastore
with the contents of another complete configuration
datastore

delete-config Delete a configuration datastore

lock
Lock the entire configuration datastore system of a
device

unlock Release a configuration lock

close-session Gracefully terminate the NETCONF session

kill-session Force the termination of a NETCONF session

The content layer contains the formatted data, either configuration or notifica-
tion, sent to or from the network node. The NETCONF specification does not define
how the data should be formatted; it does, however, suggest the use of the YANG
data modeling language. Data modeling ensures compatibility between systems.

Chapter 26 The Case for Network Automation688

YANG is a data modeling language defined in RFC6020 and updated in
RFC7950; it is used to format configuration, notification, and state data in the
operations and content layers of NETCONF. Data modeling is a definition of
both the syntax and the semantics or schema of the data and is critical when
working between remote systems. The data model ensures the requests of the
NETCONF management station are faithfully carried out on the NETCONF
server (network device).

There are two sets of widely deployed and supported YANG models:

 • The IETF standardizes a data model in YANG for each protocol, for basic
routing functionality, and for common equipment management requirements.

 • The OpenConfig group maintains another set of data models, largely overlap-
ping, and often coordinated with the IETF data models.

Beyond these models, each vendor also supports a vendor- and equipment-specific
model set that can (often) be downloaded from their support sites.

The underlying syntax of YANG is XML in a keyed hierarchical model, much
like a Type Length Value (TLV) format. The hierarchy of the model enables multiple
organized levels of parent/child relationships of key/value paired data. The keys in
YANG must be unique within a layer with single values or lists of data. YANG data
is typed—for example, integer, string, etc.—and is enforced by the server and cli-
ent implementations. Because YANG data is in XML, the data is generally human
readable. The following code snippet is an example of YANG data showing “show
interface brief”:

01 <?xml version="1.0"?>

02 <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns="http://www.cisco.com/nxos:7.0.3.I6.1.:if_manager"

message-id="1">

03 <nf:get>

04 <nf:filter type="subtree">

05 <show>

06 <interface>

07 <brief/>

08 </interface>

09 </show>

10 </nf:filter>

11 </nf:get>

12 </nf:rpc>

13]]>]]>

Automation with Programmatic Interfaces 689

In the code snippet, line 1 declares the document as XML. Line 2 is the RPC call
from the standard NETCONF library. Line 3 is the NETCONF operation. Lines
5 through 7 are the NETCONF content and the command to show the interface
information.

Note

RFC7951 defines JavaScript Object Notation (JSON) encoding of data modeled
with YANG. Both XML and JSON are discussed later in this chapter.

Together NETCONF and YANG provide an open-standards-based, easy-to-use
toolset to automate a network. Commercial tools (for example, Cisco’s Tail-F) lever-
age NETCONF/YANG and enable network administrators to manage the network
in terms of the service the network provides—for example, Quality of Service (QoS)
or Virtual Private Networks (VPNs).

RESTCONF

RESTCONF is an emerging extension of NETCONF that leverages the widely
deployed Hypertext Transfer Protocol (HTTP) over the Secure Sockets Layer (SSL,
combined with HTTPS) to interact with network devices. RESTCONF uses YANG
as a data modeling language and has the same basic functionality as NETCONF;
however, it uses HTTP methods such as POST, PUT, and DELETE to implement the
equivalent of NETCONF operations. The RESTful methods available in REST-
CONF enable basic create, read, update, and delete (CRUD) operations on a hierar-
chy of data stores via HTTP.

The “REST” is in RESTCONF because it provides a RESTful interface; the con-
cept of Representational State Transfer (REST) and RESTful interfaces is discussed
further in the next section.

Automation with Programmatic Interfaces

Some modern network operating systems, for example, Cisco NX-OS, offer addi-
tional vendor-specific automation programmatic interfaces. These interfaces, known
as Application Programming Interfaces, or APIs, are exposed on standard TCP ports
and require a higher-level language such as Python to interact with a device. The
higher-level program contains the specific interaction—for example, a configuration
or troubleshooting routine—and leverages the API to connect to the device. Most

Chapter 26 The Case for Network Automation690

network operating systems require the API to be enabled via CLI and require
authentication.

Network APIs are not created or maintained under the guidance of a standards
body, and each vendor or even different platforms from the same vendor will have
unique methods and procedures to access and use the APIs. Documentation for a
network API is found on the vendor’s website.

Network automation with APIs offers higher-level applications the capability
to interact with a network device. Higher-level programs introduce logic such as
IF…THEN…ELSE or on-demand configuration changes that tie the network into
 business-level systems or procedures. Custom applications with APIs are extremely
 flexible; however, they often come with a cost in complexity and supportability. Each
time a vendor changes a custom API, some amount of work must be performed to adapt
 applications using those APIs.

A popular way to use network APIs is to connect the network to higher-level
 automation tools in private cloud environments. Private cloud environments ena-
ble automatic provisioning and teardown of the network, storage, and compute to
reduce costs and increase the agility of data center infrastructure. The combination
of automated network, storage, and compute is commonly referred to as infrastruc-
ture as a service and is the starting point for other cloud services, for example, plat-
form as a service (PaaS) and software as a service (SaaS)

Most modern APIs provide RESTful interfaces (or APIs), or rather adhere to
REST. Beyond the transport specifications, the most interesting aspect of REST as
an API is no maintenance of state is required at the server. This means a RESTful
operation must complete in a single call and return from the network device’s per-
spective. For instance, say a RESTCONF client needs to configure three static routes
on a network device:

 1. 2001:db8:3e8:100::1 via 2001:db8:3e8:110::1

 2. 2001:db8:3e8:110::1 via 2001:db8:3e8:120::1

 3. 2001:db8:3e8:120::1 via 2001:db8:3e8:130::1

And if it installs all three routes at once, the client must handle any dependencies,
such as the failure to install one 2001:db8:3e8:120::1, on which the route to 110::1
depends. The server simply does not have any state about the interaction between
commands executed, and hence has no way to roll back or otherwise modify one
command transmitted serially through a RESTful interface.

REST was originally designed as a paradigm for the HTTP protocol, and hence
RESTful APIs are most often implemented over HTTP using common HTTP

Automation with Programmatic Interfaces 691

verbs, such as GET, PUT, and DELETE. A RESTful client connects to the inter-
face, sends formatted data—for example, a configuration or show command—
and the device responds with an HTTP code and optionally formatted data.
The returned HTTP code is a standard response; for example, 200 = OK, 401 =
unauthorized, etc., informs the client if the command was successful. Figure 26-2
illustrates.

The data sent and received in a RESTful connection requires some structured for-
matting. Common data formats include XML, JSON, and YAML (originally stand-
ing for Yet Another Markup Language, but later changed to YAML Ain’t Markup
Language, a recursive acronym, like GNU, which means GNU’s Not UNIX).

The following snippets illustrate three markup systems often used to format data
in a RESTful interface. XML is the first example:

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <Beatles>

 <Revolver>

 <Songs>

 <element>Taxman</element>

 <element>Eleanor Rigby</element>

 <element>I'm Only Sleeping</element>

 <element>Love You Madeline</element>

 <element>Here, There and Everywhere</element>

 <element>Ellie Said She Said</element>

 <element>Good Day Sunshine</element>

 <element>And Your Bird Can Sing</element>

 <element>For No One</element>

 <element>Doctor Alex</element>

 <element>I Want to Tell You</element>

client server

HTTP
request

(PUT)

HTTP
response

HTTP code 200

Figure 26-2 A RESTful Operation

Chapter 26 The Case for Network Automation692

 <element>Got to Get You Into My Life</element>

 <element>Tomorrow Never Knows</element>

 </Songs>

 </Revolver>

 </Beatles>

</root>

XML is a markup language that encodes information between descriptive tags
(XML is a superset of the Hypertext Markup Language, or HTML, which was orig-
inally designed to describe the formatting of web pages served by servers through
HTTP). The encoded information is defined within user-defined schema that enable
any data to be transmitted between systems. In the case of network automation,
XML-encoded data may be a single command or an entire configuration. The entire
XML document is stored as text, making it both machine and human readable.

YAML is the second example:

Beatles:

 Revolver:

 Songs:

 - Taxman

 - Eleanor Rigby

 - I'm Only Sleeping

 - Love You Madeline

 - Here, There and Everywhere

 - Ellie Said She Said

 - Good Day Sunshine

 - And Your Bird Can Sing

 - For No One

 - Doctor Alex

 - I Want to Tell You

 - Got to Get You Into My Life

 - Tomorrow Never Knows

YAML, considered a subset of JSON, is designed to be very human readable.
Similar to JSON, YAML is structured in key|value pairs and allows for user-defined
white space. The extra white space enables the readability of YAML documents but
can be resource intensive to parse.

JSON is the third and final example:

{

 "Beatles": {

 "Revolver": {

Automation with Programmatic Interfaces 693

 "Songs": [

 "Taxman",

 "Eleanor Rigby",

 "I'm Only Sleeping",

 "Love You Madeline",

 "Here, There and Everywhere",

 "Ellie Said She Said",

 "Good Day Sunshine",

 "And Your Bird Can Sing",

 "For No One",

 "Doctor Alex",

 "I Want to Tell You",

 "Got to Get You Into My Life",

 "Tomorrow Never Knows"

]

 }

 }

}

A more recent alternative to XML is JSON. JSON is defined in RFC4627, and
encodes information in structured key|value pairs. The keys in a JSON docu-
ment are predefined tags that are understood between systems; each such tag
has a single associated value. For example, a key of “Command” may have a
value of “show running configuration.” In typical cases, a key is a list of values,
represented with open and close brackets—for example, “[data1, data2, data3].”
Similar to XML, JSON is stored as a text file and is both human and machine
readable; however, JSON is much easier for humans to interact with. The main
advantage of JSON is that it is straightforward to parse because a key can refer-
ence values.

REST, XML, JSON, and YAML are all supported in a variety of different pro-
gramming languages, including C, Java, and Python. Python, mainly because of its
ease of use, is the unofficial standard for network programmability and automation
projects. The Python language is easy to write, hard to mess up, and is supported on
most operating systems. Python supports thousands of libraries that extend the lan-
guage to support a wide variety of technologies.

APIs, Python, REST, and JSON come together to automate a network or net-
work device via programmability. Most modern network operating systems require
the API to be enabled on a particular TCP port and configure an authentication
method. Then a different computer invokes a Python program to interact with the
node. Figure 26-3 illustrates.

Chapter 26 The Case for Network Automation694

On-box Automation

Many network devices also support on-box automation. On-box automation is a
script or procedure running on the management plane of a network device, enabling
network operators to automate configurations or events that are local to the network
device. Because the on-box automation scripts are distributed with the network
device, they are better at handling link failure or isolation-type events. On-box auto-
mation tools consist of vendor-specific offerings—for example, Cisco Embedded
Event Manager (EEM), Python, or Linux Bash scripts.

Cisco EEM is a popular on-box automation tool for Cisco devices. Cisco EEM
features event detectors—for example, an environmental issue or routing protocol
adjacency change and the ability to tie an action to an event. A common example
of EEM is to, in the event of a downed interface, automate a response of “shut, no-
shut” the interface, or collect information about processes and memory usage when
the processor utilization rises above a specific percentage. EEM actions support CLI-
based responses or more complex actions with Python or TCL scripts.

Some network devices such as Cisco Nexus support on-box automation with
Python or BASH scripts. Python or BASH scripting is normally available on network
devices running Linux as the underlying OS; it allows the network administrators to
automate network or device functions with the flexibility of Python. A sample on-
box script may perform an action or generate an alert on bootup or after someone
has logged in with privileged access. On-box Python scripts can simulate or replace
features that are not available on a deployed platform.

Network Automation with Infrastructure
Automation Tools

Infrastructure automation tools are designed to manage and automate operating
systems, network devices, or resources. Infrastructure automation tools can be used
for network automation; however, these tools are more common in agile software

client

Python RESTful
API

router

JSON formatted data

Figure 26-3 Programmability

Network Controllers and Automation 695

development tool chains, such as DevOps. Infrastructure automation tools will con-
nect and authenticate with a network device and use either the CLI or an API to
make changes. They will have a playbook or manifest detailing how to interact with
a specific vendor device for a specific feature. Infrastructure automation tools enable
the network to be represented as code, known as Infrastructure as Code (IaC). IaC
enables agile network configurations because a DevOps team deploys or changes
network resources as part of a software rollout. To date, a number of infrastructure
automation tools are available, but the open source tool Puppet is most popular.

Note

DevOps is development operations contracted into a single word. The general
idea of DevOps is to use development processes to manage the operational tasks
of running a network, such as managing configurations and versioning.

The Puppet software package, developed by Puppet Labs, is an open source auto-
mation toolset for managing servers and other resources by enforcing device states,
such as configuration settings.

Puppet components include a puppet agent that runs on the managed device
(node) and a puppet master (server) that typically runs on a separate dedicated server
and serves multiple devices. The operation of the puppet agent involves periodically
connecting to the puppet master, which in turn compiles and sends a configuration
manifest to the agent; the agent reconciles this manifest with the current state of the
node and updates state based on differences.

A puppet manifest is a collection of property definitions for setting the state on
the device. The details for checking and setting these property states are abstracted,
so a manifest can be used for more than one operating system or platform. Manifests
are commonly used for defining configuration settings, but they can also be used to
install software packages, copy files, and start services.

Network Controllers and Automation

A relatively new component in networking is a network controller. Network control-
lers provide holistic management of a distributed network and a single interface for
network automation and programmability. Controllers build an abstraction layer to
simplify network management, making network automation easier. An abstracted
configuration for a network enables networkwide configurations—for example,
 setting a new NTP server on a number of devices. In this case, the network operator

Chapter 26 The Case for Network Automation696

would simply set the configuration in the controller, and the controller would deal
with connecting, authenticating, and ensuring the configuration is set on every
device, as illustrated in Figure 26-4.

Some network controllers feature out-of-the-box automation to deploy and man-
age networks. For example, the Cisco APIC data center controller automates the
deployment of VXLAN as well as many other technologies. Additionally, network
controllers simplify deployment of network features by automating complexity and
providing guided GUI-based configurations.

Network Automation for Deployment

Deployment automation, also known as zero-touch deployment, automates the
deployment of new network nodes. Automated deployments ensure new additions
to the network infrastructure, either from initial deployment or replacement from
failure. Deployment automation reduces the time, risk, and expense of deploying
new nodes.

Deployment automation technologies require a device to request deployment
automation from a deployment server. A device may have a configurable flag to
request a configuration at next boot or the request can be as simple as lack of a
 configuration. The network device will find an automation server using information
discovered through DHCP or with broadcast technologies. The node will then
ask the automation tool for a configuration server. The configuration server must
respond to the request using a templated configuration that may be customized by
the automation tool. A final step for a deployment automation tool is to notify the
network administrator a new device has been added.

Deployment automation tools are available for data center, campus, and wide
area network (WAN) environments. To date, there is no standard for deployment

automation tool network controller

automation tool

Figure 26-4 Box-by-Box versus Controller-Based Automation

Further Reading 697

automation solutions, and each vendor brings proprietary solutions to market.
These solutions are normally a component of larger network management tools,
such as Cisco Prime for WAN/campus environments or Cisco Data Center Network
Manager (DCNM) for data centers.

Final Thoughts on the Future of Network
Automation: Automation to Automatic

An emerging and very popular world of data analytics and machine learning will
power the next generation of network automation. Data analytics is a general term
for a series of tools allowing the collection of data and transforming the data into
organized and insightful information. Much of the data that network devices gener-
ate today is discarded. This discarded data could give network operators better
insight into the status and health (logs) of network devices (configurations), network
traffic, or the health of applications traversing the network.

Machine learning enables computers to predict events from the data. For example,
machine learning may predict a security issue or an expected traffic load. Machine
learning systems can then change network configuration based on its predictions
without human intervention. The combination of data analytics, machine learning,
and network automation will enable self-provisioning, self-healing networks and the
transition to automatic networks.

Further Reading

Other resources on network automation and programmability:

Ansible by Red Hat. “Ansible Is Simple IT Automation.” Accessed September 3,
2017. https://www.ansible.com.

Bjorklund, Martin. The YANG 1.1 Data Modeling Language. Request for Com-
ments 7950. RFC Editor, 2016. doi:10.17487/RFC7950.

———. YANG—A Data Modeling Language for the Network Configuration
Protocol (NETCONF). Request for Comments 6020. RFC Editor, 2010.
doi:10.17487/RFC6020.

“CFEngine—Automate Large-Scale, Complex and Mission Critical IT Infrastructure
with CFEngine.” CFEngine. Accessed September 3, 2017. https://cfengine.com/.

“Chef: Automate Infrastructure and Applications.” Chef. Accessed September 3,
2017. https://www.chef.io/.

https://www.ansible.com
https://cfengine.com/
https://www.chef.io/

Chapter 26 The Case for Network Automation698

“Expect—Expect—Home Page.” Accessed September 3, 2017. http://expect.
sourceforge.net/.

“Extensible Markup Language (XML).” Accessed September 3, 2017. https://
www.w3.org/XML/.

Goyvaerts, Jan. “Regular Expressions: The Complete Tutorial,” July 2007. https://
www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf.

“Grpc / Grpc.io.” Accessed September 3, 2017. https://grpc.io/.

Harrington, David, Bert Wijnen, and Randy Presuhn. An Architecture for Describing
Simple Network Management Protocol (SNMP) Management Frameworks.
Request for Comments 3411. RFC Editor, 2002. doi:10.17487/RFC3411.

Marshall, A. D. “Remote Procedure Calls.” In Programming in C: UNIX
 System Calls and Subroutines Using C, 2005. https://users.cs.cf.ac.uk/
Dave.Marshall/C/node33.html.

Meyer, Paul, David B. Levi, and Bob Stewart. Simple Network Management Pro-
tocol (SNMP) Applications. Request for Comments 3413. RFC Editor, 2002.
doi:10.17487/RFC3413.

“Netconf Central.” Accessed September 3, 2017. http://www.netconfcentral.org/.

Petrusha, Ron. “Regular Expression Language—Quick Reference.” Documentation,
March 2017. https://docs.microsoft.com/en-us/dotnet/standard/base-types/
regular-expression-language-quick-reference.

Presuhn, Randy. Version 2 of the Protocol Operations for the Simple Network Man-
agement Protocol (SNMP). Request for Comments 3416. RFC Editor, 2002.
doi:10.17487/RFC3416.

“Puppet—The Shortest Path to Better Software.” Puppet. Accessed September 3,
2017. https://puppet.com/.

Schönwälder, Jürgen. Overview of the 2002 IAB Network Management Workshop.
Request for Comments 3535. RFC Editor, 2003. doi:10.17487/RFC3535.

Thurlow, Robert. RPC: Remote Procedure Call Protocol Specification Version 2.
Request for Comments 5531. RFC Editor, 2009. doi:10.17487/RFC5531.

Tischer, Ryan, and Jason Gooley. Programming and Automating Cisco Networks: A
Guide to Network Programmability and Automation in the Data Center, Cam-
pus, and WAN. 1st edition. Indianapolis, IN: Cisco Press, 2016.

White, James E. High-Level Framework for Network-Based Resource Sharing.
Request for Comments 707. RFC Editor, 1975. doi:10.17487/RFC0707.

“XML Tutorial.” Accessed September 3, 2017. https://www.w3schools.com/xml/.

http://expect.sourceforge.net/
http://expect.sourceforge.net/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://Grpc.io
https://grpc.io/
https://users.cs.cf.ac.uk/Dave.Marshall/C/node33.html
https://users.cs.cf.ac.uk/Dave.Marshall/C/node33.html
http://www.netconfcentral.org/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://puppet.com/
https://www.w3schools.com/xml/

Review Questions 699

Review Questions

 1. What is the primary objective for automating network device configurations?

 2. What are the advantages and disadvantages of SNMP?

 3. Explain the relationship between NETCONF, YANG, and a YANG model.

 4. What is the difference between NETCONF and RESTCONF?

 5. Research the concept of an ATOMIC operation. How is this similar to, or dif-
ferent from, a RESTful interface?

 6. What is the difference between development operations, or the automation of
network configurations, and Software-Defined Networks (SDNs)?

This page intentionally left blank

701

Chapter 27

Virtualized Network
Functions

Learning Objectives

After reading this chapter, you should understand:

 0 The relationship between network function virtualization and network
design flexibility

 0 The relationship between NFV, scale up, and scale out

 0 The concept of service chaining, and how it can be used in NFV

 0 The concept of intent-based networking

 0 The tradeoffs in computation power between specialized and general-
purpose processors

 0 Some of the tradeoffs involved in NFV

Sue had a problem. The infrastructure team had just stood up several new racks of
servers, all of which were going to be running workloads needing firewall and load-
balancing services. Sue had firewalls and load balancers, but they were not in a place
where she could easily provide access to them from the location of the new racks.

The task was not impossible, of course. She created new virtual networks from
each of the new racks, and added them to the tagged VLAN interface of the load
balancers and firewalls. From there, she created new subinterfaces, added appropri-
ate route statements, and made it work. Traffic was backhauled from the new racks,
back through the core, shipped to the load-balanced segment, passed through the
firewall, and back. The job was done.

Chapter 27 Virtualized Network Functions702

However, the load-balancer configuration was beyond unwieldy, supporting thou-
sands of virtual servers, pool members, and health checks in a chaotic mess over-
whelming the management interface. The cluster was also a bottleneck at certain
times of the day, processor-bound on the one hand and experiencing congested net-
work links on the other. Already a substantial cluster of nodes to handle the volume
of traffic and requests, the cluster capabilities were never quite able to stay in front of
the demand for new load-balancing services.

The data center firewall cluster was in much the same state. Containing a massive
security policy choked by multiple thousands of rules, the firewall cluster was becom-
ing an intractable bottleneck. The policy was an administrative nightmare, filled with
rules authored by a myriad of administrators who had come and gone over the years.
Updates to the security policy were the bane of Sue’s existence. She could never seem to
find quite the right place to install fresh rules. At the same time, she was afraid to sim-
plify the policy by deleting existing rules for fear of breaking a critical business service.

Like the load-balancer cluster, the firewall cluster was also becoming a perfor-
mance bottleneck. As compliance requirements demanded both stateful and deep
packet inspections for much of the company’s traffic, the architecture team directed
ever increasing amounts of traffic through the firewall cluster. The cluster could no
longer keep up. Some days, she thought she could feel the heat from their processors
right in her cubicle, watching sustained 60%, then 70%, then 80% steady utilization
during peak business hours in recent months.

Sue explored growing the clusters even further, but this solution would address
the capacity problem, and even then temporarily. She also needed a way to move both
load-balancing and firewall services closer to the new racks rolling in month after
month as their customer base steadily rose.

She also wanted to reduce the administrative nightmare these clusters had become.
She had to admit scrolling through massive configuration paragraphs while tired and
under time pressure was eventually going to result in an outage—probably a big one.
Endless complexity was not the sort of challenge humans were designed to deal with
effectively. One of these days, she was going to make a mistake—a “resume-generating
event,” as the operations team always joked about in the cafeteria. Sue wanted to
turn over the rote configuration tasks to an automated system but was struggling to
sort out exactly how.

As time went on, Sue researched how to address these challenges, which she com-
partmentalized as follows:

 1. Backhauling traffic to specific network locations was too limiting. Sue
wanted to be able to move the services to where they were needed, and not
move the traffic to where the services were.

Network Design Flexibility 703

 2. Network services needed to be able to scale easily. Adding new cluster mem-
bers was too hard with too much operational overhead. And besides, the load
problem was not a problem 24×7. Only during peak hours was there a need for
more capacity. Sue wanted to be able to shrink network services when she did
not need them as well as grow them on demand.

 3. Provisioning of new network services needed to be done quickly and
with limited chance for error. Thus, the administrative domains had to
become more manageable. Multiple thousands of rules or virtual servers or
routing configuration stanzas needed to be broken up into smaller, easier-to-
automate-and-understand chunks.

The solution Sue found was Network Function Virtualization (NFV). Much like
the compute world has turned bare-metal machines into virtual ones, the network-
ing world has turned bare-metal routers, switches, firewall, and load balancers into
virtual ones.

Using VNFs, Sue moved network services close to the new racks. Rather than
backhauling services to some central location, Sue stood up virtual network services
in the same racks where the workloads were running. With this approach, she gained
flexibility.

Sue was also able to gain scalability using the NFV approach. Rather than
add new cluster members, Sue would stand up additional virtual network service
instances when load required.

Sue found many orchestration systems able to handle the spin-up and spin-down
of virtual network functions for her. She was even able to integrate many of these
automated tasks into the larger compute stack orchestration scheme. When opera-
tions would stand up a new workload, the networking services required would come
up right along with it, all handed by the orchestrator.

Sue moved her role from one of endless error-prone provisioning to one of orches-
tration and automation system operator.

Network Design Flexibility

Network functions virtualization (NFV) takes network functions once run on dedi-
cated network hardware and repackages them so they can run on generic x86 hard-
ware. “Generic x86 hardware” means a general-purpose hardware platform running
an x86 instruction set. Servers and PCs running Linux and Windows operating sys-
tems and hypervisors such as Xen Server or VMware ESXi fall into this category.

Chapter 27 Virtualized Network Functions704

A network function that has been virtualized in this manner is called, cleverly
enough, a Virtualized Network Function (VNF). You heard this right: NFV is made
up of VNFs. The critical word to focus on is virtual. Sue can find the answers to
many of her architectural challenges through virtualization.

First, consider one of Sue’s initial challenges: backhauling traffic. In Sue’s sce-
nario, she needed to move traffic between the hosts and a service’s clusters. Consider
Figure 27-1.

Traffic is funneled from several hosts requiring, in this example, load-balancing
servers from hosts uplinked to top-of-rack switches (ToRs), passing into core
switches, and eventually making it to a load-balancing cluster. These appliance clus-
ters can be scaled up by increasing the amount of processing power in order to han-
dle larger numbers of transactions. This creates a natural bottleneck. Host traffic
must funnel from a collection of ToRs creating a wide mouth down a comparatively
narrow-mouthed location where the load-balancing services were offered in a physi-
cal form factor via several clustered hosts. The wider the mouth becomes, the more
egregiously the bottleneck is felt.

Contrast this traffic pattern with the flow of traffic in Figure 27-2.
In this scenario, a series of virtual load balancers have been created that can

scale horizontally, or scale out. Rather than traffic being forced through a funneled

H1 H2 H3 H4

ToR

ToR

Spine

Load
Balancing
Cluster

Host Traffic

bo
ttl

en
ec

k

Load
Balancing
Services

Figure 27-1 Bottleneck into Fixed (Appliance-based) Services

Network Design Flexibility 705

bottleneck, a wide load-balancing mouth matching the host traffic is created. The
funnel is eliminated.

Service Chaining

A single type of traffic flowing into and out of a single type of service is somewhat
simple to solve, but in real-world data centers, traffic flows will more likely need to
flow through several different VNFs. For instance, a traffic flow might be part of a
load-balancing scheme, but might also require packet filtering and deep packet
inspection. Traffic must be routed to each of these services in the correct order. While
some flows may need to be routed through every service available in the network for
processing, others may need to flow through just a subset of the available services.
This is a much more difficult problem to solve.

In a traditional network model, traffic would flow through required services
because the network was plumbed to make it happen; physical appliances are physi-
cally wired into the network so traffic can only be routed through the correct set of
services. For instance, in between a client and a server, a firewall would be installed.
An inline load balancer, too, would be placed in the path. Traffic would naturally

H1 H2 H3 H4

ToR

ToR

Spine

Host Traffic

Load
Balancing
Services

virtual
load

balancer

virtual
load

balancer

virtual
load

balancer

virtual
load

balancer

Figure 27-2 Virtualizing Functions to Resolve the Bottleneck

Chapter 27 Virtualized Network Functions706

flow through the required services because of the routing architecture created by a
network engineer, as illustrated in Figure 27-3.

What happens if some particular traffic flow between the client and the server
needs a slightly different set of rules applied in the firewall, or does not need to be
managed by the load balancer? Each appliance along the path must be configured
with some way to detect which flows they must manage, and with specific instructions
on how to manage each one. Over time, in a network with hundreds of thousands of
flows, the amount of configuration—and the amount of work required to manage
those configurations—increases to become unmanageable. Of course, the configura-
tion process can be automated, but this does not remove the complexity involved in
the configurations, but rather moves the complexity someplace else in the network.
Instead of humans managing these complex configurations, operators are managing
configuration management systems—and these systems, themselves, tend to increase
in complexity over time as new requirements are overlaid onto the network.

VNF not only allows network operators to eliminate the physical appliance bot-
tleneck, but it also allows individual virtual appliances to be created for each type of
traffic flow in the network. Each virtual appliance can have a much simpler configu-
ration, because it can be inserted into the path of a small subset of the flows passing
through the network.

But these two possibilities—virtualizing functions to avoid the topological (or
physical) bottlenecks imposed by installing physical appliances in a network to pro-
vide services, and virtualizing functions to narrow the focus of any particular func-
tion instance to reduce complexity—require a new way of thinking about how to
direct traffic through the network. In a VNF scenario, traffic is not naturally going
to flow through necessary services when passing between client and server. Since the
services required have been virtualized, they no long sit on the wire with physical
plumbing and a routing architecture conveniently herding traffic through the ser-
vices required. Rather, VNFs are virtual, residing out of the physical path of the
network functions required.

One way to address this concern is through service chaining. Service chaining
steers traffic between network functions before allowing it take its natural path to its
destination. Consider Figure 27-4.

client firewall network
load

balancer server

Figure 27-3 Connecting Services in an Appliance-based Network

Network Design Flexibility 707

Two different paths are represented through the virtualized functions in
Figure 27-4:

 • Traffic from client 1 is passed through a Stateful Packet Filter (SPF) service,
then to a Network Address Translation (NAT) service, then to a load balancer,
and then finally passed out to the network toward its final destination.

 • Traffic from client 2 is passed through an SPF service, then through a Deep
Packet Inspection (DPI) service, and then through the network toward its final
destination.

Each flow can now pass through just the set of services required, based on
 specific flow-based requirements. Bypassed services do not need to be configured
to ignore flows that they do not need to touch, nor to switch packets related to
ignored flows, which both simplifies configuration and reduces unnecessary load
on the service.

But how can traffic be chained through services in this way? Service chaining is
a nascent technology in networking. At the time of this writing, several industry
standard bodies are actively working to standardize the approach.

client 1

client 2

DPI
service

NAT
service

SPF
service

network

load
balancer

destination

Figure 27-4 Service Chains

Chapter 27 Virtualized Network Functions708

Note

Two organizations, the Internet Engineering Task Force (IETF) and the Euro-
pean Telecommunications Standards Institute (ETSI), are active in building
standards for network function virtualization. Documents in these areas can be
found at https://datatracker.ietf.org/wg/sfc/documents/ and http://www.etsi.org/
technologies-clusters/technologies/nfv; readers are also referred to the “Further
Reading” section at the end of the chapter for specific documents useful for develop-
ing a deeper understanding of the technologies and architectures involved in NFV.

Historically, manually installed policy-based routing (PBR) has accomplished
service chaining by making a forwarding decision based on the characteristics of a
specific traffic flow. For example, traffic from a host with a specific Internet Protocol
(IP) address might be routed to the interface of the firewall. PBR has been used by
network engineers for exception routing. When traffic needs to go some way other
than the standard way indicated by the Forwarding Information Base (FIB), a routing
policy is installed to override the FIB.

Therefore, in a limited sense, PBR might function as a service chaining tool, but
it is better suited for legacy network topologies featuring physical appliances, rather
than VNF scenarios. PBR is notoriously difficult to manage and is only locally sig-
nificant. For a PBR scheme to be effective, a PBR policy must be installed every hop
along the way traffic steering might need to occur. Otherwise, traffic will cease to be
chained and will end up being forwarded in accordance with the FIB.

In addition, PBR introduces the same sort of inflexibility that physical appli-
ances do. The entire traffic steering system becomes dependent on predictability. The
physical appliances must be in a predictable place. The network architecture must be
predictable. But in NFV, the primary goal is for flexibility—a dynamically changing
network design and VNFs that come and go as the situation demands.

One way to achieve this flexibility is through Service Function Chaining (SFC), which
is evolving as a standard way to route traffic flows through an architecture of VNFs. In
SFC, a flow is assigned a Network Service Header (NSH), which contains a service path
identifier defining both the services and the order the services are to be traversed by the
traffic flow. A companion service index assists with path validation and loop preven-
tion. Moving the traffic flow along the chain from service to service requires Ethernet or
IP source and destination addresses, the same as it ever has. The service plane created
by NSH maps the service path identifier and service index to an overlay; the flow’s pack-
ets will be encapsulated to route them across each link of the service chain.

NSH might map to a number of encapsulations, including VXLAN, GRE, and
plain old Ethernet. NSH’s service-plane means service chaining is topology inde-
pendent, a crucial feature for services deployed as VNFs.

https://datatracker.ietf.org/wg/sfc/documents/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

Network Design Flexibility 709

As with many other things in networking technologies, there are a number of
ways to move traffic along a service chain in a network. The chapter describes using
an NSH, which is a separate header included in a packet, but there are other ways to
direct traffic along a specific path in a network, as well. For instance:

 • By building a label-switched path through the network, where each network
device reads the outer label, swapping labels to direct each packet to the
required hosts connected to the network; this is similar to MPLS Traffic
Engineering (TE).

 • By building a stack of labels, with each label in the stack representing a
hop in the network or a service (virtual device) the packet needs to visit to
complete its service chain; this can be done using Segment Routing (SR), for
instance.

Each of these solutions has various positive and negative attributes, but the solu-
tion deployed in any particular network will mostly depend on hardware support,
who owns the applications (how easily the applications can be modified to support
service chaining natively), and whether there are requirements for an overlay to solve
other problems in the network.

Figure 27-5 is used to illustrate a service chain through a network.
In Figure 27-5:

 1. A policy is set through an automated process, manual configuration, orchestration
system, etc., that specifies a particular flow originating at H1 needs to pass through
DPI and SPF services before being sent to a particular service for processing. There
are several instances of the destination service, so the flow must also pass through a
load balancer. This policy is injected into the network either at the originating pro-
cess or host (if either has the ability to impose service chain headers of some type
onto transmitted packets), or configured as a filter with an imposed service chain
header at the first hop router—in this case, a ToR device on a data center fabric.

 2. The traffic is forwarded to the first service indicated on the service chain; if an
IPv6 NSH is being used, the network devices will forward the packet based on the
first, or “top,” service in the service chain, rather than based on the destination IP
address. If some form of label swapping or stacking is being used, the packet will
be forwarded based on the outermost label in the stack. When the traffic reaches
the virtual DPI service, the contents of the packet are inspected for malware, etc.

 3. The first segment in the service chain is removed from the packet header and
the packet transmitted back onto the data center fabric toward the second
service. Again, the network devices need to forward the packets in this flow

Chapter 27 Virtualized Network Functions710

based on the “top” service on the service chain, rather than the destination IP
address.

 4. When the packet arrives at the second virtual service, it is matched against
local state in the stateful packet filter to ensure H1 is allowed to access the des-
tination service, there is an existing flow, etc. The top service is again stripped
off the service chain (or labels removed/swapped as needed), and the packet is
forwarded back onto the data center fabric.

 5. When the packet arrives at the virtual load balancer, the load balancer will
check to see if it is part of an existing flow, and modify the label, NSH header,
or other information to ensure the packet is forwarded to the correct destina-
tion server out of the group of servers providing the destination service. At
this point, the IPv6 NSH and/or flow labels may be removed, and the packet
forwarded using native IPv6 lookups through the data center packet to the final
destination server. The packet is then forwarded one more time onto the data
center fabric for delivery to its final destination.

H1

ToR

ToR

Spine

virtual
 DPI

virtual
SPF

virtual
load

balancer

3

2

4 5

policy

Figure 27-5 A Service Chain through a Network

Scaling Out 711

This process may appear to be complex, but it is much less complex than wiring
the entire network so that the traffic in this flow would pass through three separate
appliances, and managing the configurations on each device on a per-flow basis.

Scaling Out

Network design flexibility means organizations can create VNFs when they need
them. Rather than force all traffic through a single massive load-balancer instance or
gargantuan appliance-based firewall, services can be spread across many smaller
instances. With service chaining, there is no longer a dependency on network place-
ment for where those VNFs are created. Traffic can be directed by policy and service
chain to wherever the servicing VNF is located.

This scale-out strategy might sound like simply adding members to a physical
cluster to increase capacity. However, in a sense, clustering is nothing more than scal-
ing up, and not out. A cluster with increased capacity still functions as a unit rather
than discrete units. The result of adding cluster members to a network service func-
tion is an increase in processing capacity but does not come with the advantages that
true scale-out architecture offers.

For example, all clusters must remain in full contact with either one another
or a cluster controller. When this contact is broken, the cluster is said to be parti-
tioned. While partitioned, each partition will function as its own cluster, a condi-
tion known as split-brain. When the partition is healed, the cluster must reconcile,
sorting out the inevitable differences resulting from the partitioned clusters acting
independently.

Clusters are also subject to major system failures, where the entire system might
be taken offline due to an operating system fault or coordinated attack.

Truly scaling network functions out using VNFs breaks service functions down
into discrete, independently functioning units. While VNFs are highly likely to be
managed centrally, they do not operate as a single device. Therefore, they are not
subject to the foibles of partitioned clusters or attacks.

When a VNF fails, the blast radius is limited to the traffic flowing through one
VNF. Other VNFs performing identical functions are not affected by the failed VNF.
A single small instance failing hurts a production computing environment much less
than a massive cluster failing.

By way of example, consider an imaginary payment processing organization
called NetBuckPay. NetBuckPay offers several payment gateways to its customers
across several different networks they connect to. One of the gateways is an XML
service. Another uses JSON. Another uses a proprietary format.

Chapter 27 Virtualized Network Functions712

If NetBuckPay was using the legacy network services model, it might use a large
firewall cluster for security, an intrusion detection cluster for deep packet inspection,
and a load-balancing cluster to spray transactions across pools of gateway servers.

What happens if…

 • The load-balancing cluster fails?

 • The firewall cluster fails?

 • The intrusion detection cluster fails?

 • The network path between any of these clusters fail?

 • Any of the clusters becomes overwhelmed with traffic?

 • Any of the clusters is attacked?

The observant reader will argue a well-designed cluster can tolerate the outage of
a member and a well-designed network would tolerate a failure in the network path.
The observant and experienced reader will also know systems tend to fail in complex
and unexpected ways. Savvy information technology architects are always looking
for ways to reduce the potential blast radius of a failed system.

In a worst-case scenario where a redundant system fails in a spectacular and
unexpected way, what is the blast radius? NetBuckPay would lose all three payment
gateways it offers to its customers until the failure recovery was complete.

If NetBuckPay was using a VNF model, it would be possible to dedicate VNFs
for load-balancing, stateful packet filtering, and intrusion detection services to each
gateway. Assuming competent design, this would reduce the blast radius of a fail-
ure to a single payment gateway. Rather than all payment gateway customers being
offline due a commonly shared resource failure, select customers would be impacted
as the result of a contained, discrete failure.

Decreased Time to Service through Automation

Reflecting on Sue’s challenges, one of them was difficulty in provisioning. As net-
work services become increasingly utilized, their configurations become increasingly
complex. Network services perform a central function, but the way in which the
function is performed along with unique handling for specific situations results in
lengthy command-line stanzas describing how the device is to behave. For devices
driven by a graphical user interface (GUI), pages upon pages of screens with configu-
ration information populate the interface.

Decreased Time to Service through Automation 713

For network operators, configuration management is a critical part of their roles
in an IT organization. Managing configurations effectively and accurately is an
essential part of bringing an application to life.

But as Sue recounted, configuration management is also the most error-fraught.
With large configurations come opportunities for a human to get lost in the configu-
ration. The more configuration objects there are to collide with, the more difficult
it is to make additions that do not disturb the existing configuration functionality.
Conversely, deleting what seems to be stale configuration data is risky, as proving
what configuration elements are or are not in use is challenging.

Centralized Policy Management

VNFs help networkers with the configuration problem. Assuming manual configura-
tion is being done, a single VNF dedicated to a specific purpose will have a much
smaller set of configuration data that a human being must work through. This
reduces the opportunity for error as well as the time required to simply sort out what
the appropriate configuration might be.

However, VNFs are often managed in an automated way, where a central policy
manager stands up and tears down services. The human interacts with the central
policy manager. The policy manager handles the VNFs and their configuration.

As VNFs have grown in popularity, the techniques used to manage their poli-
cies have evolved. One example to consider is stateful packet filter policy manage-
ment. Traditionally, stateful packet filters have been managed by rules permitting
or denying traffic flows at a very detailed level, potentially including the source
IP address, the destination IP address, the source port number, the destination
port number, whether there is an existing session, and even various Transmission
Control Protocol (TCP) flags. In other words, granular flow information is used to
describe each rule.

Applications often use several different ports to communicate. Hosts might
use several different IP addresses to communicate. Therefore, building a state-
ful packet inspection policy out of granular rules is enormously challenging. The
challenge grows as the number of applications that need be permitted through
the stateful packet filter grows and as the number of hosts involved in serving the
applications grows. Over time, traditional stateful packet filtering policy manage-
ment fails.

Traditional stateful packet filter policy management is not a realistic option when
considering many small packet filters deployed as VNFs. To handle VNF packet
filter management, central policy management is used. A single policy leveraging
metadata is written.

Chapter 27 Virtualized Network Functions714

In this context, metadata refers to less granular ways to group objects. For exam-
ple, users might be grouped by an object in Microsoft’s Active Directory. Applications
might be grouped by name. Hosts might be grouped by DNS suffix. Leveraging meta-
data, humans can write policies that say, “Hosts containing ‘web’ as part of their name
can perform SQL queries against hosts containing ‘dbase’ as part of their name.”

The central policy manager software analyzes the policy, the metadata, and
the hosts filtered by VNF packet filters. The policy manager then compiles and
deploys the correct packet filter rules for each VNF stateful packet filter. Figure 27-6
illustrates.

This approach removes the burden of granular management from the network
operator, shifting it to software. Policy management software makes managing
dynamic VNFs possible.

Intent-Based Networking

An emerging technique being used to handle complex configuration is intent-based
networking. Intent-based networking allows for plain language to be used to express
a configuration desire. While traditional configuration describes exactly how the
network is to behave, intent-based networking describes the hoped-for outcome, but
not how the outcome will be achieved.

Intent-based networking is interesting in the context of VNFs because it intro-
duces a layer of abstraction between network state and configuration specifics. The
intent engine interprets the generic intent expressed by a human or possibly soft-
ware, and then sends the specific configuration (or individuated policies) required to
convert the intent into network state. Figure 27-7 illustrates.

Intent is also a useful tool in enforcing a desired network state. If intent is used to
describe the desired network state, and the intent engine can interpret those direc-
tives into configuration specifics, then the intent engine can also be leveraged to
determine when the network state no longer matches the expressed intent.

business
policy

central policy manager

individuated
policies

virtual
SPF

virtual
SPF

virtual
SPF

virtual
SPF

Figure 27-6 A Centralized Policy Manager

Compute Advantages and Architecture 715

Intent is still very new, and proving difficult to implement. Wide variations in
network hardware and network operating system software introduce many vari-
ables that make implementing intent-based networking a complex programming
challenge. Nonetheless, specific intent-based networking implementations have
found their way into open source projects such as Open Network Operating Sys-
tem (ONOS) and OpenDaylight. In addition, several commercial variants have been
introduced to the market, with others expected to find their way to market soon.

Benefit

The chief benefit of VNF automation is a decreased time to service. Bringing appli-
cations to market quickly is a critical benefit of VNFs, as they allow for a service to
be composed and instantiated with a minimum of risk and without human
configuration.

Centralized policy management based on metadata and intent-based networking
are examples of tooling that enable VNF spin-up time to be reduced.

Compute Advantages and Architecture

Physical network devices such as switches and routers run on built-for-purpose sili-
con. Other network devices such as firewalls and load balancers might run on
 general-purpose CPUs while offloading specific functions to dedicated hardware.
Encryption is an example of this, where a load balancer might run most functions on
a general-purpose CPU, while mathematically intensive packet encryption is
offloaded to dedicated silicon to maintain high throughput levels.

Built-for-purpose silicon chips are called Application-Specific Integrated Circuits
(ASICs). ASICs are designed by networking vendors to perform a small number of
networking functions and do them quickly. ASICs are limited in function—they are

business
intent policy engine

individuated
policies

virtual
service 1

virtual
service 2

virtual
service 3

virtual
service 4

Figure 27-7 Intent-based Networking

Chapter 27 Virtualized Network Functions716

“application specific.” Thus, network devices perform tasks using ASICs to do what
they do very well but cannot perform anything beyond what the ASIC was designed for.

In contrast to ASICs, general-purpose processors are found in servers and desktop
computers. General-purpose processors are designed to run a wide variety of soft-
ware. Intel x86 processors are the most widely known general-purpose processor;
network functions that have been virtualized are said to be running on x86.

While ASICs do a small number of things extremely well, x86 processors do a
large number of things merely adequately. This is critical to understanding VNFs.
When a network function is virtualized to run on x86, performance might be reduced
when compared to the same function running on an ASIC.

Discussions about VNFs and performance are commonplace due to two major
concerns.

 1. VNFs need to function quickly enough to fill the network pipe of the host they
run on. Ethernet speeds of 10, 25, 40, and even higher are all interesting to net-
work operators leveraging VNFs.

 2. VNFs use the general-purpose x86 CPU in hosts to provide their services.
These hosts are also going to be running other workloads the data center
requires—web server, database engines, and so on. CPU cycles used for VNFs
are not available for those other workloads.

Improving VNF Throughput

There are two significant means VNF software architects use to gain sufficient
throughput from their network services. The first means is software optimization.
The second is hardware offload.

Software optimization is related to the peculiarities of the operating system that
many virtualized network functions run in, Linux. Linux processes network func-
tions in the Linux kernel. However, the VNF software is going to be running as a
user. When the user space program needs access to the network interface hardware
to send or receive packets, it will perform a system call to the kernel. A hardware
interrupt is performed, and data is copied between kernel and user space. All of this
takes time, reducing the maximum amount of throughput the VNF might otherwise
achieve.

Software optimization of VNFs seeks to eliminate the back-and-forth between
kernel space and user space. Many networking software stacks run completely in
Linux user space. To gain access to the network hardware, these user space stacks
leverage an open source project called Data Plane Development Kit (DPDK). DPDK

Considering Tradeoffs 717

provides a means for a networking stack to directly access the networking interface
inside a host without having to perform system calls to the kernel. This reduces
latency, subsequently increasing throughput.

Hardware offload consists of network interface cards (NICs) with customized
silicon designed to offload the x86 CPU from some VNF tasks. NICs with custom-
ized silicon are costly compared to less-capable NICs, as well as being specialized
for specific environments. These custom NICs run with special drivers, handing off
functions from specific VNFs to hardware to accelerating them.

Considering Tradeoffs

If you have not found the tradeoffs, you have not looked hard enough.
This is true in every area of engineering (and life!), including NFV. This chapter has

largely considered the case for NFV. What are the tradeoffs? The State/ Optimization/
Surface (SOS) triad will be useful in evaluating these tradeoffs.

State

Rather than putting an appliance, or a cluster of appliances, into the path of packets
flowing through the network, NFV brings the packets to the services. These services,
in turn, could be scattered throughout the network, including being located anyplace
on a data center fabric. If you consider the movement of traffic through the network
as an optimization problem, NFV requires more granular information about where
services are located in order. In essence, the service becomes the destination, rather
than a logical subnet. NFV, then, will require the control plane to carry greater
amounts of state.

At the same time, virtualized services are likely to move more often than services
in a physical cluster or appliance; it is more difficult to unbolt, unrack, rack, and bolt
an appliance than it is to respin a service on a new server. This means services move
around more quickly both “because they can” (lowered cost often leads to less dis-
cipline) and because, once the network is perceived as “free,” the service “wants” to
move to the highest-quality, lowest-cost compute resources possible.

There is another aspect of state to consider, as well: the distribution of policy in
the network. It is simple enough to say, “smaller chunks of state spread throughout
the network are easier to manage than one large configuration or state store.” Each
individual piece of state is smaller and more tuned to the local need (a return to
the principle of subsidiarity). On the other hand, understanding how widely distrib-
uted state interacts can be a lot more difficult; the interaction between two pieces of
state in a single configuration file can be difficult to understand, and the interaction

Chapter 27 Virtualized Network Functions718

between two pieces of state configured on two different devices, widely separated in
the network, and with different configuration parameters and/or styles can easily
move into the “impossible” territory.

All of the additional state used to configure and manage a larger number of
devices must also be carried on the network, which means a different order of mag-
nitude of state must be carried and managed on the network. This not only eats net-
work resources, but it also increases resilience demands on the network.

Optimization

There are several tradeoffs to consider in the realm of optimization. First, NFV often
treats the network as a “free resource.” Any time you make a resource appear to be
cheap or free, you are saying you would prefer to use more of the free resource and
less of more expensive resources. If the cost of the network is free, the marginal util-
ity on network resources drops to the point where network resources are not consid-
ered when deciding where to run a particular service and why. Spreading services out
across the network drives more traffic onto the network, which uses more network
resources than by gathering services into clusters.

Network utilization is not just about the amount of bandwidth being carried over
the network versus the amount of work being done. There is also the efficiency of
troubleshooting, which directly impacts the Mean Time to Repair (MTTR), and
therefore the network uptime (or measured resilience).

Surface

Finally, there are interaction surfaces to consider. It often sounds good to automate
everything and then turn the automation system over to an intent-based controller to
manage the interaction between the applications running on the network, the con-
trol plane, and device configuration. Each of these new interactions, however, also
represents a new interaction surface, with the implied complexity of abstraction,
leaky abstractions, and other issues with interaction surfaces. Each of these interac-
tion surfaces will require an Application Programming Interface (API), which intro-
duces the complexity of managing these APIs over time.

Other Tradeoffs to Consider

There are other tradeoffs to consider, as well, such as whether outsourcing as much
complexity as possible to a vendor in the process of moving to an intent-based net-
work is really a “good thing.” Internal skill sets are bound to atrophy when complex
problems are outsourced, leaving the business without any local resources to call on
when problems happen. Moving configuration, policy, and intent to a single device

Further Reading 719

can mean a single mistake impacts a lot more devices. You are trading the centralized
configuration of a clustered appliance for the centralized configuration of an orches-
tration system. Does this make sense? As with all things, it is important to consider
the tradeoffs.

Final Thoughts

NFV and intent-based networking are two attempts to define a simpler network for
the future. The question, as always, is: “Simpler in what way—and more complex in
what other ways?” NFV, combined with service chaining, the disaggregation of net-
work services out of appliances and into standardized compute resources, the con-
cept of scale-out services, and the movement toward automation and intent are all
interesting trends in the network engineering world that will ultimately make contri-
butions to the way networks are designed and operated.

The next chapter will discuss another trend likely to make a large impact on the
way networks are designed and operated: the Internet of Things.

Further Reading

Boucadair, Mohamed. “Service Function Chaining (SFC) Control Plane Compo-
nents & Requirements.” Internet-Draft. Internet Engineering Task Force, Octo-
ber 2016. https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08.

Dolson, David, Shunsuke Homma, Diego Lopez, Mohamed Boucadair, Dapeng Liu,
Ting Ao, and Vu Anh Vu. “Hierarchical Service Function Chaining (hSFC).”
Internet-Draft. Internet Engineering Task Force, January 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-sfc-hierarchical-02.

Filsfils, Clarence, Stefano Previdi, Bruno Decraene, Stephane Litkowski, and Rob
Shakir. “Segment Routing Architecture.” Internet-Draft. Internet Engi-
neering Task Force, February 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-spring-segment-routing-11.

Halpern, Joel M., and Carlos Pignataro. Service Function Chaining (SFC) Architec-
ture. Request for Comments 7665. RFC Editor, 2015. https://rfc-editor.org/rfc/
rfc7665.txt.

Hudson, Jon, Lawrence Kreeger, Dr. Thomas Narten, Marc Lasserre, and David L.
Black. An Architecture for Data-Center Network Virtualization over Layer 3
(NVO3). Request for Comments 8014. RFC Editor, 2016. https://rfc-editor.org/
rfc/rfc8014.txt.

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-hierarchical-02
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-hierarchical-02
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-11
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-11
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc8014.txt
https://rfc-editor.org/rfc/rfc8014.txt

Chapter 27 Virtualized Network Functions720

K., Thomas. “User Space Networking Fuels NFV Performance.” Intel Developer
Zone, June 12, 2015. https://software.intel.com/en-us/blogs/2015/06/12/
user-space-networking-fuels-nfv-performance.

Kumar, Surendra, Mudassir Tufail, Sumandra Majee, Claudiu Captari, and
Shunsuke Homma. “Service Function Chaining Use Cases in Data Centers.”
Internet-Draft. Internet Engineering Task Force, February 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases-06.

“L4-L7 Service Function Chaining Solution Architecture.” Open Networking
Foundation, June 14, 2015. https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_
Chaining_Solution_Architecture.pdf.

Lasserre, Marc, Florin Balus, Thomas Morin, Dr. Nabil N. Bitar, and Yakov Rekhter.
Framework for Data Center (DC) Network Virtualization. Request for Com-
ments 7365. RFC Editor, 2014. https://rfc-editor.org/rfc/rfc7365.txt.

Nadeau, Thomas, and Paul Quinn. Problem Statement for Service Function Chain-
ing. Request for Comments 7498. RFC Editor, 2015. https://rfc-editor.org/rfc/
rfc7498.txt.

Narten, Dr. Thomas, Luyuan Fang, Eric Gray, Lawrence Kreeger, Maria Napierala,
and David L. Black. Problem Statement: Overlays for Network Virtualiza-
tion. Request for Comments 7364. RFC Editor, 2014. https://rfc-editor.org/rfc/
rfc7364.txt.

“Network Functions Virtualisation (NFV); Continuous Development and Inte-
gration; Report on Use Cases and Recommendations for VNF Snapshot.”
European Telecommunications Standards Institute, March 2017. http://
www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/005/03.01.01_60/gr_NFV-
TST005v030101p.pdf.

“Network Functions Virtualisation (NFV) Release 3; NFV Evolution and Ecosys-
tem; Hardware Interoperability Requirements Specification.” European Tele-
communications Standards Institute, March 2017. http://www.etsi.org/deliver/
etsi_gs/NFV-EVE/001_099/007/03.01.02_60/gs_NFV-EVE007v030102p.pdf.

“Network Functions Virtualisation (NFV) Release 3; Security; Security Man-
agement and Monitoring Specification.” European Telecommunications
Standards Institute, February 2017. http://www.etsi.org/deliver/etsi_gs/NFV-
SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf.

“Network Functions Virtualisation (NFV); Reliability; Report on Models and
Features for End-to-End Reliability.” European Telecommunications Stan-
dards Institute, April 2016. http://www.etsi.org/deliver/etsi_gs/NFV-
REL/001_099/003/01.01.01_60/gs_NFV-REL003v010101p.pdf.

https://software.intel.com/en-us/blogs/2015/06/12/user-space-networking-fuels-nfv-performance
https://software.intel.com/en-us/blogs/2015/06/12/user-space-networking-fuels-nfv-performance
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases-06
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases-06
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://rfc-editor.org/rfc/rfc7365.txt
https://rfc-editor.org/rfc/rfc7498.txt
https://rfc-editor.org/rfc/rfc7498.txt
https://rfc-editor.org/rfc/rfc7364.txt
https://rfc-editor.org/rfc/rfc7364.txt
http://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/005/03.01.01_60/gr_NFV-TST005v030101p.pdf
http://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/005/03.01.01_60/gr_NFV-TST005v030101p.pdf
http://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/005/03.01.01_60/gr_NFV-TST005v030101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/007/03.01.02_60/gs_NFV-EVE007v030102p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/007/03.01.02_60/gs_NFV-EVE007v030102p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/003/01.01.01_60/gs_NFV-REL003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/003/01.01.01_60/gs_NFV-REL003v010101p.pdf

Review Questions 721

Quinn, Paul, and Uri Elzur. “Network Service Header.” Internet-Draft. Internet
Engineering Task Force, February 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-nsh-12.

Quinn, Paul, and Jim Guichard. “Service Function Chaining: Creating a Service
Plane Using Network Service Header (NSH).” IEEE. Accessed April 21, 2017.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
IEEE-papers/service-function-chaining.pdf.

Yizhou, Li, Lucy Yong, Lawrence Kreeger, Dr. Thomas Narten, and David L.
Black. “Split-NVE Control Plane Requirements.” Internet-Draft. Internet
Engineering Task Force, February 2017. https://datatracker.ietf.org/doc/html/
draft-ietf-nvo3-hpvr2nve-cp-req-06.

Yong, Lucy, Aldrin Isaac, Linda Dunbar, Mehmet Toy, and Vishwas Manral.
“Use Cases for Data Center Network Virtualization Overlay Networks.”
Internet-Draft. Internet Engineering Task Force, February 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-nvo3-use-case-17.

Review Questions

 1. In what ways are humans ill-suited to performing configuration management?

 2. Explain the constraints placed upon a network infrastructure by physical net-
work functions.

 3. Why is service function chaining necessary?

 4. Explain the purpose of a network service header.

 5. How do VNFs help reduce the “blast radius” of a network outage?

 6. What is the purpose of metadata in centralized policy management?

 7. How is intent-based networking distinct from traditional configuration?

 8. What is the chief benefit of VNF automation?

 9. What is the most significant impact of moving a network function from an
ASIC to a general-purpose CPU?

 10. In what way does the Linux kernel impose a bottleneck to VNF performance?

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-12
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-12
https://www.opennetworking.org/images/stories/downloads/sdn-resources/IEEE-papers/service-function-chaining.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/IEEE-papers/service-function-chaining.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-hpvr2nve-cp-req-06
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-hpvr2nve-cp-req-06
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-use-case-17
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-use-case-17

This page intentionally left blank

723

Chapter 28

Cloud Computing Concepts
and Challenges

Learning Objectives

After reading this chapter, you should understand:

 0 Some common cloud service offering models, such as software and
 platform as a service

 0 Some common reasons businesses choose to move their processing to
 public cloud services

 0 Some common tradeoffs to moving processing to public cloud services

 0 Some common technical challenges involved in moving processing to
cloud services

 0 The concept of data gravity

 0 Common elements of cloud security

While the term cloud has come to mean many different things, it will be defined
here as virtualized products or infrastructure consumed via self-service. In the
cloud model, the consumer uses a portal or Application Programming Interface
(API) to requisition a service, platform, or server, specifying requirements dur-
ing the request. The request is fulfilled by software automatically, so the con-
sumer can use the requested service immediately. Common examples of cloud
services include

Chapter 28 Cloud Computing Concepts and Challenges724

 • Software as a Service (SaaS). SaaS is application software for which the con-
sumer must neither provide hardware for nor buy and install shrinkwrapped
software. Rather, the service is leased via a subscription and consumed via the
Internet through a web browser, mail client, or other custom software supplied
by the SaaS provider. SalesForce.com, Microsoft’s Office365, and Google Apps
for Business are all examples of SaaS.

 • Platform as a Service (PaaS). PaaS offerings are software building blocks used
in the creation of a full software package. PaaS offers a blank canvas software
developers use for their own projects as opposed to the complete software
products offered as SaaS and aimed at end users. PaaS building blocks vary
by vendor but include features such as programming languages, development
testing environments, databases, security, load-balancing, workload orchestra-
tion, and data analytics.

 • Serverless or Functions as a Service (FaaS). FaaS are on-demand software
routines hosted in a cloud environment that, upon receiving a data input,
perform processing and return an output. In fact, FaaS runs on servers just
like any other computing function but is not bogged down with maintain-
ing a heavy software environment. FaaS was first popularized using the term
serverless, and serverless is still seen in most technical literature describing
the service.

 • Infrastructure as a Service (IaaS). IaaS is virtualized servers, storage, net-
working, and security. IaaS consumers request a virtual machine with a specific
number of virtual CPUs, RAM, storage, etc. The consumer can also request
an operating system to be installed, or even a service such as switching, rout-
ing, load balancing, etc. From there, the IaaS compute is available as a virtual
machine to run any software the consumer can install on it. IaaS offers a con-
sumer maximum flexibility of software without running physical hardware.
IaaS providers could be thought of as virtual data centers.

The lines separating SaaS, PaaS, serverless, and IaaS are not well defined; some
cloud products could conceivably be lumped into more than one “as-a-service” cat-
egory, and the market changes rapidly. Because of this, it is not useful to become
overly fixated on the distinctions, especially for this chapter, which will primarily
focus on the technical problems faced by network engineers when working with
cloud-based services.

Computing clouds are most often thought of as public clouds. The physical infra-
structure making up the cloud is not owned by the organization consuming it. Rather,
public clouds are created and maintained by third parties. The most well-known

http://SalesForce.com

725Cloud Computing Concepts and Challenges

public clouds are Amazon Web Services (AWS), Microsoft Azure (Azure), and
Google Cloud Platform (GCP).

However, there is no technical reason an organization cannot build a computing
cloud system hosted on its own physical infrastructure. A cloud of this type is called
a private cloud. Private clouds are built by organizations to move beyond traditional
computing infrastructure, but constrained by cost, security, or privacy concerns rul-
ing out public cloud adoption. OpenStack, CloudStack, and other orchestration
engines can be used to create private clouds.

Most cloud-consuming organizations are neither exclusively public nor private
cloud users. Instead, they are hybrid cloud users and operators. Some of their com-
pute workloads are in the private cloud, while others are in the public cloud. Typi-
cally, there is some sort of physical and virtual network interconnecting the different
domains making up the hybrid cloud environment.

Most hybrid cloud organizations consuming public cloud also use more than one
public cloud. For example, an organization might use both AWS and Azure. These
organizations are said to be multicloud.

One critical consideration for network engineers studying cloud computing is
Application Programming Interfaces (APIs). The configuration of network equip-
ment traditionally involves using a command-line interface (CLI) to create configu-
rations describing how a device is supposed to behave. Commands are entered via
the CLI, and responses to those commands are posted by the network operating sys-
tem. The CLI is intended primarily as a human-friendly interface. The output in
particular is geared toward a human being reading the information on a screen and
making sense of it.

In contrast with the CLI, APIs are intended for programs. APIs accept specific
input and provide structured output. A program using APIs to configure a device will
provide a specific input, perhaps about an interface or routing protocol, and make a
call to an appropriate API class and method using the input. The API will accept the
input and act on it appropriately, configuring the device. The result of the operation
is returned to the calling program as structured data. The structured data conforms
to a predictable format and can be stored by the program for later reference.

APIs are used for configuration as well as status inquiry. For instance, the appro-
priate API calls can return structured output describing the state of all Border Gate-
way Protocol (BGP) neighbors, interface counters, and so on.

Cloud resources are often consumed via APIs. For businesses automating the life-
cycle of their applications, API consumption is a given, as programs are behind the
automation process. For network engineers, this means familiarity with program-
ming, APIs, and automation techniques; and integration of networking services into
a larger provisioning task becomes a useful, and even critical, skill.

Chapter 28 Cloud Computing Concepts and Challenges726

Note

For a deeper understanding of APIs and automation, see Chapter 26, “The Case
for Network Automation.”

Public Cloud Business Drivers

When a business moves from using internal resources to building either a cloud or a
more traditional information technology infrastructure, it is outsourcing infrastruc-
ture and operations. Why would a business outsource its infrastructure and opera-
tions to another company? The reasons are not much different from many other
decisions to outsource; they are financial and operational.

Shifting from Capital to Operational Expenditure

There are two basic kinds of costs in business:

 • Capital expenses (CAPEX) are what a company buys in order to operate the
services it sells. This includes desks, buildings, and information technology,
such as routers and switches.

 • Operational expenses (OPEX) are what a company pays for on an as-needed
basis, such as people, services, and consumable goods.

There is some amount of tradeoff between these two; sometimes you can buy
equipment that will reduce OPEX. Other times, of course, equipment purchases add
to OPEX. Purchasing cloud services moves the cost for processing power from being
a mix of CAPEX and OPEX to being entirely OPEX; by outsourcing, the business
does not need to worry about buying any sort of network or server gear other than to
support connectivity within campuses or to the cloud service. Moving from CAPEX
to OPEX is helpful to business operations because it results in smoother, more pre-
dictable cash flow.

Businesses often assume, as well, that large-scale cloud providers, because they
have access to bulk buying and deeply staffed design and hardware teams, can
build and manage computing resources more cheaply than a smaller company can.

Public Cloud Business Drivers 727

Specifically, large-scale network operators can take advantage of white box hard-
ware and open source software to provide services at a lower cost than a company
not specializing in providing computing resources. This may, or may not, be true in
any particular situation, depending on the maturity of a given ecosystem, the actual
requirements placed on the network, and the willingness of the business to look out-
side the box for solutions.

The amount of OPEX varies with how much of the cloud operator’s resources
are consumed, measured in a variety of metrics including CPU cycles and network
bits transferred. OPEX might further vary due to changes in staffing or consulting
requirements. It is possible that outsourcing infrastructure building to public cloud
operators reduces the need for certain kinds of in-house expertise. This will be more
true for SaaS offerings than PaaS or IaaS.

Some businesses might find public cloud consumption is more expensive than
operating their own private infrastructure. In fact, some organizations have shifted
workloads back from public cloud to private infrastructure to lower OPEX costs.
Serverless is one response by public cloud operators in response to this problem.
Applications leveraging FaaS instead of sitting on full-blown virtual machines or
long-lived containers see as much as an 80% cost reduction.

Time-to-Market and Business Agility

Public cloud gives businesses computing infrastructure with the swipe of credit card,
reducing procurement times from weeks or months to minutes. This sort of immedi-
ate access to infrastructure and information technology can enable a business to
bring products and solutions to market very quickly. Another use for this immediate
access to information technology is the ability to shift load during a peak in the busi-
ness cycle, so the business does not lose opportunity because of an inability to scale.
The business versus infrastructure spending chart originally used in Chapter 1, “Fun-
damental Concepts,” provides a good example of where cloud computing can be
useful for business agility; Figure 28-1 illustrates.

In order to avoid the times marked in dark gray as lost business opportunity,
many businesses will consistently overbuild their infrastructure. Cyclical businesses
are in the worse position of trying to cope with consumer behavior while also man-
aging this kind of growth curve. Rather than buying enough network and compute
resources to stay consistently above demand, businesses can use public cloud com-
puting platforms as a resource on which to temporarily burst (such as a retail oper-
ation in the few weeks before the winter holidays), leveling out their information
processing purchases over time.

Chapter 28 Cloud Computing Concepts and Challenges728

Nontechnical Public Cloud Tradeoffs

While there are advantages to using public cloud services, covered in the previous
section, there are also tradeoffs—those little things the account team selling the ser-
vices is either not going to tell you about or is going to minimize as challenges. It is
important, however, to really consider these tradeoffs when making the decision to
move processing to a public cloud. The benefit of public cloud is neither obvious nor
a foregone conclusion, as it varies with the business situation in question. This sec-
tion will consider some of the various tradeoffs that businesses and engineers need to
consider when considering moving their processing to public cloud services.

Operational Tradeoffs

A common reason for moving to cloud is to reduce internal operational costs by
reducing the number of network and infrastructure engineering resources required
to build and deploy applications. Because infrastructure resources can be consumed
via APIs in a public cloud environment, there is no longer any need for an operations
team. Developers building an application can use their programming skills to build
the application and to provision the infrastructure the application runs on. This
might appeal to businesses trying to conserve operational expenses. So not only are
all the costs of providing computing shifted from OPEX to CAPEX, the total amount
of OPEX is at least held steady, if not reduced, as well. If application developers can
do the job of infrastructure engineers, this seems to present an attractive cost sav-
ings. However, this “NoOps” view of infrastructure is short-sighted for several rea-
sons as described in the sections that follow.

Lost business opportunity

Overpaying for infrastructure

Figure 28-1 Business Agility and Cloud Computing

Nontechnical Public Cloud Tradeoffs 729

Moving to Cloud Computing Does Not Remove the Need for
Infrastructure Design
Infrastructure engineers are competent in infrastructure provisioning, to be sure.
However, provisioning infrastructure in a way that meets business objectives is com-
plex. Business requirements drive specific infrastructure provisioning decisions.

For example, a business might have specific service level agreements (SLAs) it has
made with its customers. To meet those SLAs, the organization will have matching
resiliency requirements for their application. The application might need to be avail-
able despite a catastrophic failure in a specific region. The application might have to
respond to user requests in a specific amount of time.

These sorts of requirements require a keen understanding of infrastructure
design. To maintain availability, any number of infrastructure decisions must be
made:

 • The network engineer might need to apply specific security policies to a traffic
flow.

 • Network capacity must be sized to meet demand.

 • Connections between multiple clouds might be required, depending on what
resources an application calls on and where those calls are going to and from.

 • Data replication to a disaster recovery site will require connectivity and capac-
ity, as well as routing and possibly address translation services to ensure appli-
cation availability during a primary site outage.

In short, light does not come from a light switch. While flipping a light switch
turns on the lights, being able to operate a light switch implies no knowledge of elec-
trical supply, electrical circuits, circuit breakers, ground wires, or even light bulbs.
And yet, all those components are critical to the functioning of the light.

Experts Are Still Required When Infrastructure Fails
While simple failures can be overcome by throwing out a broken piece of equipment
or software, and replacing it with a new one, many infrastructure failures are not
simple. Infrastructure, especially infrastructure designed for resiliency, tends to be
complex. The more complex something is, the greater the likelihood is that some-
thing can go wrong, and the more nuanced the resultant problem might be.

Troubleshooting complex problems requires deep expertise. In the cloud comput-
ing era, there is still a need for infrastructure engineers with deep expertise in man-
aging and troubleshooting complex large-scale networks. Infrastructure engineers
know how to bring the lights back on when flipping the switch no longer works.

Chapter 28 Cloud Computing Concepts and Challenges730

The Cost of Reaching the Cloud Still Needs to Be Considered
Many businesses just “assume” that once they have moved their processing to the
cloud, they will be able to reach the processing resources “over the Internet.” The
reality is moving a lot of data can still cost a lot of money. Circuits still need to be
purchased and maintained, Quality of Service must be configured, local resources to
“land” the data must be configured and maintained, etc. The costs of these circuits
will most likely increase through any kind of cloud migration, and should be an area
of particular concern in the case of hybrid- or multicloud deployments. Jitter and
latency are also components of cost in operations; these are a real concern because
the provider’s physical infrastructure may not align with your business operations.

The Costs of Cloud Computing Can Be Increased Because Specialized
Hardware Is No Longer Accessible
While cloud computing can often provide generic processing resources at a much
lower cost than buying, installing, and maintaining local compute resources, the the-
ory of cloud is grounded in treating every resource and every problem in as much the
same way as possible. For instance, you might initially assume a single network
device, such as a data center fabric router, can be replaced with a single processor in
the cloud. In this case, 20 or 30 processors in the cloud might need to be used to
replace this single device, driving the cost of the cloud deployment considerably
higher than expected. Specialized hardware drives purchasing and maintenance costs
higher, but it drives down the cost of actually processing data; public clouds often
simply replace specialized hardware with a large number of more generic resources,
shifting costs in unexpected ways.

Feature Creep Can Cause Failure Nightmares
There is a common perception in network engineering that unused features are silent
and neutral to the operation of the network—so long as a feature is not configured,
it is doing no harm. The reality, however, is far different. Each feature available in a
network device, or a cloud-based service, represents some amount of code—code
that must interact with the code providing other configured, in-use features. These
features, and the code they represent, are perfect gateways into failures through
unintended consequences, potential security holes in waiting, and a larger attack
surface. This problem is not unique to cloud services, of course; every vendor will
add a constant stream of features, most of which any particular customer will not
use. This does not mean these features have no effect on the performance or stability
of the product you are using, however.

Nontechnical Public Cloud Tradeoffs 731

Operational tradeoffs are not the only area to consider when trying to understand
the full cost of moving to public clouds for processing; there are also business trade-
offs to study.

Business Tradeoffs

Taking full advantage of cloud computing requires a business to rethink its opera-
tional and business processes. First, applications that businesses have built on tradi-
tional infrastructure solutions may require significant redesign to maximize their
efficiency in a cloud computing environment. Second, operational processes that
businesses have built around traditional computing infrastructure will need to be
updated to support cloud computing.

Shifts in operational processes and application architectures are significant
changes that some businesses have avoided due to their inherent costs. These busi-
nesses have tried to replicate as closely as possible their traditional infrastructure
architecture and operations, merely replacing their own hardware with a reflection
cast in the public cloud mirror. This approach is analogous to “fitting a square peg
into a round hole.” It is possible to take this approach when the square peg is moti-
vated to fit into the round hole with a sufficiently sized hammer, but the result is
inelegant and inefficient.

This points to a larger problem many businesses do not consider when outsourc-
ing: the mismatch between the goals of the outsourcer and the goals of the business
itself. The goal of the outsourcing business is to produce a product or service that
consumers want to purchase; the goal of the outsourcer is to produce a product that
the business will consume as much as possible of, at the highest possible margin. It
is quite possible for the outsourcer to drive internal business decisions in a direction
that is not good for the outsourcing business in order to increase the outsourcer’s
revenue and margins.

For instance, it is common for cloud providers (and all other vendors—public
cloud providers are not unique in this regard) to add new features and functions they
can use to leverage their customers into paying more, whether it actually improves
their customer’s business or not, and locks the customer in to the cloud provider’s
product line.

The vendor lock-in problem is particularly acute in most business environments.
When a business commits to using a specific cloud vendor, that business’s opera-
tional processes become locked into how a specific vendor delivers its technology.
Moving to a different vendor becomes hard, because the target vendor probably
delivers its technology differently, even if the technology in question is essentially the
same service.

Chapter 28 Cloud Computing Concepts and Challenges732

From a networking perspective, cloud computing presents nothing new in the
context of vendor lock-in. For decades, networking vendors have delivered products
with limited differentiation in functionality, but via widely different consumption
models. Sometimes the underlying technology is different while delivering the same
result. Other times, the technology is identical, based on industry standards, but
configured in unique ways. And yet other times, vendors offer truly differentiated
services unavailable from anyone else.

The networking services available in cloud computing don’t break the established
paradigm. All vendors offer some baseline of services, but these services can be con-
sumed uniquely. Some might offer special features to set their product apart. The
challenge for network engineers is no different than it ever has been, requiring care-
ful comprehension of the technology’s capabilities and applicability to a business’
problems.

The risk of the all-consuming cloud provider: Some cloud providers have, in the
past, used a partnership with a customer to learn how to build and support a par-
ticular business model, and then used the experience to enter the market as a direct
competitor to their own customer. Providing services for unique businesses can be a
great incubation strategy for cloud providers to spin up internal analogs to the cus-
tomers they are supporting, eventually broadening their market reach.

Technical Challenges of Cloud Networking

For the network engineer, cloud computing presents the challenge of providing low-
latency, secure connectivity over a mix of public and private transports using a mix
of physical and virtual equipment. In addition, this marvelous cloud-based transport
service must also be provisioned and deprovisioned on demand in real time as work-
loads are stood up and torn down, consumed programmatically, and monitored
centrally.

Latency

When you are considering how applications are deployed in cloud environments,
workload placement becomes especially interesting. Assume an enterprise is deploy-
ing an application in a multicloud environment. In this scenario, workloads can be
placed in one or more public clouds, as well as in a private cloud.

Developers often break a single application up into microservices, where each
component of the application is separated out into a standalone service. The applica-
tion is then reconstituted as a set of services communicating with one another across
the network to support the same overall set of services as the original application.

Technical Challenges of Cloud Networking 733

The problem that microservices architectures face is latency. When communicat-
ing over distances measured in kilometers rather than meters, the time it takes pack-
ets to traverse the distance is measured in milliseconds instead of submilliseconds;
it takes two such trips across the network, the Round Trip Time (RTT) to complete
any transaction between the microservices making up an application. Since multi-
ple microservices must interact to produce the same amount of data as the origi-
nal, monolithic, application, these delays “stack up” to produce a total delay much
greater than many developers expect. Figure 28-2 illustrates.

In Figure 28-2, A requests some information from the monolithic application; the
RTT across the network for processing the request and returning the information
is 20ms. When B requests this same information, service 1 must request informa-
tion from service 2, which must request information from service 3, etc. The total
network time in the microservices case is 80ms. If there is any increase in the delay
across the network for any reason, the effect is multiplied by four in the microser-
vices case, because there are four RTTs involved in every service request.

In applications previously deployed on traditional infrastructure or fully con-
tained in a localized private cloud, latency is far less of a concern. However, appli-
cations composed of many components, such as microservices, and spread over a
variety of clouds can experience reduced performance due to latency.

For network engineers faced with this problem, at least two solutions present
themselves.

Work with application deployment teams to optimize workload placement.
Workloads are placed in specific clouds for a variety of reasons, including capacity,
cost, and functionality. For network engineers, the key is to be involved in the appli-
cation design so decisions about workload placement include a clear understanding
of the infrastructure implications of those placement choices. Application develop-
ers in conjunction with infrastructure engineers and business stakeholders should
make design decisions jointly.

B

A

service 1

monolithic
application

service 2 service 3 service 4

10ms

10ms 10ms 10ms 10ms

10ms

10ms 10ms 10ms 10ms

Figure 28-2 Stacked Delay in a Microservices Architecture

Chapter 28 Cloud Computing Concepts and Challenges734

Every design is a compromise between technical idealism and practical prag-
matism. For example, network latency might be an acceptable compromise for a
particular design, because the overall application performance is not impacted mate-
rially enough. On the other hand, complex applications deployed in ignorance of
infrastructure realities might suffer unacceptable performance compromises.

Bring clouds closer together. Many data centers offer cloud exchange services,
where customers can purchase direct links to public cloud providers, often through a
cloud exchange. This means a network engineer can minimize the impact of latency
by designing the network to bring clouds closer together.

These services come at a cost and require a purposeful routing design. A common
challenge in standing up direct connections to public clouds is that the IP address
blocks in question are accessible both via the public Internet and now via the newly
introduced cloud exchange circuit. Routing tables must be populated so traffic is for-
warded via the cloud exchange, while also avoiding asymmetric routing.

Populating Remote Storage

When you are moving an existing application to public cloud IaaS, a second problem
comes in the form of storage. How is the application data living in a local data center
moved into the public cloud so the application has access to the data in the new
environment?

For network engineers, this type of challenge is not a new one. Moving large
amounts of data from one point to another separated by distance is a problem of
constraints. First, the amount of bandwidth between two geographically diverse
points is typically limited to a fraction of the bandwidth available in a data center.
Second, latency can make it difficult to use the entirety of the bandwidth available to
execute the transfer.

In a local area network (LAN), circuits are very high bandwidth, commonly inter-
connecting hosts to the network at speeds of 10, 25, 40, 50, and even 100Gbps. In the
LAN scenario, bandwidth generally is not a constraint when moving storage data
around the network. Bottlenecks in the transfer process are more likely to be found
in the disk or host bus subsystems.

However, when the storage transfer is happening over a wide area network (WAN)
such as the public Internet, bandwidth often becomes a constraint, as the bottleneck
moves from host data bus or disk itself back to the network. Circuits interconnecting
private and public clouds are very often less than 10Gbps. In addition, the connec-
tion might be lossy when compared to a LAN, requiring retransmissions and reduc-
ing overall throughput. This is one element network engineers must consider when
computing how long it will take to move a storage volume from the local data center
to the public cloud.

Technical Challenges of Cloud Networking 735

In addition to bandwidth constraints, latency has historically been a potential
constraint. Assuming the Transmission Control Protocol (TCP) is the transfer mech-
anism, the amount of time waiting for an acknowledgment across the WAN means it
might be difficult to fill the available bandwidth. This is a well-known issue for high-
bandwidth, high-delay networks—so-called long fat networks (LFNs).

However, the challenge of fully utilizing the available bandwidth of LFNs has
been addressed with several tuning techniques and variants to the TCP protocol. For
instance, BIC-TCP, TCP Westwood, TCP Reno (with several variants), TCP Hybla,
and TCP Vegas are all algorithmic variants of the core TCP congestion control algo-
rithm, modifying window size in relation to round trip time to maximize through-
put. Also notable, CUBIC TCP has seen recent attention in the IETF.

The point to keep in mind is populating a remote storage volume with terabytes of
data via a copy operation across the public Internet will take more time than a com-
parable copy performed locally. This introduces a decision point. Is the performance
sufficient enough so the copy can be done via network transfer? Or should data be
copied onto a local, portable media and then shipped to the remote public cloud?

In a situation like this, there is no magic available to make terabytes of data in one
place appear in another instantly. As such, this problem is a good example of under-
standing the practical limitations of the available technology and working with the
business to determine the proper course of action.

Data Gravity

Once data has been populated in the remote cloud storage, moving data back out of
the cloud presents challenges. One issue is a practical one: cost. While public cloud
providers are keenly interested in their customers checking data in, they don’t want
those customers to leave. Thus, public cloud providers charge as much as three to five
times the ingestion transfer costs to move data back out. This is commonly known as
the data gravity problem.

Data gravity is not a networking concern, but rather a business problem that network
engineers should be aware of. For network engineers focused on the technology challenge,
moving large amounts of storage data out of a public cloud presents the same challenges
as moving the data into the cloud in the first place. Limited bandwidth and latency intro-
duce constraints that might increase transfer times unacceptable to the business.

Selecting Among Multiple Paths to the Public Cloud

While some organizations will connect to public cloud services using cloud
exchanges, most organizations will connect to the public cloud via the Internet.
Internet circuit costs have come down in price, making multiple Internet connections

Chapter 28 Cloud Computing Concepts and Challenges736

at the network edge affordable. This offers network engineers an interesting network
design option. Rather than a single Internet connection at the edge, multiple connec-
tions offer both resiliency and additional bandwidth.

The challenge is how, exactly, to leverage multiple Internet edge circuits? The
straightforward and obvious answer is via a routing protocol. In the case of the Inter-
net edge, the routing protocol is BGP. However, while BGP enables the use of multi-
ple Internet connections, BGP’s best path algorithm is focused on connectivity and
not quality of application experience. BGP can only distinguish the relative closeness
of one path versus another, and not whether a longer path might be better quality.

Since BGP is insufficiently nuanced to make optimal routing decisions at a per-
application level, a market niche known as Software-Defined WAN (SD-WAN) has
taken recent hold in the industry. SD-WAN solutions are typically proprietary for-
warding schemes concocted by vendors. SD-WAN forwarding schemes prioritize
quality of experience (QoE) for specific applications, and make forwarding decisions
based on the QoE policy defined by a network engineer.

In the case of accessing the public cloud, an SD-WAN forwarding scheme will
determine the best Internet circuit to use to provide the best service to the cloud
consumer. For example, an SD-WAN forwarder might (allegedly) determine Internet
circuit A is best to access the Microsoft Office 365 SaaS cloud, while Internet circuit
B is best for Amazon Web Services IaaS hosted workloads.

Although unique to the many SD-WAN vendors offering products in this space,
making a forwarding decision about what is best might include the following deci-
sion points:

 1. Circuit lossiness. Is a circuit dropping packets? If so, to what degree? Loss will
be more acceptable to some traffic, such as large file transfers, where recov-
ery ensures data integrity. Loss will be unacceptable to traffic such as real-time
voice, where a conversation will be impacted.

 2. Circuit jitter. Is a circuit delivering packets on predictable time intervals? Like
loss, jitter—a variance in the time delta between packet deliveries—is accept-
able or not, depending on the packet payload.

 3. Circuit load. How busy is a given circuit? SD-WAN solutions can choose to
send traffic over a less loaded circuit to improve QoE for the traffic.

SD-WAN products take the routing design and administration out of the hands
of the network engineer or the routing protocol, moving those concerns to software.
For connectivity to public cloud, this means the end user QoE is optimized con-
stantly, without the network engineer having to make unusual tweaks to the routing
system. This approach has the added benefit of being able to add and remove Inter-
net edge circuits to the scheme at will with a minimum of engineering.

Security in the Cloud 737

The downside of SD-WAN solutions is they are proprietary. While there have
been some very early conversations in the networking industry about making SD-
WAN solutions interoperable, the market is too nascent and unstable to have seen
progress in SD-WAN standardization. The market is focused instead on product
consolidation and customer growth.

Security in the Cloud

With security breaches a regular part of the news cycle, the conversation of properly
securing the public cloud becomes poignantly interesting. For network engineers,
there are several concerns worth discussing:

 1. Protecting data over public transport

 2. Managing secure connections between cloud environments

 3. Isolating data in multitenant environments

 4. Understanding role-based access controls (RBAC) in cloud environments

Protecting Data over Public Transport

In a LAN, whether data should be encrypted or not is an open question. When data
is being moved between two trusted endpoints across a wholly owned LAN, is there
any security advantage in encrypting the data? The answer depends greatly on sev-
eral factors:

 1. The nature of the data. For example, health data and credit card data con-
tain highly sensitive information. The data should be encrypted in all circum-
stances, but also might have to be encrypted for regulatory reasons.

 2. How trust is defined in an organization. The idea of a hardened network
perimeter where a trusted network resides on one side and an untrusted on the
other is largely historical. While there is an inherent feeling of trust or comfort
borne of familiarity, network hosts are not trustworthy just because they are
part of infrastructure owned by an organization. In the modern era, malware
infections are assumed, meaning all hosts on a network need to be looked at as
threats. In the context of network transport, this means any host on a network
should be viewed as a possible point of gathering packets. Assuming the host
can see every packet on the wire, what can be done to prevent the packet’s pay-
load from being interesting to the malware-infected host?

Chapter 28 Cloud Computing Concepts and Challenges738

 3. Whether the data is already encrypted or not. In an application stack, the
data could be encrypted in several ways. One of those ways is at an application
level, where the client and server negotiate an encryption scheme to be used
to obfuscate the data payload. For instance, Secure Hypertext Transfer Pro-
tocol (HTTPS) is HTTP over Transport Layer Security (TLS). In the presence
of HTTPS, does it make sense to encrypt the traffic again with the lower-level
Internet Protocol Security (IPsec) protocol of use to network engineers secur-
ing point-to-point links?

When considering the public cloud, these questions are all relevant but have a dif-
ferent context. For instance, most connections to public cloud services are over the
public Internet. The public Internet is normally considered an untrusted transport.

While encryption might not be required, it is a best common practice to always
encrypt data traveling over an untrusted transport. The encryption might be via
HTTPS, which is not a concern for network engineers, as it is happening at the
application level. For network engineers, the primary encryption concern will be for
 connecting cloud environments together.

IPsec is the most common technology used to interconnect cloud environ-
ments. IPsec offers the benefit of a tunnel mode as well as strong encryption. This
means network engineers can connect an AWS Virtual Private Cloud (VPC) to a
local data center across the Internet. The AWS VPC network can be treated as a
network like any other network connected to the organization, using the IPsec
tunnel as a WAN link.

IPsec tunnels can also be used to connect not only private and public cloud envi-
ronments together, but also public clouds to public clouds. This means a workload
in one public cloud could query a workload in a different public cloud with an
encrypted payload via the public Internet.

Note encryption and security are not synonymous. While encryption is one part
of a security infrastructure, encryption by itself does not imply a secure network or
application. Additional security elements that might be required for an application
to be considered secure include authentication, input sanitization, access control
lists, a backup and recovery scheme, and deep packet inspection.

Managing Secure Connections

A significant challenge of IPsec is managing the connections. IPsec configuration is
complex, requiring deep engineering knowledge. Maintaining the Virtual Private
Network (VPN) once the IPsec tunnels have been created is an ongoing task to ensure
required tunnels stay up, old tunnels are torn down when they are no longer needed,
and new tunnels are built when appropriate.

Security in the Cloud 739

IPsec endpoints are also notoriously difficult to connect if the vendors vary. IPsec
is a standard, but there is enough flexibility in the standard to make the creation and
maintenance of inter-vendor IPsec tunnels a frustrating experience.

In public cloud networking, IPsec tunnels are relied upon to interconnect environ-
ments, but the variety of ways in which this can be done is fraught with management
headaches. To ease this burden, a market has opened for vendors to manage IPsec
tunnels via a centralized management tool. In this scenario, the tool is aware of the
multiple clouds an organization is using. The network engineer uses the tool to select
different clouds to be interconnected. The tool takes care of the IPsec details, creat-
ing and maintaining the tunnel between environments.

The Multitenant Cloud

Another concern some raise about public cloud is that public clouds are multitenant
environments. The compute infrastructure, including data, of one organization is
hosted in a public cloud right alongside the compute infrastructure of another. How
are these compute environments separated or compartmentalized? Is there a chance
some tenant could gain access to another tenant’s data because they are sharing pub-
lic cloud infrastructure?

The short answer to this concern is the risk is not generally considered significant.
Multitenancy is well understood in computing and networking. Virtualization is the
critical technology employed to allow multiple tenants to share common hardware
resources.

In addition, public cloud providers often demonstrate compliance with critical
security standards, allowing their infrastructure to be used for sensitive transactions.
For instance, both AWS and Microsoft Azure are PCI-DSS Level 1 Service Provid-
ers, of interest to those processing payments. PCI-DSS is just the tip of the cloud
compliance iceberg. Both Azure and AWS offer certifications for several compliance-
related programs the world over, as well as support organizations aiding customers
impacted by these regulations.

This is a roundabout way to make the point that multitenancy is not a concern for
organizations wishing to consume the public cloud. Security offerings in the cloud
are robust and nuanced, moving beyond simple tenant isolation and into compliance
with complex regulations.

Role-Based Access Controls

Public clouds also offer complex controls to limit what entities can access which
resources in the public cloud. In networking, this is known as role-based access con-
trols (RBAC).

Chapter 28 Cloud Computing Concepts and Challenges740

In networking, RBAC has been used to control what administrative tasks network
engineers can perform on network equipment. In the public cloud, resources can be
similarly controlled. For example, in AWS, the Identity and Access Management
(IAM) service offers granular roles and permissions for a variety of public cloud
resources. In addition, extensive documentation and training are available to prop-
erly leverage this complex resource.

Monitoring Cloud Networks

Another challenge facing network engineers in the public cloud is packet capture and
analysis. In wholly owned networks, access to the physical switches and wires carry-
ing traffic means traffic can be copied from one port to another for capture, or inter-
cepted via network taps. These copied packets flow across a visibility fabric—a
collection of specialized network devices that gather, filter, and slice packets—to
tools that perform packet analysis.

Networking in the public cloud presents a challenge for visibility fabrics, because
there is no longer access to physical switches or wires from which to obtain copies of
traffic. How can packets be captured when there is no physical network accessible?

This unique challenge is being handled by vendors via host interception. While
the underlying network infrastructure of the public cloud is not accessible, the hosts
running on the public cloud are. Those hosts are the virtualized workloads that
public cloud consumers own and operate. Therefore, to capture traffic in the public
cloud, copies of the packets are made on the virtual workload and tunneled to a tool
that will perform the analysis.

The virtual workload runs an agent that facilitates the copy. The agent will also
perform filtering, so not all packets are copied to the analysis tools. Copying all
packets everywhere to analysis tools could overwhelm the network with excessive
traffic, a pointless thing to do if just specific packets are required.

Final Thoughts

Cloud computing, for all the infrastructure complexity it masks, does not eliminate a
requirement for thoughtful network design. Businesses sold on the notion that the
difficulties of operating infrastructure go away because they have paid a friendly
cloud provider are missing a crucial point. Best leveraging of cloud technologies
means a shift in skillsets, and not an elimination of expertise.

Cloud computing can even introduce new problems in application performance
if an appropriate design is overlooked. Network engineers who wish to add value to

Review Questions 741

the organizations they support will benefit their organizations by offering designs to
make the best of high-latency network links.

In addition, cloud computing necessitates all technology silos in an IT team
working together. Network engineers have an opportunity to lead, as the transport
between cloud environments is a point of commonality touching API calls between
services, storage performance, high availability, and disaster recovery. A deep under-
standing of how the network enables or constrains communications informs the
design of all these services.

Further Reading

Erl, Thomas, Ricardo Puttini, and Zaigham Mahmood. Cloud Computing: Con-
cepts, Technology & Architecture. 1st edition. Upper Saddle River, NJ: Prentice
Hall, 2013.

Hawramani, Ikram. Cloud Computing for Complete Beginners: Building and
 Scaling High-Performance Web Servers on the Amazon Cloud. 1st edition.
Hawramani.com, 2016.

“PCI Compliance—Amazon Web Services (AWS).” Amazon Web Services,
Inc. Accessed August 25, 2017. https://aws.amazon.com/compliance/
pci-dss-level-1-faqs/.

Reed, Archie, and Stephen G. Bennett. Silver Clouds, Dark Linings: A Concise Guide
to Cloud Computing. 1st edition. Prentice Hall, 2010.

Rhee, Injong, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert,
and Richard Scheffenegger. “CUBIC for Fast Long-Distance Networks.”
 Internet-Draft. Internet Engineering Task Force, July 2017. https://
datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-05.

Ruparelia, Nayan B. Cloud Computing. Cambridge, MA: The MIT Press, 2016.

Weinberger, Matt. “Amazon Explains Its Secret Weapon in the Cloud Wars.” Busi-
ness Insider. Accessed August 25, 2017. http://www.businessinsider.com/
amazon-web-services-lambda-explained-2015-11.

Review Questions

 1. This chapter states that moving from internally owned and managed resources
to a public cloud service can move CAPEX to OPEX, and make costs more
predictable. What does the predictability of cost rely on in a cloud service?

http://Hawramani.com
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-05
http://www.businessinsider.com/amazon-web-services-lambda-explained-2015-11
http://www.businessinsider.com/amazon-web-services-lambda-explained-2015-11

Chapter 28 Cloud Computing Concepts and Challenges742

 2. This chapter states that feature creep in a cloud service can cause nightmares.
Compare the use of proprietary features in vendor-provided network equip-
ment to the use of proprietary features in public cloud services. How are they
different or the same?

 3. Explain why latency and jitter would be issues to consider when moving pro-
cessing to a public cloud service.

 4. Research the concept of data gravity. What are other meanings for this term,
and the problems it represents, which are not covered in the text?

 5. Why is selecting the best route into and out of cloud services important?

 6. There are many cloud security issues not considered in the chapter, such as
cross processor memory attacks, data breaches, and providing confidentiality
against the cloud provider. Choose one of these problems, describe the prob-
lem, and describe at least one solution to the problem (if there is one available).

743

Chapter 29

Internet of Things

Learning Objectives

After reading this chapter, you should understand:

 0 The relationship between IoT and DDoS attacks

 0 The problems involved in securing IoT devices

 0 The concept of unikernels, and how they relate to IoT

 0 The basic kinds of IoT connectivity available, including BlueTooth
and LoRaWAN

The world is made up of things. Television sets, radios, light bulbs, and refrig-
erators all surround each of us every day, providing essential services in some cases,
and simply making our lives simpler in others. The Internet of Things (IoT) either
accepts the reality or proposes to make real (depending on your perspective) the con-
nection of every one of these devices to the Internet. Connecting this many “things”
to the Internet, however, requires a radical rethinking of the systems required to col-
lect and act on data; the sheer amount of data would require the kinds of newer
design patterns outlined in Chapter 25, “Disaggregation, Hyperconvergence, and the
Changing Network,” and rely on the kinds of service separation and scaling consid-
ered in Chapter 27, “Virtualized Network Functions.”

This chapter considers IoT from various perspectives.

Chapter 29 Internet of Things744

Introducing IoT

On Tuesday, September 13, 2016, the security analysis website KrebsOnSecurity.com
was down.1 More accurately, the site was rendered inaccessible by a distributed
denial of service (DDoS) attack. DDoS attacks take advantage of the free and open
nature of the Internet. Since any part of the Internet can talk to any other part, it
becomes possible to launch attacks from many Internet locations at once.

The distributed nature of a DDoS attack makes the attack difficult to mitigate.
Which source addresses should be filtered as attackers, and which source addresses
are those of legitimate customers? The attack patterns are purposely designed to
make this challenging to discern, overwhelming the target with traffic, and resulting
in service requests being denied. The overwhelming amount of traffic in this case was
estimated to be as high as 620Gbps.

Brian Krebs, the security expert behind KrebsOnSecurity.com, describes him-
self as obsessed with security, maintaining relationships with many other smart
information technology (IT) experts to keep his skills honed and his writing
deeply informed. Yet, even with his technical prowess, his site fell victim to this
DDoS attack. Why?

On Friday, October 21, 2016, the Domain Name Services (DNS) provided by
Dyn came under a DDoS attack. This attack was even more nefarious than the one
on Krebs. The attack impacted Dyn and Dyn’s customers, rendering their services
effectively offline. If name resolvers were unable to reach Dyn DNS servers, then the
domain names hosted by Dyn would not be able to be resolved. Various media out-
lets reported impacts to AirBnB, Amazon Web Services, Box, FreshBooks, GitHub,
Netflix, PayPal, Reddit, Spotify, and Twitter, just to name a few.

In the DDoS attack launched against Dyn, an estimated 40,000–100,000 sources
were estimated to generate an aggregated peak traffic of a staggering 1.2Tbps. This
attack came in waves, rendering services down and up and down again while mitiga-
tion efforts were deployed.

What do these attacks have to do with the Internet of Things (IoT)? In both
the Krebs and Dyn attacks, poorly secured IoT devices were leveraged. DDoS
attacks often work via botnets. In a botnet, many Internet-connected computing
devices are compromised due to some security flaw. When the flaw is exploited,
command-and-control software is installed, bringing the device under the control
of a remote party.

When enough devices are controlled, they can be used by the controller to
launch a coordinated attack against a target. The Internet is used as the network

1. Krebs, “KrebsOnSecurity Hit with Record DDoS.”

http://KrebsOnSecurity.com
http://KrebsOnSecurity.com

Introducing IoT 745

to carry out the attack. IoT is making it easier to create botnets and launch pow-
erful DDoS attacks, such as the ones against Krebs on Security, Dyn, and many
Dyn customers.

In fairness, IoT is not specifically to blame. The issue is more one of a huge
number of devices connected to an intentionally open Internet, which are not often
touched, and rarely have the processing power to dedicate a lot of effort to security.
After all, IoT is merely a handy term to describe the notion of a world in which unex-
pected things are connected. Home automation smart devices such as thermostats,
garage door openers, refrigerators, lights, video surveillance, locks, and home enter-
tainment devices, not to mention cars, are part of the brave new IoT world.

In the realm of business, smart cities can control parking, optimize traffic, and
micromanage electrical power distribution. Smart buildings can optimize environ-
mental systems, managing heating, cooling, and lighting in harmony with physical
building design and efficiency protocols. Smart factories monitor manufacturing
processes, rooting out the tiniest inadequacies in production, squelching problems
before they become manufacturing defects.

Energy producers also add smart devices to the IoT panoply, relying on sensors
to govern oil and gas production, as well as the operation of wind farms generating
electricity.

As the usefulness of IoT has exploded, IoT device manufacturers have focused on
functionality more than security. Far too many IoT devices are shipping with easily
defeated security measures, making them easy targets to add to a botnet for use in a
later attack.

Herein lies one of several networking challenges introduced by the Internet of
Things considered in this chapter:

 1. IoT security. How should IoT devices be secured? What is unique about them
compared to traditional compute? What design constraints are introduced by
IoT security peculiarities?

 2. IoT connectivity. As IoT devices flourish in number, what strategies are
required by network engineers to best connect them to the local networks
they serve as well as the Internet? This is a more poignant consideration
than it sounds, complicating both addressing schemes and communications
protocols.

 3. IoT data. The amount of data produced by IoT devices in certain applications
places a burden on the Internet that network engineers must consider. For IoT
data to be made use of in a timely way, it must be processed as quickly as pos-
sible. The latency of public cloud introduces an IoT data processing challenge
the network engineer must consider.

Chapter 29 Internet of Things746

IoT Security

Some writers have characterized the IoT as the Internet of Terror;2 others, The Inter-
net of Stupid Things.3 Why the derision? The story of Krebs on Security could be the
story of every website unless some method is used to secure these “smart” devices
now proliferating. The question is: How can you secure devices that have very little
processing power, very little memory, and generally cannot or will not be updated on
a regular basis?

There are several possible answers to this question—answers many security and
network engineers believe do not, ultimately, actually provide a sufficient answer.

Securing Insecurable Devices Through Isolation

One obvious thought to secure IoT devices is to treat them as you’d treat any com-
puting device: lock them down. There are well-known processes to minimize the
attack surfaces of Linux and Windows operating systems. For example, a Windows
10 workstation might have a specific policy pushed to it through centralized control.
Or, a Linux server might be instantiated using a template predefined by operators to
turn off unused services, reducing the attack surface.

However, IoT devices are not running full-blown operating systems and might
lack the tools required to secure them in this way. In addition, securing them might
break some of their functionality.

Since the IoT devices themselves cannot be secured, controlling access to the net-
work is currently the main strategy for IoT device security. The idea is to allow the
IoT device access to the network, but to strictly limit what the IoT device can reach
through the network. While the Internet is an open transport, private networks con-
taining IoT devices are not presumed to be open. Operators have the opportunity to
control traffic flows and limit the chance their IoT devices become compromised. In
addition, operators can prevent their IoT devices from being used as minions in a
DDoS attack, even if they are compromised.

IoT device access control can be accomplished in a couple of different ways; the
following sections consider both service-based isolation and endpoint isolation.

Service-Based Isolation
In the IoT service-based isolation model, IoT devices with a common purpose are
assigned to a specific network segment that is isolated from the rest of the network
by a security service. The security service implements a policy filtering traffic flowing

2. Neville-Neil, “IoT.”

3. Huston, “The Internet of Stupid Things.”

IoT Security 747

into the IoT network from the outside world. The security policy also limits what the
IoT devices can access beyond the service, as illustrated in Figure 29-1.

This strategy can work in scenarios such as building environmental control. In
this model, IoT devices such as thermostats and HVAC controls can participate on a
common network. In fact, they might need to communicate on a common network
to share data with one another or with a centralized controller. The HVAC envi-
ronmental network is isolated from all other building networks by the programmed
behavior of the security appliance or service policy.

Exceptions to this policy can be made as needed to support business functions.
For instance, IT operations might require access to support HVAC functions and
monitor equipment. Workstations supporting building maintenance might require
access to the network as well. The security policy governs this traffic, limiting packet
flows to what is absolutely required.

The result of this strategy is that IoT devices become much more difficult to
access remotely. The IoT devices themselves are still insecure, but their attack sur-
faces have been isolated to expose them to as few outside hosts as possible while still
allowing them to perform their functions.

Endpoint Isolation
Endpoint isolation takes the idea of appliance-based isolation one step further. In
this approach, every IoT device on the network is isolated from every other device on
the network. This is managed at the ingress network port. Where the IoT device is
plugged into the network, there is a filter in place strictly limiting what other systems
the device can communicate with, and vice versa.

The problem with endpoint isolation is one of administrative burden. Maintain-
ing appropriate whitelists for every IoT endpoint on the network is tedious at best
and an impossible-to-scale challenge for IT operations teams at worst.

To handle this challenge, some IoT security solutions relying on endpoint isola-
tion employ central management. In this scenario, an administrator creates secu-
rity policies, assigning them to groups. Then, IoT devices are placed into the proper

other
network

segments

IoT
segment

firewall

sensors

Figure 29-1 Using a Security Service to Separate IoT Devices from the Rest of the Network

Chapter 29 Internet of Things748

groups. The central controller takes care of pushing the appropriate traffic filtering
policy to the ingress network port, isolating the IoT device. Figure 29-2 illustrates.

Endpoint isolation is an effective approach for IoT devices that operate as lon-
ers. For example, endpoint isolation works effectively in healthcare, where medical
devices might require access to just a small number of other systems on the network,
and do not participate as a member of a collaborative sensor group.

Unikernels
One technology effort that could significantly impact IoT security is unikernels.
 Unikernels are stripped down versions of operating systems that include just the
functionality strictly required for the application they support. This approach dra-
matically reduces the attack surface of the underlying system.

What is meant by “attack surface” in the context of IoT devices? Operating sys-
tems often ship with many libraries and supporting applications by default, selected
at the whim of the operating system (OS) distribution creators. Operating systems
are bundled in this way because the resources are known to be commonly used, even
if they are not always used. Attackers will attempt to leverage any resources they
can, hoping to discover vulnerable code when they run their exploits.

For example, an operating system might include an antiquated storage library,
included by the distro makers just in case a user is running the OS on an older sys-
tem. If an old storage library is not required to access any of the disk hardware in
the system, it is both useless to the operator and potentially exploitable by attackers.
The library makes up part of the “surface” that can be attacked.

Thus, on IoT devices shipped with full operating system distributions, a larger
than necessary attack surface is present. Unikernels strip out the daemons, libraries,
and applications not required by the operating system nor the application. The result

network

policy
manager

policy

IoT service

other
services

sensors

standard
host

Figure 29-2 Endpoint Isolation with IoT Devices

IoT Security 749

is a barebones, highly efficient operating system environment containing just what is
needed to support the applications running.

Don’t think of “barebones” negatively in this context. Operating systems func-
tion in multiple contexts. Some are used actively by end users—for example, as desk-
top operating systems, programming environments, digital media creation, and so
on. In this context, a barebones unikernel would be an overly constrained platform
likely to inconvenience the user to the point of madness.

However, in the context of a specialty device manufactured with a singular pur-
pose, a unikernel seems perfectly suited. An operating system built for the purpose
of delivering a single application, most likely on a customized bit of hardware that
will never change, cries out for a secure and efficient environment.

Process impact aside, there is little conceptual downside to an IoT device manu-
facturer taking the unikernel approach. Despite the advantages, unikernels have not
been widely adopted by IoT device manufacturers yet.

Unikernels are raised here as a security enhancement for IoT devices, but how
many consumers of IoT devices will understand this point and make their purchases
accordingly? Perhaps consumers, armed with the knowledge of unikernels and suf-
ficient buying power, could demand manufacturers properly implement unikernels
as the base platform their applications run on.

The End of Open Networking?
This chapter was introduced with the notion of an open Internet, the intentionally
open nature of the Internet that has made possible free communication as well as
nefarious attacks. Although supportive of the open Internet, the Internet Engineer-
ing Task Force (IETF) offers perspectives on best practices, codified as Best Current
Practice (BCP) documents.

One such BCP of interest to the IoT discussion is BCP38, which is a pointer to
RFC2827: Network Ingress Filtering: Defeating Denial of Service Attacks Which
Employ Internet Protocol (IP) Source Address Spoofing. BCP38 proposes all network
operators filter traffic with inappropriate source addresses. “Inappropriate” means
source addresses that should not be used to originate packets or should not appear
on the wire on the interface where they were received.

For example, RFC19184 specifies address blocks for private use only:

 • 10.0.0.0/8

 • 172.16.0.0/12

 • 192.168.0.0/16

4. Moskowitz et al., Address Allocation for Private Internets.

Chapter 29 Internet of Things750

RFC1918 blocks are not routable across the public Internet. Traffic containing
source addresses from RFC1918 address space should never appear on the public
Internet. IPv6 also has several kinds of globally unroutable addresses, such as link
local addresses, and unroutable globally unique addresses.5 Therefore, BCP38
(RFC2827,6 updated by RFC37047) suggests they should be filtered.

DDoS attacks often use spoofed—fake—source addresses in their attack. The
attackers don’t require a response, and obfuscating source addresses makes it more
difficult to track down the actual hosts propagating the attack. RFC1918 addresses
are useful here, but any addresses could be, and are, used in DDoS attacks.

By dropping traffic with spoofed addresses, DDoS attacks should be at least
partially mitigated. Writing filter lists that drop address blocks such as RFC1918
is straightforward. Also straightforward is the filtering of bogons, containing non-
routable address blocks, plus unassigned public address blocks.8 Unicast Reverse
Path Forwarding (uRPF) ensures traffic is only forwarded if the source address is
reachable through the interface through which the packet was received.

From the standpoint of IoT, BCP38 and uRPF are best practices because they help
contain certain types of attacks sourced from compromised IoT devices. The rec-
ommendations in BCP38 are not as widely deployed as they could be because of
various operational and performance issues involved in deploying these techniques.
For instance, the Mirai botnet used in the Krebs and Dyn DDoS attacks appeared to
come from spoofed addresses—reportedly tens of millions of addresses from tens of
thousands of sources. And yet—the attacks were successful.

IoT Does Not Represent New Security Challenges
Interestingly, IoT does not represent any new security challenges to network engi-
neers. The issues of DDoS, address spoofing, ingress filtering, etc., are familiar to
networking professionals. However, IoT makes these issues more poignant.

Distributed denial of service attacks have always been painful. However, the
proliferation of poorly secured, easily exploitable, IoT devices has rendered DDoS
attacks easier to execute and more harmful once launched. Thus, the industry has
been forced to address the issue, reminding network engineers and equipment manu-
facturers of the mitigation strategies.

IoT also raises the stakes because IoT devices tend to gather data of potential
interest to attackers. An attacker, for instance, might be very interested in being able

5. Haberman and Hinden, Unique Local IPv6 Unicast Addresses.

6. Senie and Ferguson, Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP
Source Address Spoofing.

7. Baker and Savola, Ingress Filtering for Multihomed Networks.

8. “The Bogon Reference Page.”

IoT Connectivity 751

to gain access to a building through an IoT device. What about IoT sensor data com-
ing from a natural gas pipeline? While this chapter has focused on IoT devices being
used as incubators for malware, network operators should remember IoT devices
also represent targets of opportunity in and of themselves because of the data they
sometimes have access to.

IoT Connectivity

A different set of challenges for the network engineer is represented by IoT connec-
tivity requirements. Typical network devices are powered predictably by the electri-
cal grid, and are connected to a local wired Ethernet or wireless IP network. These
sorts of network devices, which do represent a significant portion of the Internet of
Things, are straightforward, as they are connected to the network in familiar ways.

However, many IoT devices are not able to be connected to the network in the
typical fashion. They might be deployed over a wide geographic area, where enter-
prise-class WiFi networks do not reach.

Other IoT devices might be battery-powered, requiring an especially low power
draw to remain functional for a long time without maintenance. Given these con-
straints of geography and battery power, what sort of networking technologies can
be used?

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) has been billed by the Bluetooth Special Interest Group
(SIG) as having been built for the Internet of Things.9 As a well-recognized industry
standard, Bluetooth Classic and now BLE have indeed had a positive impact on IoT
devices, particularly those in the consumer space such as wearables and smart home
devices.

Bluetooth, including BLE, is a short-range protocol. Short-range means distances
of approximately 100 meters or less. Therefore, Bluetooth is commonly found in
home, auto, and personal area network applications such as wearables.

What does BLE do differently to reduce power consumption compared to Blue-
tooth Classic? The general answer is rather intuitive: BLE does less, and does “less”
less often. This does not mean BLE is feature-poor or incapable. Rather, the word
less as it is used here means BLE is designed to perform specific networking func-
tions, eschewing others, all bound by the constraint of minimal power consumption.

9. “SIG Introduces Bluetooth Low Energy Wireless Technology, the Next Generation of Bluetooth
 Wireless Technology.”

Chapter 29 Internet of Things752

Compared to Bluetooth Classic, BLE notably does less in the areas of data rates,
throughput, and connection setup time:

 • Data rates. Classic is specified for 1–3Mbps, while BLE rates are as low as
0.125Mbps and as high as 2Mbps.

 • Throughput. Classic specification is for 0.7–2.1Mbps, while BLE is specified
for a much lower 0.27Mbps.

 • Connection setup time. Classic Bluetooth connection setup time is around
100ms, while BLE reduces this to 6ms.

Power consumption itself is not part of the official Bluetooth specification, but
common experience suggests Bluetooth Classic hovers around a 1W power draw,
while BLE ranges between 0.01 and 0.50W.

The power savings is coming from, in part, the duty cycle. How long must a device
be powered—in this case, the Bluetooth host chip—before it has completed its task and
can go back to a sleep state? When comparing Bluetooth Classic to BLE, the BLE duty
cycles are reduced in time and/or frequency, resulting in a greatly reduced power draw.

For example, a developer can set several duty cycle parameters affecting a BLE
device in a connected state. Here are two:

 • The interval between data exchanges known as the “connection interval.”
Higher intervals reduce power consumption, the tradeoff being application
performance could be reduced because data can only be exchanged once each
interval. Devices cannot send data if they are sleeping.

 • Slave latency. In a Bluetooth pairing, one device is the master, and the other is
the slave. Assuming no data to send, the slave can be configured to not check
in with the master for a reasonable range of intervals, each skipped interval
saving power.

The result of BLE is the enablement of certain IoT devices to run weeks, months,
or years on coin-sized batteries. However, BLE’s reduced duty cycles and resulting
low power draw mean it is poorly suited for applications such as audio streaming.
Therefore, BLE headphones are, at the time of this writing, not available. Why not?

Audio streaming demands frequent duty cycles, as there is always new audio
information to be sent between master and slave. To make audio streaming work in
a BLE context, new audio codecs might need to be devised to come up with a send/
receive duty cycle amenable to fulfill the “low energy” part of BLE.

Other low-power, short-range protocols in use for IoT include Zigbee
and Z-Wave.

IoT Connectivity 753

LoRaWAN

Aside from the consumer space, the Internet of Things has seen uptake in the world
of industry. Industrial applications often require networking services extending
beyond the comfortable confines of a well-powered and well-connected building.

A municipality might use IoT to leverage smart city technology in areas such as
fire hydrants, parking, street lighting, and waste management. Farming can use IoT
to manage land and irrigation and to track animals. Utilities could use IoT to meter
gas and water usage.

To handle the distance and low-power requirements of many of these scenarios,
low-power, long-range communications protocols have been created. One such is
LoRaWAN (Long Range Wide Area Network).10

LoRaWAN is a chirp spread spectrum, wireless communications protocol oper-
ating in unlicensed spectrum below 1GHz, creating a low-power wide area net-
work (LPWAN). A LoRaWAN-based LPWAN offers data rates between roughly
0.3Kbps and 50Kbps over a range of 2Km to 15Km, depending on the environment.
LoRaWAN is a secure protocol, offering both factory preprogrammed network
authentication and over-the-air activation of participating nodes, as well as multiple
layers of strong encryption.

A LoRaWAN network includes two major components:

 • The end nodes with which to communicate. In this context, these are IoT
sensors.

 • The sensors communicate via LoRaWAN back to a gateway. The LoRaWAN
gateway is a bridge between the LoRaWAN network and a traditional wire-
less or wired network used to process the sensor data. The gateway serves to
decrypt inbound sensor data received via LoRaWAN radio and repackage the
payload for transport across the traditional network.

The compromise LoRaWAN makes, allowing it to function as a low-power, high-
range network protocol, is low bit rates. The data throughput across a LoRaWAN
network is seemingly miniscule at a max of 50Kbps, especially when considering
data center Ethernet speeds of 100Gbps are commonplace.

However, LoRaWAN’s low bandwidth represents a design solving a specific net-
working challenge. For many applications, IoT sensors do not need to transmit or
receive enormous amounts of data, but they do need to communicate over long dis-
tances using battery power. Thus, LoRaWAN is fit for purpose, providing a power-
efficient means of transmitting small amounts of data over long distances.

10. “LoRa Alliance Technology.”

Chapter 29 Internet of Things754

LoRaWAN transmitters come in three classifications:

 1. Class A devices are the most power efficient. Class A device radios sleep unless
they have data to send. Once data has been sent, they remain awake for two
receive windows, during which they can receive data. If more data needs to be
sent to a Class A device than can be delivered during the two receive windows,
the data must be queued until the next receive window opens.

 2. Class B devices operate like Class A devices, except for the addition of sched-
uled receive windows. While Class A devices can only receive data after send-
ing data, Class B devices can also receive data during regularly scheduled
receive windows. The additional receive windows draw power to engage the
LoRaWAN radio, and thus Class B devices are less power efficient than Class
A devices.

 3. Class C devices are different from Class A and B devices because Class C
devices listen all the time, except when transmitting. Class C devices are appro-
priate for applications where the IoT sensor needs to receive data regularly
from the central network, and the central network cannot wait for a remote
device to open a receive window. The downside of listening constantly except
when transmitting means the radio is constantly drawing power. Therefore,
Class C devices are expected to use a grid-connected power supply, as batteries
would be drained too rapidly in a Class C application.

Other low-power, long-range protocols in use for IoT include Sigfox and Neul.

IPv6 for IoT

IoT connectivity on IP networks faces an additional challenge—addressing. Network
operators are comfortable with IPv4 addressing schemes, and might be tempted to use
IPv4 in their IoT networks. While there is nothing wrong with this per se, IoT does
present some interesting challenges that make IPv6 addressing attractive, including

 1. Scale. IoT sensor networks have the potential to be vast, depending on the appli-
cation. IPv6 makes the number of IoT sensors in a network a nonissue, as the
address space is all but infinitely large. Starting with a well-planned IPv6 address-
ing scheme in an IoT network means never having to readdress the network.

 2. The elimination of Network Address Translation (NAT). NAT is commonly
used to translate blocks of private RFC1918 IPv4 address space into one or
more publicly routable IPv4 addresses. Some networks regard this as a security
feature, while others consider NAT a nuisance, as some applications require

IoT Connectivity 755

workarounds to function properly in the presence of NAT. NAT also makes
two-way communication between devices difficult. IPv6 has no requirement
for address conservation, i.e., hiding blocks of RFC1918 addresses behind a
single public IP address. IPv6 could be used in an IoT network to offer two-way
communication and improve endpoint identification and authentication.

 3. Mobile IoT. If IoT devices are not stationary, it is possible they will move
physically, as well as logically within the sensor network, disappearing and
reappearing as they move between associations with various access points and
gateways. IPv6 networks are well suited for mobile devices.

Another question network engineers must consider about IP addressing more
broadly is whether it makes sense to assign IP addresses to IoT devices. In one sense,
this is a strange question to ask. “Well, of course, there needs to be an IP address on
IoT devices! There needs to be an IP address on everything.”

The “IP or not” question is more nuanced, however. In traditional networks,
networking professionals do not need to consider whether an IP header introduces
inefficiency. Hardware ASICs are optimized to process these headers, and band-
width is plentiful. In addition, IP headers are used to identify source and destina-
tion addresses, carry interesting information about the flow they are a part of, and
make forwarding decisions. Network engineers used to fast Ethernet and wireless
networks and devices ubiquitously connected to the Internet might have a hard time
imagining networks without IP.

For IoT devices connected to traditional networks and to networks with no band-
width concerns, IP addressing does not introduce any new issues. However, much of
the IoT domain leaves traditional networks behind.

Consider low-power WANs (LPWANs) like LoRaWAN. When an IoT sensor is
sending its data to a receiver, what is the most important part? The payload—the
data itself. Any framing or encapsulation is overhead, even though it is necessary to
deliver the data. Therefore, in an LPWAN, the key is to reduce the overhead by mini-
mizing the number of bits encoded and sent over the air.

You might recall LoRaWAN’s highest bandwidth is around 50Kbps. Suddenly, the
size of an IP header becomes an interesting question. The size of the IP header is why
there is no such thing as IP over LoRaWAN. LoRaWAN packets go to a LoRaWAN
gateway, where the payload can be repacked into IP datagrams and sent to points
beyond. Why? IP packets with their pesky headers are simply too inefficient to send
over the LoRaWAN network. Figure 29-3 illustrates.

LoRaWAN’s lack of IP does not imply it is impossible to use IP addressing for
IoT. Rather, it means every networking tool is designed for a specific purpose. For
example, in the IETF’s RFC4944, 6LoWPAN is specified to integrate IPv6 with
IEEE 802.15.4 mesh networks, including compression of the IPv6 header wherever

Chapter 29 Internet of Things756

possible. Reading through RFC4944 exposes the many technical challenges of this
integration.11 Yes, the technology exists, and while difficult to implement practically,
it can be done.

The question then comes back to the network engineer. Given a choice of connec-
tivity technologies and addressing schemes for IoT, which one is the right one? The
answer depends on the connectivity requirements. Different requirements will lead
to different answers.

IoT Data

Some IoT sensors produce a significant amount of data. What happens when the
data must be acted upon in real time? How should the data be processed?

The idea of fog computing—also termed edge computing—is that certain IoT
sensors stream too much data to be processed far away, such as in the public cloud.
In these cases, IoT data must be analyzed locally to be of real-time value in many
applications, particularly industrial ones. Sending the data far away, processing it,
and bringing back the results would take too long.

Besides tending toward high latency, bandwidth to the public cloud is simply not
cheap enough to size pipes sufficiently large for IoT applications. Thus, the term fog
is meant to conjure an image of a cloud close by, rather than one far away. Sending
data into the local fog allows for speedy analysis and timely results.

The fog computing model is to process IoT data as close to the sensors as pos-
sible. Many IoT devices do not have local data centers in which to perform data
processing. Those with a data processing center closer than the public cloud might
find connectivity is often fragile. Therefore, fog computing sometimes looks like a

11. Montenegro et al., Transmission of IPv6 Packets over IEEE 802.15.4 Networks.

IoT gateway

se
ns

or
s

LoRaWAN
network

Figure 29-3 LoRaWAN-to-IP Operation

Final Thoughts on the Internet of Things 757

small, dedicated device piggybacked on the sensor accepts data and performs pro-
cessing. This could also mean data processing software resident on IoT network
gateway devices.

Use cases for fog computing include many examples from Industrial IoT (IIoT):

 1. Locomotive fuel efficiency. Engine sensor data is coupled with GPS data to
reduce engine idle time, saving significantly on fuel. Even at idle, locomotives
utilize a large amount of fuel. Avoiding excessive fuel burn requires real-time
data analysis as the locomotive moves across the landscape.

 2. Cavitation alerts. Temperature, input pressure, output pressure, and water
velocity are monitored in real time to detect the conditions in which an air
bubble might be introduced into a water moving system. These air bubbles, or
cavitations, can destroy water pumps.

 3. Wind energy forecasting. Wind turbine data is analyzed to predict power yield
for the next 24 hours, a legal requirement in certain parts of the world where
power grids are carefully managed by governments.

 4. Factory yield optimization. Sensor data is analyzed to discover manufactur-
ing problems resulting in a bad run of products, improving overall quality and
reducing factory downtime.

While fog computing is a data processing paradigm more than a networking par-
adigm, the computing requirements of IoT make an implicit demand on network
engineers. Where there is a great deal of data, there must be a capable network to
move the data. Therefore, understanding the load created by IoT sensor data will
inform the IoT network design.

Final Thoughts on the Internet of Things

The Internet of Things is an interesting area of new deployment and research that is
ultimately likely to reshape the way the Internet is seen. Instead of providing connec-
tivity for people searching for websites and social connections, the primary job of the
Internet, in terms of traffic flow, will be to connect sensors to cloud-based services.
These cloud-based services will, in turn, peek into every area of life, raising security
and privacy concerns that need a lot of thought to untangle. This chapter has pro-
vided some ideas of how such an Internet might work and how it might be secured.

The next chapter will consider another future-looking topic, the future of net-
work engineering.

Chapter 29 Internet of Things758

Further Reading

Baker, Fred, and Pekka Savola. Ingress Filtering for Multihomed Networks. Request
for Comments 3704. RFC Editor, 2004. doi:10.17487/RFC3704.

Banks, Ethan. “Foghorn: Real-Time Decision Making for IIoT.” Packet Pushers, Sep-
tember 14, 2016. http://packetpushers.net/foghorn-iiot/.

“The Bogon Reference Page.” Team CYMRU. Accessed July 17, 2017. https://
www.team-cymru.org/bogon-reference.html.

Cantrill, Bryan. “Unikernels Are Unfit for Production.” Blog. Joyent, January 22,
2016. https://www.joyent.com/blog/unikernels-are-unfit-for-production.

Haberman, Brian, and Robert M. Hinden. Unique Local IPv6 Unicast Addresses.
Request for Comments 4193. RFC Editor, 2005. doi:10.17487/RFC4193.

Hilton, Scott. “Dyn Analysis Summary of Friday October 21 Attack | Dyn
Blog.” Corporate. Dyn, October 26, 2016. https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/.

Huston, Geoff. “The Internet of Stupid Things.” APNIC Blog, April 30, 2015.
https://blog.apnic.net/2015/04/30/the-internet-of-stupid-things/.

Krebs, Brian. “KrebsOnSecurity Hit with Record DDoS.” Blog. Krebs on
Security, September 16, 2016. https://krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/.

“LoRa Alliance Technology.” Standards Body. Lora-Alliance. Accessed July 17, 2017.
https://www.lora-alliance.org/technology.

Madhavapeddy, Anil, and David J. Scott. “Unikernels: Rise of the Virtual Library
Operating System.” Queue 11, no. 11 (December 2013): 30:30–30:44.
doi:10.1145/2557963.2566628.

Montenegro, Gabriel, Jonathan Hui, David Culler, and Nandakishore Kushalnagar.
Transmission of IPv6 Packets over IEEE 802.15.4 Networks. Request for Com-
ments 4944. RFC Editor, 2007. doi:10.17487/RFC4944.

Moskowitz, Robert G., Daniel Karrenberg, Yakov Rekhter, Eliot Lear, and Geert
Jan de Groot. Address Allocation for Private Internets. Request for Comments
1918. RFC Editor, 1996. doi:10.17487/RFC1918.

Neville-Neil, George. “IoT: The Internet of Terror.” Queue 15, no. 3 (June 2017):
10:19–10:24. doi:10.1145/3121437.3121440.

Senie, Daniel, and Paul Ferguson. Network Ingress Filtering: Defeating Denial of
Service Attacks Which Employ IP Source Address Spoofing. Request for Com-
ments 2827. RFC Editor, 2000. doi:10.17487/RFC2827.

http://packetpushers.net/foghorn-iiot/
https://www.team-cymru.org/bogon-reference.html
https://www.team-cymru.org/bogon-reference.html
https://www.joyent.com/blog/unikernels-are-unfit-for-production
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://blog.apnic.net/2015/04/30/the-internet-of-stupid-things/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://www.lora-alliance.org/technology

Review Questions 759

“SIG Introduces Bluetooth Low Energy Wireless Technology, the Next Generation
of Bluetooth Wireless Technology.” Society. Bluetooth. Accessed July 17, 2017.
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-
bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-
wireless-technology.

Review Questions

 1. Explain the why IoT has garnered so much attention from security
practitioners.

 2. Explain the difference between isolation using an appliance or service and end-
point isolation.

 3. What does the term duty cycle have to do with power conservation in IoT
devices?

 4. Give some examples of how Bluetooth Low Energy devices reduce power con-
sumption when compared to Bluetooth Classic devices.

 5. In IoT devices using LoRaWAN for radio communications, explain why a
Class A device can run on battery power, while Class C devices should have
dedicated power supplies.

 6. Why does IP addressing introduce a technical challenge for LPWAN communi-
cations protocols?

 7. In one sentence, explain why edge (fog) computing is useful.

 8. Research BCP38, and explain why it is not widely deployed.

 9. The text considers IoT in the context of DDoS attacks; research the impact of
IoT on large-scale control systems (such as the power grid), and explain the
risks involved.

https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology
https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology

This page intentionally left blank

761

Chapter 30

Looking Forward

Learning Objectives

After reading this chapter, you should understand:

 0 The concept of modeling languages and how automation may change the
shape of network engineering

 0 The application of hyperconvergence to network engineering

 0 The concept of intent-based networking and the tradeoffs involved in this
idea

 0 What machine learning is and why it might be hard to apply to network
engineering

 0 The concept of Named Data Networking

 0 The concept of blockchains and how they might impact network
engineering

 0 The ongoing reshaping of the Internet

Just about every culture in the world has some saying similar to

Those who forget the past are doomed to repeat it.

A variant of this is RFC1925, rule 11, which states

Chapter 30 Looking Forward762

Every old idea will be proposed again with a different name and a different pres-
entation, regardless of whether it works.1

This book began with a simple idea: you can use this to your advantage. By learn-
ing what is old, you can learn what will be proposed as new in the future. This mind-
set of looking to the past to understand the future can be codified in the process:

 • What is the problem being solved?

 • What range of possible solutions have been proposed to solve this problem?

 • How have these solutions been implemented in the past?

Perhaps two more thoughts are in order, as well:

 • What are the tradeoffs involved in solving the problem this way?

 • How does this solution interact with other problems and their solutions in a
larger system?

These rules, however, only give you a dim view of the future; they provide the
“guard rails” of what might be developed, and a framework within which to under-
stand and apply these developments.

What of the larger market? Will the skills and mindset so carefully laid out in
the previous chapters and pages be useful in five year’s time? Or twenty? Predict-
ing the future, as they say, is hard because it changes so much. It is particularly
hard in the case of network engineering, which likely has more than one future at
any one time.

This chapter is going to take a different direction from the previous chapters. Each
section will describe a different movement in network engineering and where this
movement might lead in the future. Some of these trends will overlap, or depend on
one another to some degree; others will be completely independent of the others.
Remember these forward-looking snippets are spun from current trends, so any par-
ticular set of ideas will likely be changed radically by the time they come to pass—or
perhaps they will be found impractical, and not come to pass at all. A more likely
future is all of these futures become real in some networks.

It is difficult to remember, when working on a single network, in a small corner of
the network engineering world, how large the network engineering world is. While
network engineering is small in comparison to many other subcultures of the larger
engineering world, and tiny in terms of the larger world, it is still a large world, with

1. Callon, The Twelve Networking Truths, 1.

Pervasive Open Automation 763

many different subsets. There will always be businesses that take on the future by
thinking differently. Some will succeed, many will fail, but all of them will have a
different vision of what information processing needs to look like, and hence how to
build a network to get done the work they need done.

Pervasive Open Automation

The programmatic configuration of network devices is already widely used in many
networks; you can be confident this trend will continue and accelerate in the future.
The age of the command-line interface (CLI) is largely over; programmatic inter-
faces will take the place of the CLI.

What has stood in the way of pervasive network automation in a multivendor net-
work is a standardized Application Programming Interface (API). In a multivendor
network, the API used to configure and manage each device will vary from vendor
to vendor. Platform capabilities also vary within and between vendors. Thus, there
are differences both in what can be done, preventing rapid, industrywide adoption
of automation, as tooling must be written to support multiple vendors with their
sundry interface nuances.

Modeling Languages and Models

The beginning of a solution in this space is rethinking the way network devices and
protocols are modeled. What has traditionally been done—in fact, what the CLI
does—is to focus on the information to be carried. Much like a fixed length packet
encoding (see Chapter 2, “Data Transport Problems and Solutions”), the model is
embedded in the CLI model. The metadata, or information about what is being con-
figured, is carried in the configuration manuals or CLI help system.

An alternative to this is to focus on the modeling language first. In this solu-
tion, a modeling language is designed to act more like a Type Length Value (TLV)
system; information about the information is provided separately from the infor-
mation itself. This allows implementations to work around changes in the way
data is represented, even ignoring information they do not understand how to
process explicitly.

One such modeling language is YANG, a standard shepherded and managed by
the Internet Engineering Task Force (IETF). Models can be built describing an inter-
action with a protocol or process, rather than a specific implementation, using the
YANG modeling language. Rather than writing automation processes that expect a
specific API or network device chipset, the idea is to automate against a model. The
automation process will then work with all devices conforming to the models in use.
The model functions as an abstraction layer.

Chapter 30 Looking Forward764

One consortium of network operators creating such models is called OpenConfig.
OpenConfig participants include Google, AT&T, Facebook, Netflix, CloudFlare,
and Microsoft, among several other major service providers and large network
operators.

OpenConfig has contributed many network models to the community, covering a
diverse set of network elements, including policy, interfaces, lower- and higher-level
transport protocols, and control planes. The OpenConfig group has also worked
with the Internet Engineering Task Force (IETF) on these models, to help drive the
industry toward a standardized way of representing the network. The IETF has
taken the modeling work very seriously, attempting to bring together a complete and
interoperable set of unified models.

A Brief Introduction to YANG

As a modeling language, YANG is not especially new. Many IETF RFCs have
been released defining YANG or auxiliary interfaces related to YANG. Here are two
key RFCs:

 • In October 2010, the 173-page RFC6020, YANG—A Data Modeling Language
for the Network Configuration Protocol (NETCONF), was published.

 • In August 2016, RFC7950 weighed in at 217 pages, titled The YANG 1.1 Data
Modeling Language. Even with the YANG 1.1 specification so recently pub-
lished, there are rumblings within the IETF about extensions to 1.1 being
added or possibly even a YANG version 1.2.

As of this writing, over 220 models are working their way through the IETF rati-
fication process. In fact, YANG modeling has become so pervasive that the IETF
has created a functional role of “YANG doctor” whose job it is to validate proposed
YANG models.

YANG is meant to be human-readable, in contrast with the eXtensible Markup
Language (XML), which tends to be read more easily by machines than people.
YANG models are published as modules, where a module contains all the objects
required to define some specific networking feature. Modules can reference other
modules by importing external modules or using includes of submodules.

The structure of a YANG model is a tree with node objects, conforming to a
 specific hierarchy:

 • A module fits into a namespace, described with a Uniform Resource
Locator (URL).

Hyperconverged Networks 765

 • A prefix describes how a module is referenced inside the module or by
other modules. Think of a YANG prefix as a shorthand description of a
YANG module.

 • There are at least four node types in YANG. A leaf object contains a value
logically located at the end of a tree branch. Leaf-lists are sequences of leaf
objects. Lists are collections of many sorts of objects, including lists and leaf-
lists. Containers can hold lists, leaf-lists, leaves, and other containers. These all
serve to organize elements in the YANG model.

The problem with YANG is not with the modeling language itself; YANG is well
understood and in use by standards development organizations as well as consortiums
such as OpenConfig. Despite this demonstrated level of industry enthusiasm, network-
ing equipment vendors have been slow to include YANG models in their products.

Vendors are often slow to support YANG because vendors need to differentiate
to sell a product. YANG models offer a baseline of networking functionality, or a
lowest common denominator, so in some sense, configuring everything through a
standard set of models described in YANG would “level the playing field.”

Thus, vendors have been not overly enthusiastic with their YANG support, unless
compelled financially by large, persistent customers. The OpenConfig project is one
industry attempt to bring operators together to combine their buying power around
specific requests to support YANG.

Looking Forward Toward Pervasive Automation

Standardized network modeling is a key to enabling pervasive network automation.
Once configuring a network device is a predictable exercise, then creating automa-
tion tooling becomes a simpler task. Today’s network automation tooling is bur-
dened by a plethora of interfaces, methods, and output that must be normalized for
automation processes to work in an expected way across a multivendor network.
The broad industry adoption of standardized YANG models would change this
aspect of network engineering. Automation without something like YANG will con-
tinue to move forward, but not as quickly or efficiently as it could with a single mod-
eling language used by every vendor and operator.

Hyperconverged Networks

Chapter 25, “Disaggregation, Hyperconvergence, and the Changing Network,”
describes the rise of hyperconverged compute and storage. Because the networking
market often follows the compute and storage market in a broad sense it is worth

Chapter 30 Looking Forward766

putting some thought into what network hyperconvergence might look like. What
were the components of the hyperconverged system at the edge?

First, there is white box; the networking world is already moving in this direction.
While network devices such as firewalls, routers, and switches were once purchased
in an “appliance” model, many parts of the networking world are quickly moving
toward a disaggregated model, where the hardware and software are purchased as
separate “things.” This enables the concept of white box—although the box might
not be white. The terms bright box and gray box attempt to capture buying boxes
from brand-named vendors, but rather than buying them for their software capabili-
ties, you can now buy them for their hardware capabilities.

Second, there is scale out. The move from traditional hierarchical network
designs, particularly in the data center, and toward a flatter spine and leaf design
is the equivalent scale-out solution in the networking space. Rather than buying
a chassis and adding cards as needed, you buy a set of single rack unit boxes and
build a network that can be increased (or decreased!) in scope and scale by wiring
more boxes in.

Third, there is pooling. Here several different trends in the networking world
are working together to create the beginnings of a true pooling capability: the rise
of dynamic overlay networks, software-defined networks, and network function
virtualization.

To combine these three, consider the spine and leaf network built out of white
box devices, with a dynamically created overlay network providing virtual sets of
resources as needed. This kind of network can be

 • Scaled in resources by adding more boxes to the spine and leaf underlay, as well
as adding more network-based services to virtual machines connected to this
underlying fabric

 • Pooled by building virtual networks in an overlay to consume the services of
any number of underlay devices as needed

One important question is the depth of the overlay required to build such a sys-
tem; most of today’s overlay solutions are very heavyweight, full-scale tunneling and
based on either a “second control plane,” or a centralized control plane (rather than
a more flexible hybrid distributed + centralized control plane). What will eventually
be needed in this space is a lighter-weight set of control planes and overlay system
that will work with underlying hardware better—perhaps not even an “overlay” at
all, but rather a set of services that can send isolated traffic through the network
without the work of building an actual virtual topology. Segment routing may pro-
vide a path to such lightweight overlay solutions.

Intent-Based Networking 767

While there are commercial solutions in this space, and custom solutions built
and operated by large-scale cloud providers, this is still a nascent market. The solu-
tions available today, either based on vendor-specific hardware and software and
focused on the Top of Rack (ToR) switch in the data center fabric, or on the hyper-
visor in the server, are generally hampered by a lack of communication between
the network resources—the network processors sitting on the ToR switches—and
the overlay switching requirements. Further, these solutions are hampered by the
amount of configuration required to simply get the system going, particularly in the
underlay space.

But these markets are growing and changing; VMWare, Cumulus, and others are
working on solutions that will, over time, likely develop into such a hyperconverged
solution. There will always be, of course, an appliance-based model; there will
always be software and hardware purchased as a single system.

But the disaggregation and programmable network movements are paving the
way for a new kind of network, more along the lines of hyperconverged compute,
storage, and network access resources.

Many hyperconverged networks are likely to be vendor specific; only a particular
vendor’s gear will work with a specific hyperconverged solution. The beginnings of
this kind of hyperconvergence, combined with vendor proprietary APIs for automa-
tion, are already apparent in the product lines of many vendors.

Intent-Based Networking

According to the manufacturers and pundits, intent-based management is the future
of network engineering. There certainly seem to be a lot of good reasons to embrace
the intent-based wave.

For instance, networks are certainly hard to configure, maintain, and trouble-
shoot today. The 2 a.m. rule is almost always violated today simply because the net-
works needed to support the applications that businesses choose to run drive a lot
of complexity into the design and operation of the network. Operations personnel
are left trying to reverse-engineer this configuration on that device at 2 a.m., trying
to tease out every application that might be impacted if any of the various pieces are
modified to solve a problem right now.

A lot of the apparent problem is in translating the business intent into designs,
which then must be translated into configurations, which then must be translated
into the combined configurations of hundreds of different intent chains spread out
over many years of network operation, vendor changes, and the personal prefer-
ences, strengths, and weaknesses of individual network engineers.

Chapter 30 Looking Forward768

It would certainly, it seems, be a lot simpler to just state your intentions and let
the network translate those intentions directly into configurations. The amount
of money you could save on hiring all those engineers who are doing the transla-
tion work manually would probably be enough to justify the change all on its own.
An artificially intelligent process running on some virtual machine (perhaps in the
vendor’s cloud) can adjust your network settings based on your stated intent, the
applications you are running, and experience with other customers, and produce an
optimal network configuration for every business, all the time.

But when so many people are saying the same thing at the same time, particularly
in the normally contrary world of network engineering, it is time to take a step back
and consider where the tradeoffs might be in this rush to intent. If you have not
found the tradeoffs, you have not looked hard enough.

What are the tradeoffs involved in intent-based networking?
A good place to begin is with the engineer sitting at home, working from a lap-

top, at 2 a.m., trying to resolve a network problem (or at least figure out whether
the problem is the network or some other part of the system). Perhaps intent-based
systems will be better documented than the engineer-configured systems today, but
this does not seem likely. If an AI is involved, there is very little chance there will
be any documentation, in fact, as no one really understands what decision an AI
might make or why. Even ignoring the problem of whether or not an AI will ever
be able to do the job at hand—monitor every element of every application in a net-
work and every element of every network device, combine this information with the
capabilities of each installed device, and make fine-grained adjustments in every area
to provide optimal utilization and application support for every possible network
and business requirement—it is difficult to see how a particular decision can ever
be reverse-engineered to determine whether the network is running properly or not.

Another hard problem to solve here is whose intent? There must be someone,
somewhere, who is determining which factors make a difference in determining
intent and what should be done in response to an expression of intent. While AI
systems might be able to handle some of this around the edges, humans will always
need to at least train AI systems on what action to take, or what the intent behind
any new feature is in networking gear, etc. Moving intent into the controller moves
the interpretation of intent to configuration from local engineers, who are (arguably,
at least) accountable to your business goals, to a vendor’s cloud or intent server.

The next question to ask is: what does this intent look like? Is it something like
“give the president’s email priority over the receptionist’s?” Or is it finer grained? If
it is finer grained, then someone must interpret the business problem into some form
of “intent language” (an intent YANG model, anyone?), which means understand-
ing the system and its reaction to any sort of intent statement made to the system.
If the intent is to stop hiring engineers, this is not the path to get there. What would
be needed instead to save money on engineering staff is more like the model where

Machine Learning and Artificial Narrow Intelligence 769

the administrator says, “prioritize the president’s email”—but then a host of new
problems arise.

Given the system has some sort of interface, will the interface be standardized
or vendor specific? The more likely answer is vendor specific, because any “intent
language” must be rich enough to be useful and allow the vendors to differentiate
themselves in selling into an end-to-end business model. Assuming the goal is for appli-
cations to drive the intent interface, as well as humans, each application must now be
able to talk to each vendor interface in some way. The single vendor tie-in quickly moves
from the networking hardware and software into the entire ecosystem of applications.

Above all of these questions is a larger, systemic one lurking in the background:
intent-based interfaces are ultimately a form of abstraction. While abstractions are
very useful—in fact, engineers could not live without them—they also have side
effects that are not realized until far into the abstraction process. First, all abstrac-
tions remove information, and all information removal reduces efficiency in some
way (the optimal use of resources, time, etc.). Second, all nontrivial abstractions
leak: things not visible outside the system are always somehow passed through to the
next level up, but in a way that is difficult to understand and manage.

None of this is to say intent-based networking is impossible, nor it will not have
good uses. Intent-based interfaces will probably be useful in a narrow range of appli-
cations, perhaps broadly deployed in large-scale networks. Intent-based interfaces
will probably also be useful in smaller-scale networks, or specific kinds of topolo-
gies, where the business is so far disconnected from information technology that the
attendant inefficiencies and complexities just do not ever become a concern.

Machine Learning and Artificial Narrow Intelligence

Whether or not pervasive open automation ever becomes a reality, applying machine
learning to network management is an area of active research. Artificial narrow
intelligence (ANI) overlaps with the goals of machine learning (though not the tech-
niques) enough that many engineers will see the two as the same thing. To provide a
more formal definition:

 • Data mining is the process of discovering previously unknown patterns in
large information sets.

 • Machine learning is the process of optimizing a set of input variables to reach
a specified set of goals.

 • Artificial narrow intelligence is combining several different data mining and
machine-learning subsystems into a larger system that approaches a natural
(or even human) level ability to achieve some specific task.

Chapter 30 Looking Forward770

Figure 30-1 illustrates putting these three things together in a network engineering
context.

Figure 30-1 illustrates how you might use data mining to discover things about
your network that are not otherwise obvious; this information might drive a
machine-learning system that consumes a specific final network state, combines
the mined information with known state information, and adjusts various network
inputs in order to reach the specified state. If enough of these kinds of systems are
merged to form a “natural-like” system for managing some part of network opera-
tions, this might (or might not) be considered ANI.

There are major hurdles to overcome in order to apply machine learning to net-
work management, however. Specifically, data analytics relies on being able to
process a consistent set of information over long periods of time, in order to find
patterns and patterns in the changes. Networks probably have too high of a rate
of change, and too much noise, for data analytics to be as effective in the network

Network
telemetry

Business
goals

Analytics
+ goals

Analytics
+ goals

Data analytics

Ideal network operation

Machine learning system

Machine learning system

Machine learning system

Goals interpreted
into requirements

Network operation
patterns learned

Subsystem 1

Subsystem 2

Subsystem 3

Artificial narrow intelligence

Figure 30-1 Data analytics, machine learning, and artificial narrow intelligence in the
context of network engineering

Machine Learning and Artificial Narrow Intelligence 771

engineering world as is in other areas. While some basic things might be learnable
through data analytics, such as spotting interesting or unusual flows of information,
it may be difficult to use machine learning to discover deeper patterns, as the pattern
in a network as a system might just be “there is always change.”

Machine learning is often narrowly focused in the same way as data analytics.
Machine learning largely relies on consistent connections between inputs and out-
puts, no matter how many there are, to determine how to adjust the inputs to reach a
certain output. There may not be enough consistency in networks as systems to allow
this kind of fine-grained adjustment to be discovered through a machine-learning
process, particularly given the constant rate of change that could plague the data
analytics systems that machine learning would likely rely on.

Finally, machine-learning systems must be taught, or they must learn, based on
an existing data set. As each network is essentially built to solve a single problem
set, each network can effectively be treated as a unique machine-learning problem to
solve. This could seriously hamper the ability of machine-learning systems to effec-
tively “solve” network management issues.

These problems are a result of a basic problem in network engineering highlighted
throughout this book: there is no “one right way” to build a network, a transport
system, or even a protocol within a system. There is no “general theory of networks”
you can rely on when building a machine-learning system to manage networks. An
extended quote from someone working in this area as of this writing is useful in put-
ting these problems into perspective:

Even though networking has “just massively more compute and massively more
data” available, it’s not yet clear how machine learning can be applied there,
Meyer says. What’s missing, he believes, is a theory of networking. A rich body
of academic work backs the networks we use today, certainly, but there is no uni-
fying theory defining how a network, in an abstract sense, ought to behave, or
how it ought to be structured. The networks that form the Internet certainly share
some core principles, but they weren’t built from a central theory. They emerged
through trial-and-error, “some good ideas and people telling each other how to
do it,” Meyer says.2

Like intent-based networks, machine learning and ANI may play a narrow role in
network engineering over time, but it seems unlikely you will see semiautonomous
networks driven from an ANI anytime soon.

2. Matsumoto, “Why Machine Learning Is Hard to Apply to Networking.”

Chapter 30 Looking Forward772

Named Data Networking and Blockchains

Named Data Networking (NDN), which is loosely related to Content Centric Net-
working (CCN), relies on a simple trio of observations. First, the Internet Protocol
stack of protocols, like every other networking system, is built on a narrow waist. The
narrow waist is, in this case, the Internet Protocol (IP), as illustrated in Figure 30-2.

All complex systems are built with some sort of thin waist in this way; protocol
and network design patterns count on these thin waist points (or choke points) to
control complexity by hiding information (or the abstraction of state).

The second observation is that the Internet and most networks are primar-
ily designed to distribute information—particularly information marshaled and
described through metadata. The third observation is that IP is not very good at car-
rying information, but rather is designed to carry bits.

Named Data Networking Operation

Combining these observations, NDN asks: why should the thin waist of the Internet
be a protocol that does not specialize in what the Internet does? Or rather, why not
replace the thin waist of the Internet with a protocol designed to efficiently distribute
data? Once you begin to look at the Internet, or any network, as a large distributed
database, the problems to be solved become radically different than the transport and
reachability problems considered in this book. Figure 30-3 illustrates the concept.

Assume you are looking for the song Pleasant Valley Sunday by the Monkees.
Begin with standard IP, walking through the steps to retrieve this information
at A from F:

 1. A user clicks on a search result for Pleasant Valley Sunday, which indicates a
copy of the song can be found at http://songserver.com/monkees/pleasant.

 2. The host operating system looked up .com, then songserver.com, retrieving an
IP address from the Domain Name Service (DNS).

IPNetwork

Physical

Transport

Application

Ethernet, SONET, Token Ring, Microwave,
LTE, Satellite, etc.

TCP, UDP

HTML, SMTP, SNMP, FTP, TELNET, etc.

Figure 30-2 The thin IP waist

http://songserver.com/monkees/pleasant
http://up.com
http://up.com
http://songserver.com

Named Data Networking and Blockchains 773

 3. The host operating system begins a session with the IP address, ultimately
starting a session with F.

 4. The host operating system then performs any necessary authentication steps,
such as putting a sign-in form on-screen, or trading some certificate—even per-
haps undertaking some financial transaction to purchase a copy of the song.

 5. The host operating system at A now downloads a copy of the song.

At every step in this process, the host builds a point-to-point link with some other
system, such as a DNS server and the server on which the copy of the song resides.
The routers along the path of this traffic just switch the packets; they do not cache
any information, nor can they participate in the financial transactions or the authen-
tication of the user. Compare the process using an NDN:

 1. A user clicks on a search result for Pleasant Valley Sunday, which indicates
a copy of the song may be obtained from /com/songserver/monkees/pleasant;
note the difference in the ordering of the location of the data.

 2. The host operating system sends this request to its upstream router, B, which
examines the name of the object requested; it finds a path to a server claiming
to have this information that is reachable via C, so it sends the request to C.

 3. B again consults the name of the object requested and finds it has a path
through E, so it forwards the request to E.

 4. E consults the name of the object requested and finds it has a path through F,
so it forwards the request to F.

 5. F consults its local information store and finds it has a copy of this object in
the location specified; it returns an encrypted copy of the object to E.

 6. E stores a local copy of the encrypted object, examines the path through which
the request for this object came, and sends a copy of the object to C.

 7. C, likewise, stores a local copy of the encrypted object, examines the path through
which the request for the object came, and sends a copy of the object to B.

A B

C

D
E F

Figure 30-3 A network on which to compare standard IP and NDN operation

Chapter 30 Looking Forward774

 8. B stores a copy of the encrypted object and sends it to A.

 9. A, on receiving the object, now must find some way to unencrypt the encrypted
object; to do this, it either contacts a third party to arrange a financial transac-
tion or uses local information it has already stored to unencrypt the object.

The NDN version seems far more complex at first blush, but it does have several
advantages. For instance:

 • Rather than encrypting or hardening the session between the client (A) and the
server (F), the object itself is encrypted; this means there is per object protec-
tion throughout the entire network. It does not matter if the memory of any
particular device is compromised, because every object is encrypted as it is car-
ried over the network.

 • The metadata about the object is (or can be) exposed, allowing each device to
handle the data according to local policy, including “this user paid more for
higher-speed service,” etc.

 • The entire network acts as a distributed database; if a second user requests this
same information, the request is routed toward where the local routing tables
indicate the information can be found, as with an IP packet. However, if the
information is encountered before the originating server is reached, the infor-
mation can be returned. As all the objects are encrypted, there is little danger
in returning the information as requested; the requestor must figure out how to
unencrypt and use the data. Further, the encryption scheme can include some
form of time and date stamp, so out-of-date information is discarded once a
new version is available.

 • Since information is being passed around, rather than packets, and each object
is encrypted, the source and destination of the objects is pretty much meaning-
less (except in the case of a specific request and reply series).

 • Since the source of the information is no longer really relevant in routing
terms, this could place smaller information sources on an equal footing with
larger ones.

There are, of course, many challenges to overcome in this kind of system as well.
For instance:

 • Network forwarding devices are not, today, designed to store and forward
information in this way. Building systems able to store and forward informa-
tion in this way would place a major burden on large-scale providers, who
would need to rebuild their networks, and think about how to charge based

Named Data Networking and Blockchains 775

on the amount of data any particular user has requested, resulting in inter-
mediate storage in their network. This could reshape the entire economy of
the Internet by making it cheaper to always pull information from the net-
work everyone else already wants. For instance, if you asked for a particular
version of Pleasant Valley Sunday, the network might suggest another ver-
sion, or even another song, which is already locally available, increasing the
efficiency of the storage in the network. This process could squelch out less
popular content in much the same way as the largely centralized content pro-
viders do today.

 • It seems hard to understand how streaming services might work in this kind of
network. Perhaps the best network available would be one with attributes of
both the packet delivery systems and the kind of content-based networks the
NDN contemplates.

 • The performance of the network would seem to be difficult to understand or
plan for. Information you are looking for might be close by or far away; even
if it is close by, network devices might be bogged down servicing a lot of other
requests, so they cannot service your request immediately. Quality of Service
(QoS) would need to be completely rethought, down to the meaning of QoS
itself, in this kind of network.

It does not seem as though NDN will become a commonly used technology, but
it serves as a useful introduction to a very similar technology poised to have a large
impact on the information technology world: blockchains.

Blockchains

To understand blockchains, you must begin with the hash. A hash is a simple con-
cept that is quite difficult to implement in a useful way: a hash takes a string of num-
bers of any size and returns a fixed length number, or hash, (more or less) uniquely
representing the original string. The simple-to-implement part is this: one rather
naïve hash is to add the digits in a set of numbers until you reach a single digit, call-
ing the result the hash. For instance:

23523

2 + 3 + 5 + 2 + 3 == 15

1 + 5 == 6

Hence, the number 23523 can be represented as 6. One curious property of the
hash is there is no way to determine, from the hash, what the original number was—
this is one of the essential observations of many uses for the hash. If I share a num-
ber with some third party, and that party then shares it with you, you can ask me for

Chapter 30 Looking Forward776

the hash of the number (without telling me what the actual number is!), and you can
verify the number you have is the same by verifying the hash that I give you matches
the one you calculate.

The preceding hash is naïve because it is too easy to obtain a collision. In other
words, there are many different sets of numbers that will result in a hash of 6 given
the same process, such as 222, 33, 111111, and (probably) an almost infinite number
of others. The tricky part of building a hash, then, is in ensuring collisions are rare
or nonexistent.

Assuming you have developed such a hash (there are a number of them), you can
then use hashes to build a Merkle Tree, as illustrated in Figure 30-4.

In Figure 30-4, four numbers have been processed through an algorithm to produce
a hash: H1 through H4. H1 and H2 are, in turn, hashed to produce H5, and H3 and
H4 are hashed to produce H6. H5 and H6 are, in turn, hashed to produce the root
hash. There are a number of interesting things about Merkle trees; for instance, if
you change the value of H1 for any reason, the value of the root hash also changes.
Of course, this “just makes sense,” but it means you can validate the contents of any
group of files or values by examining a single value. Further, you can verify which part
of the tree the change has taken place on if you have access to all the hashes in the tree
even though you do not know, or do not know if you can trust, the values themselves.

To get to a blockchain, you string the Merkle tree out, as shown in Figure 30-5.
Here the hashes of H1 and H5 are hashed to form H2, the hashes of H2 and H6

are hashed to form H3, etc. What is interesting about a blockchain is that you can
tell if any step has been repeated twice, if work has not been done, or if any of the
numbers in the previous part of the chain have been changed—hence its usefulness in
forming digital currencies.

H1 H2 H3 H4

H5 H6

ROOT

Figure 30-4 A Merkle tree

Named Data Networking and Blockchains 777

Note

There is, in fact, more to a real blockchain than this; there is also a consensus pro-
cess. This description is a radical simplification.

Once you have a blockchain, what can you do with it? Remember the concept of
the NDN described earlier? Now consider: what if every block on this blockchain
were an object, as described in the NDN network? It should be possible to traverse
the tree, using the information from the hash itself, to find the object you are looking
for. Even if there is a newer version of the object, the older version should still exist,
in its encrypted form, allowing you to compare every version of the object all the
way back to its creation. There is no way to change any of the objects contained in
the blockchain without invalidating the encryption on every object after this one has
been modified.

Cryptocurrencies take advantage of these properties to allow users to place trans-
actions on the blockchain across time. No transaction can be undone without invali-
dating the entire blockchain; there are many copies of the blockchain in existence, so
a single copy being invalidated should cause the entire network of devices participat-
ing in the blockchain to quickly discard the invalidated copy.

Other blockchain systems, such as Ethereum, go beyond the idea of a cryptocur-
rency by allowing executable code to be stored in the blockchain alongside trans-
actions. This means a virtual machine can be given an Ethereum blockchain that
contains not only data to operate on (such as move some amount of money from
one account to another account), but also some instructions about under what con-
ditions the data should be acted on (when the receiver signs for the package). The
operation could take place in full public view, but without information about the
people involved, account numbers, etc., being exposed to the public view (because
these can all be represented by hashes, instead of the real numbers, that can only be
interpreted by the parties involved in the transaction).

H1 H2

H5

H3

H6

H4

H7

Figure 30-5 A Merkel tree turned into a blockchain

Chapter 30 Looking Forward778

A blockchain system like Ethereum could, in theory, provide an overlay on the
entire public Internet, providing the same sort of system as the creators of the NDN
originally conceived.

The Reshaping of the Internet

The Internet is, to most engineers, a constant. The protocols remain the same, and
while the providers shift roles from time to time, or one provider buys another, there
is very little apparent change in the Internet as a whole. This, however, is not a realis-
tic view of the world. Figure 30-6 illustrates how the Internet has been built since the
first few years of its commercialization.

This shape clearly puts the large-scale transit providers in a central role. The QoS
and security protections offered by the transit providers regulate how quickly any
user can send or receive traffic. If you want to start a new content or edge provider
network or service, you can connect to the transit providers and reach pretty much
everyone who connects to the Internet. What has been happening in the five years or
so before this writing is a shift in the way content and edge providers are connected.
The new connection pattern is illustrated in Figure 30-7.

The content providers have discovered a simple fact: the speed at which their con-
tent loads drives user engagement, and user engagement drives revenue. To make
their pages load faster, the content providers need to be “closer” to their users. Being
closer essentially means cutting out transit providers wherever possible and connect-
ing directly to the edge providers. This means the global Internet is slowly moving
away from being a mesh of peer networks to a more hub-and-spoke pattern, with
large content providers in the hub, and edge providers acting as the spokes.

transit (tier 1)
provider

edge
(eyeball)
provider

content
provider

transit (tier 1)
provider

IXP
C

D

B

A

Figure 30-6 The shape of the old Internet

The Reshaping of the Internet 779

There is little sense of what this means in the long term. For instance, it
could mean

 • The Internet will eventually fragment, with the content you can reach being
determined by the edge provider you connect to (because not every edge pro-
vider will connect to every content provider).

 • The transit providers could shrink, but not ultimately die off, allowing
full connectivity, but with two classes of service; large content providers will
be quickly reachable, while smaller and newer ones will be forced to take the
slow path.

The second already appears to be happening. The ultimate effect of this “slow
path/fast path” arrangement is that it becomes ever more difficult to start a new con-
tent service on the global Internet, which drives ever more power into a smaller group
of players over time. Whether this trend will continue, or the ultimate end is healthy

transit (tier 1)
provider

edge
(eyeball)
provider

edge
(eyeball)
provider

edge
(eyeball)
provider

edge
(eyeball)
provider

content
provider

transit (tier 1)
provider

IXP
IXP

Figure 30-7 The new shape of Internet connectivity

Chapter 30 Looking Forward780

for the Internet as a whole or the network engineering and larger information tech-
nology ecosystems reliant on the Internet, is hard to say at this point.

But this is certainly one of those trends worth factoring into any view of what the
future of network engineering might look like.

Final Thoughts on the Future of Network Engineering

It often seems, in the present moment, like the world is changing too fast, there is
no way to keep up, and the future of network engineering is bleak. There are some
parts of the network engineering world for which this is likely true; old technolo-
gies do, ultimately, die, and others come to the front to take their place (or maybe
the entire problem that the technology was designed to solve no longer exists for
some reason). Through all of this, however, there will always be a need for well-
trained, thoughtful engineers who understand the basic problems, and the scope of
solutions available for those problems. For engineers who understand the technol-
ogy at a more basic level, and hence can ask the right questions at the right time to
make a difference in the way a business runs, there will always be a bright future in
network engineering.

If you have read this far, studied the examples, and spent time thinking through
the technologies as they have been presented here, you are at least starting on the
road toward developing the skills needed to be one of those engineers who will
always be in demand.

Further Reading

Bjorklund, Martin. The YANG 1.1 Data Modeling Language. Request for Com-
ments 7950. RFC Editor, 2016. https://rfc-editor.org/rfc/rfc7950.txt.

Callon, Ross. The Twelve Networking Truths. Request for Comments 1925. RFC
Editor, 1996. doi:10.17487/RFC1925.

“Ethereum Homestead Documentation.” Accessed August 30, 2017. http://
www.ethdocs.org/en/latest/.

Gates, Mark. Blockchain: Ultimate Guide to Understanding Blockchain, Bitcoin,
Cryptocurrencies, Smart Contracts and the Future of Money. CreateSpace
Independent Publishing Platform, 2017.

Huston, Geoff. “The Death of Transit?” APNIC Blog, October 28, 2016. https://
blog.apnic.net/2016/10/28/the-death-of-transit/.

https://rfc-editor.org/rfc/rfc7950.txt
http://www.ethdocs.org/en/latest/
http://www.ethdocs.org/en/latest/
https://blog.apnic.net/2016/10/28/the-death-of-transit/
https://blog.apnic.net/2016/10/28/the-death-of-transit/

Review Questions 781

“HyperConverged.org.” Accessed August 30, 2017. http://www.hyperconverged.org/.

Matsumoto, Craig. “Why Machine Learning Is Hard to Apply to Networking.”
Blog. SDxCentral, January 2, 2017. https://www.sdxcentral.com/articles/news/
machine-learning-hard-apply-networking/2017/01/.

Theobald, Oliver. Machine Learning for Absolute Beginners: A Plain English
 Introduction. Independently published.

“What Is Ether.” Accessed August 30, 2017. https://www.ethereum.org/ether.

White, Russ. “Death of Transit: A Need to Prevent Fragmentation.”
Accessed August 30, 2017. http://www.circleid.com/posts/20161107_death_of_
transit_need_to_prevent_fragmentation/.

Zhang, Lixia, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D. Thornton,
Diana K. Smetters, Beichuan Zhang, et al. “Named Data Networking
(NDN) Project,” October 31, 2010. http://named-data.net/techreport/
TR001ndn-proj.pdf.

Review Questions

 1. What kinds of network resources might be pooled like compute resources in a
hyperconverged solution?

 2. What is the difference between OpenConfig YANG models and the YANG
models standardized by the IETF?

 3. Review some of the challenges to implementing and deploying intent-based
networking.

 4. Where might machine learning be useful in network engineering?

 5. What argument does the text use to explain why machine learning may never
be used to configure networks?

 6. What is the advantage of Named Data Networking over packet-based networks?

 7. Research Ethereum. How might blockchains with embedded actions require
routing?

 8. Some engineers argue it is better to have a common modeling language, rather
than a common set of models, for automation. What do you think their line of
argument might be?

http://$$$�HyperConverged.org
http://www.hyperconverged.org/
https://www.sdxcentral.com/articles/news/machine-learning-hard-apply-networking/2017/01/
https://www.sdxcentral.com/articles/news/machine-learning-hard-apply-networking/2017/01/
https://www.ethereum.org/ether
http://www.circleid.com/posts/20161107_death_of_transit_need_to_prevent_fragmentation/
http://www.circleid.com/posts/20161107_death_of_transit_need_to_prevent_fragmentation/
http://named-data.net/techreport/TR001ndn-proj.pdf
http://named-data.net/techreport/TR001ndn-proj.pdf

This page intentionally left blank

783

Index

Numbers
8B10B encoding scheme (Gigabit Ethernet), 99–100

A
AAA systems, 567
ABR (Available Bit Rates), 70
access control, 567–568, 739–740
accuracy in network modeling (network

troubleshooting), 637–638
Active Networking, 25
advertisements

packet paths and, 401–402
rules, BGP, 456–457

AF (Assured Forwarding), QoS, 202
aggregating IPv6 addresses, 124–127
algorithms

Bellman-Ford loop-free path calculation as, 324–325
Dijkstra’s SPF, 341–349

history of, 342
incremental SPF, 349–350
LFA and, 350–352
partial SPF, 349–350
rLFA and, 352–353

disjoint path algorithms, 356–357
Suurballe’s disjoint path algorithms, 358–363
two-connected networks, 357–358

DUAL, 330
development of, 331
examples of, 332–337

greedy algorithms, 317
MRT, 363–366
multiple metric problem, 356
path vectors, 353–356
Suurballe’s disjoint path algorithms, 358–363

alternate loop-free paths, 317–319
Dijkstra’s SPF, 350–352
P/Q Space model, 321–322, 352–353
rLFA, 322–324, 352–353
waterfall (continental divide) model, 320–321

amplification attacks, 574
ANI (Artificial Network Intelligence), 769–771
anycasting, 61–63

API (Application Programming Interfaces)
automation, 763
cloud computing, 725
RESTCONF, 689–690

application layer
four-layer DoD model, 78
OSI model, 83

applications
disaggregation of, 658–659, 662
impact of network failures, 616, 617

data flow control, 616
dropped packets, 617
duplicate packets, 617
end-to-end delays, 616
jitter, 616
out-of-order packets, 617

optimizing via flow pinning, 468–473, 478
ARP (Address Resolution Protocol), interlayer discovery,

159–161
ARPANET, packet switched networks, 13
ASIC (Application-Specific Integrated Circuits)

packet switching, 185–186
virtual networks, 715–716

assets (security), defining, 565
asymmetric cryptography, 260
Asynchronous mode (BFD), 381
Asynchronous mode with echo (BFD), 381
ATM (Asynchronous Transfer Mode), 17

fixed cell sizes, 18–20
label switching, 17–18, 20
negotiated bit rates, flow control, 69

atomic aggregation (BGP), 542–543
attack surfaces, defining, 565
attackers (threat actors), defining, 564
attacks (threats)

amplification attacks, 574
brute-force attacks, 258
burner attacks, 574
DDoS attacks, 572–574

blocking upstream, 579–580
DDoS scrubbers/services,

581–582

Index784

attacks (threats) (continued)
preventing, blocking half-open/malformed

sessions, 575
preventing, dispersing traffic over multiple

servers, 576–577
preventing, filtering unroutable addresses,

578–579
preventing, host operating system

modifications, 575
preventing, rate limiting, 575–576
preventing, uRPF, 578–579

defining, 564
man-in-the-middle attacks, 268–269
reflection attacks, 574

audio streaming and BLE, 752
automation, 679–680, 681

API, 763
automation engineers, 681
on-box automation, 694
CLI, 681–682, 684, 763, 763
complexity and, 680
controller-based automation, 695–696
data analytics, 697
deployment automation, 696–697
Expect scripting, 682
infrastructure automation tools, 694–695
machine learning, 697
MIB tables, 682–683
NETCONF, 685

configuring, 686
data stores, 685
layers of, 686–687
management stations, 686
operations, 687
XML, 687–689
YANG data modeling language and, 687–689

pervasive network automation, 763, 765
puppet components/manifests, automation, 695
regular expressions, 681
requirements, 683–684
RESTCONF, 689

API, 689–690
JSON, 692–694
RESTful interfaces, 690–694
XML, 691–692, 693–694
YAML, 692, 693–694

SNMP and, 682–683, 684
virtual networks, 712–713

availability, 619
dual plane cores, 623–624
multiplanar cores, 623–624

B
bandwidth

computing bandwidth, history of, 21
flow control

circuit switched networks, 15–16
packet switched networks, 15–16

goodput versus throughput, 110
Banyan Vines, 16
Baran and packet switched networks, Paul, 13
BCP (Best Current Practices), open networking security,

749–750
beamforming, Wireless 802.11 multiplexing, 104–105,

106–107
Bellman-Ford loop-free path calculation, 324

as algorithm, 324–325
cycles across sample networks, 330
edges, 326
negative cost edges, 330
RIP and, 412–413
topologies, 326

BFD (Bidirectional Forwarding Detection)
Asynchronous mode, 381
Asynchronous mode with echo, 381
Demand mode, 382
Demand mode with echo, 382
link state detection, 380–382

BGP (Border Gateway Protocol), 458
advertisement rules, 456–457
atomic aggregation, 542–543
complexity, 474–476
control plane policies, 474–476
history of, 451–452
loop-free paths, 454–456, 458
peering, 452–454
public clouds, 736
reachability overlay, 544–546
RINA model, 84
route reflectors, 457
as SDN, 485–486

biometrics, security issues, 562–564
bit rates

ABR, 70
CBR, 69
negotiated bit rates, flow control, 69–70
VBR, 69

BLE (Bluetooth Low Energy)
audio streaming, 752
connection intervals, 752
IoT and, 751–752
slave latency, 752

blockchains
cryptocurrencies and, 777–778
Ethereum blockchain system, 777–778
Merkle Trees, 775–777
NDN and, 775–778

blocking DDoS attacks upstream, 579–580
Bluetooth, BLE

audio streaming, 752
connection intervals, 752
IoT and, 751–752
slave latency, 752

botnets, DDoS reflection attacks, 572–574

Index 785

BPDU, STP and neighbor discovery, 406–407
broadcast domains, 57–58
broadcast storms, 409–410
brute-force attacks, 258
buffer overflows, 63–64
buffering packets

buffer delays, 216–218
Bufferbloat, 216–217
CoDel, 217–218
QoS and, 215, 215–216
TCP, 217
UDP, 217

burner attacks, 574
Byrd, Col. John, OODA loops, 582–583

C
caching, control plane information, 520–525
CAP theorem, 392–394, 499–503
CAPEX (Capital Expenses), public clouds, 726–727
carrier loss, event-driven failure detection, 379–380
CBR (Constant Bit Rates), 69
CBWFQ (Class-Based Weighted Fair Queuing), QoS and

congestion management, 212–214
cells, fixed cell sizes (ATM), 18–20
central source of trust, 262
centralized control planes, 25, 398, 482, 483, 503

augmented model, 483
BGP as SDN, 485–486
CAP theorem, 499–503
change distribution, 389–390
distributed model, 483
fibbing, 487–490
hybrid model, 484
I2RS, 490–495
microloops, 390
OpenFlow, 497–499
parts of/division of labor, 484–485
PCEP, 495–497
replace model, 484
sharding, 390–392
subsidiarity, 499–503

Cerf and TCP, Vint, 16
change distribution, 383, 394–395

CAP theorem, 392–394
centralized control planes, 389–390
flooded distributions

flooding between network devices, 383
microloops in, 384–385

hop-by-hop distributions, 387–389
RIP and, 414–415

channel sharing (multiplexing), 107–108
chipsets (Ethernet), 95–96, 98
cipher blocks, transport security

cipher blocks as substitution tables,
253–255

substitution tables generated by large key
transforms, 255–258

circuit lossiness, public clouds, 736
circuit switched networks, 12–13

advantages of, 11
disadvantages of, 11
flow control, 15–16
packet switched networks versus, 13–15
TDM, 9–12

control planes, 12, 14–15
data (forwarding) planes, 12
management planes, 12

CLI (Command-Line Interface)
automation, 681–682, 684, 763, 763
cloud computing, 725

CLNS (Connectionless Mode Network Service), 16
clocking packets from memory,

packet switching, 190–191
cloud computing, 724, 740–741

API, 725
CLI, 725
defining, 723
FaaS, 724
hybrid clouds, 725
IaaS, 724
latency, 732–734
PaaS, 724
private clouds, 725
public clouds, 724–725, 726

BGP, 736
business agility, 727
business tradeoffs, 731–732
CAPEX, 726–727
circuit lossiness, 736
cloud exchange services, 734
costs of, 730
data gravity, 735
data protection over public clouds, 737–738
encryption, 738
feature creep, 730–731
HTTPS, 738
infrastructure design, 729
infrastructure failures, 729
IPSec, 738
jitter, 736
managing secure connections, 738–739
monitoring cloud networks, 740
multiple Internet connection, 735–737
multitenant clouds, 739
nontechnical tradeoffs, 728
operational tradeoffs, 728–731
OPEX, 726–727
RBAC, 739–740
remote storage, 734–735
SD-WAN, 736–737
security, 737–738
time-to-market, 727
workload placement, 733–734

Index786

cloud computing (continued)
SaaS, 724
security, 737

data protection over public clouds, 737–738
encryption, 738
HTTPS, 738
IPSec, 738
managing secure connections, 738–739
monitoring cloud networks, 740
RBAC, 739–740

troubleshooting, infrastructure failures, 729
CoDel (Controlled Delays), buffering packets, 217–218
cold potato routing, control plane policies, 464–466
collisions, Ethernet, 93–95
communications systems, digital grammars

dictionaries, protocols as, 40–47
error management, 38, 39, 47–55
flow control, 38–39

buffer overflows, 63–64
feedback loops, 64
windowing, 65–70

marshaling, 38, 39–40
dictionaries, 40–47
protocols, 40–47

multiplexing, 38, 39, 55–56
addressing, 56–58
anycasting, 61–63
multicasting, 58–61

protocols
defining, 40
dictionaries, 42
fixed length fields, 43–44
flag days, 40, 41
flexibility, 40
metadata tradeoffs, 40
optimizing, 40
resource efficiency, 40
shared object dictionaries, 46–47
TLV, 44–46

complexity (network), 25–26, 599
automation and, 680
BGP policies, 474–476
control plane policies, 474–476
defining, 28, 30
event-driven failure detection, 380
interaction surfaces, 30–32
managing, 26–28

DoD model, 32–33
SOS model, 32–33
wasp waist, 32–33

necessity for, 26–28
network stretch

control plane state versus, 28–29
defining, 28
measuring, 29–30

reasons for, 26
tradeoffs, 33

components (networks), defining, 631–632
composable systems, network design, 657–658
compression (storage), 657
computing bandwidth, history of, 21
computing memory, history of, 21
computing power, history of, 21
congestion

network path choke points, 196–197
QoS and congestion management, 207

CBWFQ, 212–214
elephant flows, 214
LLQ, 208–212, 214, 217
overcongestion, 214
policing, 215
traffic shaping, 214
VoIP, 208–210, 217

connection intervals, data exchanges, 752
connection-oriented protocols, 86
connectionless protocols, 86
contention, crossbar fabrics, 188–189
continental divide (waterfall) model, alternate loop-free

paths, 320–321
control planes

BFD and, 380–382
caching information, 520–525
CAP theorem, 392–394
centralized control planes, 25, 398, 482, 483, 503

augmented model, 483
BGP as SDN, 485–486
CAP theorem, 499–503
change distribution, 389–390
distributed model, 483
fibbing, 487–490
hybrid model, 484
I2RS, 490–495
microloops, 390
OpenFlow, 497–499
parts of/division of labor, 484–485
PCEP, 495–497
replace model, 484
sharding, 390–392
subsidiarity, 499–503

classifying, 398–400
convergence process, 374
distributed control planes, 14–15,

398–399
distance vector protocols, 399
link state protocols, 399
path vector protocols, 399

false positives, 375
information hiding, 526

aggregating reachability information, 515–518
BGP atomic aggregation, 542–543
BGP reachability overlay, 544–546
caching control plane information, 520–525
control plane state scope, 508–510
filtering reachability information, 518–519

Index 787

layering, 543–544
positive feedback loops, 510–513
problem space, 507–508
slowing down state velocity, 525–526, 548–554
solution space, 513
SR with controller overlay, 546–548
summarizing topology information, 514–515,

530
summarizing topology information, IS-IS,

530–535
summarizing topology information, OSPF,

535–542
information overload, 375
layering, 519–520
loop-free paths

finding, 312–314
two-way handshakes, 366–367

MITM attacks, 568–569
MST, 317
multiple overlay control planes, interaction surfaces,

476–478
network diagrams, 283

advertising reachability/topologies, 295–298
MTU, 291–293
neighbor discovery, 287–290
proactive distribution of reachability, 300–302
redistribution of reachability/topologies,

303–307
three-way handshakes, 291
two-way handshakes, 290–291

policies, 478–479
BGP policies, 474–476
cold potato routing, 464–466
complexity, 474–476
defining, 473–474
elephant flows, 468–473
flow pinning, 468–473, 478
hot potato routing, 464–466
mashed potato routing, 464–466
mouse flows, 468–473
multiple overlay control planes, interaction

surfaces, 476–478
optimizing, 473–474
resource segmentation, 466–468, 476
traffic engineering in data center fabrics,

470–473
traffic flow optimization, 473–474
use cases, 464–466

positive feedback loops, 375
sharding, 390–392
SPT, 317
state scope, 508–510
state versus stretch, 28–29
TDM systems, 12, 14–15

controller-based automation, 695–696
converged networks, 655
convergence process (control panel), 374

corporate networks and VPN, 227–229
correcting errors (error management), 53–54
costs, network design, 592–593
CRC (Cyclical Redundancy Checks), 49–53, 55
crossbar fabrics

contention, 188–189
packet switching, 186–189

cryptocurrencies, 777–778
cryptography

asymmetric cryptography, 260
cryptographic functions, 255, 258, 259
hashes, 263–264
key exchanges, 261

central source of trust, 262
PKI, 262
private key cryptography, 262–263
public key exchanges, 261–263
transitive trust, 262
web of trust, 262

private key cryptography
key exchanges, 262–263
public key cryptography versus, 260–261

public key cryptography
key exchanges, 261–263
private key cryptography versus, 260–261

symmetric cryptography, 260
CSMA/CD (Carrier Sense Multiple Access/Collision

Detection), Ethernet, 93, 98
CUBIC, QUIC retransmissions, 138
CWND (Congestion Window), TCP windowed flow

control, 133–134

D
DAD (Duplicate Address Detection)

false positives, resolving, 163
IPv4 addressing, 160
IPv6 addressing, 162

data (forwarding) planes (TDM systems), 12
data analytics, 697
data center fabrics, traffic engineering, 470–473
data center firewall clusters, virtual networks, 702
data deduplication and storage, 657
data exchanges, connection intervals, 752
data exhaust, 251–252, 264–265, 571
data flow control, application impacts of network

failures, 616
data gravity, public clouds, 735
data link layer (OSI model), 82
data mining, 769
data modeling languages

OpenConfig, 764
YANG, 763, 764–765

data packets, application impacts of
network failures

dropped packets, 617

Index788

data packets, application impacts of
network failures (continued)

duplicate packets, 617
out-of-order packets, 617

data protection, 568, 570–571
data validation, transport security, 250
databases, mapping, interlayer discovery, 152–153
Davies and packet switched networks, Donald, 13
DDoS (Distributed Denial of Service) attacks, 750

botnets and DDoS reflection attacks,
572–574

DDoS scrubbers/services, 581–582
IoT, 744–745
preventing

blocking half-open/malformed sessions, 575
blocking upstream, 579–580
dispersing traffic over multiple servers, 576–577
filtering unroutable addresses, 578–579
host operating system modifications, 575
rate limiting, 575–576
uRPF, 578–579

deduplication (data) and storage, 657
default gateways

IPv4, 164–166
IPv6, 166–167

defense in depth, 566–567
delays, application disaggregation, 662
Demand mode (BFD), 382
Demand mode with echo (BFD), 382
deployment automation, 696–697
detecting errors (error management), 48- 53, 55
DevOps, 695
DFS (Depth First Search) and MRT (Maximally

Redundant Trees), 363–366
DHCP (Dynamic Host Configuration Protocol)

DHCPv6
DHCPv6 rapid commit, 158–159
interlayer discovery, 156–159
stateless DHCPv6, 158

interlayer discovery, 156–159
stateful DHCP, 158

diagrams (network), 281–282, 284, 307–308
control planes, 283

advertising reachability/topologies, 295–298
MTU, 291–293
neighbor discovery, 287–290
proactive distribution of reachability, 300–302
redistribution of reachability/topologies,

303–307
three-way handshakes, 291
two-way handshakes, 290–291

edges, 285
nodes, 284–285

defining, 284
leaf nodes, 284
transit nodes, 284

reachable destinations, 286–287, 293

advertising reachability, 295–298
proactive distribution of reachability, 300–302
proactive learning, 294–295
reactive distribution of reachability, 298–300
reactive learning, 293–294
redistribution between control planes, 303–307

topologies, 287, 295–298
dictionaries

fixed length fields, 43–44
protocols as, defining, 40–47
shared object dictionaries, 46–47
TLV, 44–46, 47
Unicode dictionaries, 42

digital grammars
dictionaries, protocols as, 40–47
error management, 38, 39, 47–48, 48–53
flow control, 38–39

buffer overflows, 63–64
feedback loops, 64
windowing, 65–70

marshaling, 38, 39–40
dictionaries, 40–47
protocols, 40–47

multiplexing, 38, 39, 55–56
addressing, 56–58
anycasting, 61–63
multicasting, 58–61

protocols
defining, 40
dictionaries, 42
fixed length fields, 43–44
flag days, 40, 41
flexibility, 40
metadata tradeoffs, 40
optimizing, 40
resource efficiency, 40
shared object dictionaries, 46–47
TLV, 44–46

Dijkstra’s SPF (Shortest Path First), 341–349
flooded distributions, IS-IS, 436
history of, 342
incremental SPF, 349–350
LFA and, 350–352
partial SPF, 349–350
rLFA and, 352–353

disaggregated networks, 654–656, 677
application disaggregation, 658–659, 662, 672–676
east/west traffic flows, 659–661
packet switched fabrics, 662–666
routers, 673

disjoint path algorithms, 356–357
Suurballe’s disjoint path algorithms, 358–363
two-connected networks, 357–358

dispersing DDoS attacks, 576–577
distance vector protocols, 399

EIGRP, 416, 424
metrics, 416–417

Index 789

neighbor discovery, 422–423
network design, 421–422
operation example, 418–419
query ranges, 421–422
topology changes, 419–421

loop-free paths, 22
RIP, 410–411, 415–416

Bellman-Ford and, 412–413
flush timers, 415
hold-down timers, 415
link failures, 414–415
operation example, 411–412
topology changes, 414–415
triggered updates, 415

routing tables, 424
STP, 402, 408–409

broadcast storms, 409–410
neighbor discovery, 406–407
packet forwarding, 402
packet switching, 402
reachable destinations, 407–408
topologies and, 403–406

distributed control planes, 14–15, 398–399
distance vector protocols, 399
link state protocols, 399
path vector protocols, 399

distributed databases, CAP theorem, 392–394
DNS (Domain Name Systems), interlayer discovery,

154–156
DoD (Department of Defense) model, 76–77

complexity, managing, 32–33
four-layer DoD model, 778

application layer, 78
Internet layer, 77
physical layer, 77
transport layer, 77

seven-layer DoD model, 78–80
dropped packets, application impacts of network

failures, 617
DSCP (Differentiated Services Code Point), QoS

DSCP mutation, 204
DSCP translation, 204–205
Ethernet DSCP and IPv4 ToS fields,

200–202
DUAL (Diffusing Update Algorithm), 330

development of, 331
examples of, 332–337

dual plane cores, 623–624
duplicate packets, application impacts of network

failures, 617
Dyn, IoT and DDoS attacks, 744–745, 750

E
east/west traffic flows, network design, 659–661
ECMP (Equal Cost Multipath), 178

link aggregation, 178
LACP, 181
MLAG, 181–182
routed parallel links, 182–183

routed ECMP, 182–183
edges, 285

Bellman-Ford loop-free path calculation, 326
negative cost edges, Bellman-Ford loop-free path

calculation, 330
EEM (Embedded Event Manager), on-box automation,

694
EF (Expedited Forwarding), QoS, 202, 203
EGP (Exterior Gateway Protocol), BGP as, 451–452
EIGRP (Enhanced Interior Gateway Protocol), 416, 424

metrics, 416–417
neighbor discovery, 422–423
network design, 421–422
operation example, 418–419
query ranges, 421–422
topology changes, 419–421

elephant flows, 180
control plane policies, 468–473
QoS and congestion management, 214

encryption, 570, 571–572
add cryptography entries
end-to-end encryption, 101
hop-by-hop encryption, 101
MAC address randomization, 265–266
multiple rounds of, 259–260
onion routing, 266–268
private key cryptography, 570–571
processors, 657
public clouds, 738
public key cryptography, 570–571
storage and, 657
transport security

cipher blocks as substitution tables, 253–255
cryptographic functions, 255, 258, 259
multiple rounds of encryption, 259–260
substitution tables generated by large key

transforms, 255–258
endpoint isolation and IoT security, 747–748
end-to-end delays, application impacts of network

failures, 616
end-to-end encryption, 101
error management, 38, 39, 47–48

correcting errors, 53–54
detecting errors, 48–53, 55
Ethernet, 99–100
TCP, 134–135
Wireless 802.11, 109

Ethereum blockchain system, 777–778
Ethernet, 91–92

8B10B encoding scheme, 99–100
chipsets, 95–96, 98
collisions, 93–95
CSMA/CD, 93, 98

Index790

Ethernet (continued)
DSCP and IPv4 ToS fields, QoS, 200–202
error management, 99–100
flow control, 101
frames, 100–101
Gigabit Ethernet, 99–100
MAC addresses, 94–95, 96–98
marshaling, 100
multiplexing, 92–93
OSI model, 83
packets, 100–101
RINA model, 85
switched Ethernet network operation, 98–99
virtual networks, Ethernet services over IP networks,

226–227
event-driven failure detection, 377–378

carrier loss, 379–380
complexity (network), 380
polling-based failure detection versus, 378–379
signal repeaters, 379–380

examination, protecting data from (transport security),
250–251

exhaust (data), 251–252, 264–265, 571
Expect scripting and automation, 682
exploits, defining, 564
exponential backoff, 549–551

F
FaaS (Functions as a Service), 724
failure detection

event-driven failure detection, 377–378
carrier loss, 379–380
complexity, 380
polling-based failure detection versus, 378–379
signal repeaters, 379–380

polling-based failure detection, 376–377, 378–379
failure domains, 57–58
false positives and control planes, 375
fast switching paths. See interrupt context switching
fate sharing, 139
feature creep in cloud computing, 730–731
features versus usage (network engineering), 8–9
FEC (Forward Error Correction), 53–54
feedback loops, 64

control planes, 510–513
information hiding, 510–513

FIB (Forwarding Information Base), 14, 386–387
fibbing, 487–490
filtering unroutable addresses, preventing DDoS attacks,

578–579
fingerprints as passwords, 562–563
fixed cell sizes (ATM), 18–20
fixed length fields (protocols), 43–44
fixed window flow control, 67–69
flag days, 40, 41
flexibility

network design
forklift and, 593–595
NFV, 703–705
ossification and, 593–594
scalability, 596–597, 599
VNF, 703–705

virtual networks, 703–705
flooded distributions

flooding between network devices, 383
IS-IS, 436

LSP header fields, 436–437
operation example, 437–439

microloops in, 384–385
OSPF, 443, 443–445

flow control, 38–39
application impacts of network failures, 616
buffer overflows, 63–64
circuit switched networks, 15–16
Ethernet, 101
feedback loops, 64
negotiated bit rates, 69–70
packet switched networks, 15–16
TCP

choosing window size, 132–134
CWND, 133–134
missing packets, 131–132
retransmitting, 132
RWND, 133
SACK, 132
sliding windows, 129–130
SST, 133, 134
windowed flow control with serial numbers,

130–131
windowing, 65

fixed window flow control, 67–69
single packet windows (ping pong),

65–68
Wireless 802.11, 109

flow hashing, 179–181
elephant flows, 180
mouse flows, 180

flow pinning
application optimization, 468–473, 478
control plane policies, 468–473

flush timers, 415
forklift and network design flexibility, 593–595
forwarding packets, virtual networks, 223–225
forwarding planes. See data (forwarding) planes (TDM

systems)
four-layer DoD model, 778

application layer, 78
Internet layer, 77
physical layer, 77
transport layer, 77

fragmentation
IPv6, 120–121
QUIC, 140–142

frames, Ethernet, 100–101

Index 791

G
Garcia-Luna-Aceves and DUAL, J.J., 331
gateways (default)

IPv4, 164–166
IPv6, 166–167

Gigabit Ethernet, 8B10B encoding scheme, 99–100
goodput versus throughput, 110
GR (Graceful Restart), 622–623
greedy algorithms, 317
gRPC, 47

H
half-open/malformed sessions, blocking (security), 575
half-split method (network troubleshooting), 641–643,

645
Hamming codes, 53–54
handshakes

three-way handshakes, control
planes, 291

two-way handshakes
control planes, 290–291
IS-IS, 450–451
loop-free paths, 366–367
OSPF, 450–451

hardware offload, VNF, 717
hash algorithms, 179–180
hash buckets, 179
hashes (cryptographic), 263–264
headers, NSH, service chaining, 708–709
hidden nodes, wireless networks, 108–109
hiding information, 526

aggregating reachability information,
515–518

BGP
atomic aggregation, 542–543
reachability overlay, 544–546

caching, control plane information, 520–525
control plane state scope, 508–510
feedback loops, 510–513
filtering reachability information, 518–519
layering, 543–544
positive feedback loops, 510–513
problem space, 507–508
slowing down state velocity, 525–526, 548

exponential backoff, 549–551
link state flooding reduction, 552–554

solution space, 513
SR with controller overlay, 546–548
summarizing topology information, 514–515, 530

IS-IS, 530–535
OSPF, 535–542

hierarchical network design, 600
recursive hierarchical network design, 602–603
three-tier hierarchical network design, 600–601

two-tier hierarchical network design, 601
higher level transport protocols, 116

ICMP, 117, 142–143
IP, 116

development of, 117–118
IPv4, 118–120
IPv6, 118–128

QUIC, 117, 136
fragmentation, 140–142
head of line blocking, 138–139
MTU discovery, 140–142
multiplexing, 138–142
retransmissions, 138
startup handshakes, 136–137

TCP, 117, 128–129
error management, 134–135
flow control, 129–134
IP development, 117
port numbers, 135
session setups, 135–136
three-way handshakes, 135–136

HOL (Head-of-Line) blocking, packet switching, 188
hold-down timers, 415
Honeywell Labs and IS-IS, 430
hop counts, 122
hop limits, 122
hop-by-hop distributions, 387–389
hop-by-hop encryption, 101
hop-by-hop forwarding, 13–14
host operating systems, security, 575
hot potato routing, control plane policies,

464–466
how models (network troubleshooting), 633–634
HTTPS (Hypertext Transfer Protocol Secure), public

clouds, data protection over public clouds, 738
hub-and-spoke topologies, 239–240, 609–610
hybrid clouds, 725
hyperconverged networks, 656, 765–767

I
I2RS (Interface to the Routing Systems), 490–495
IaaS (Infrastructure as a Service), 724
ICMP (Internet Control Message Protocol), 117,

142–143
identifier mapping, interlayer discovery,

150–151, 153–154
in-band polling, 376–377
incremental SPF (Shortest Path First), 349–350
information hiding, 526

aggregating reachability information, 515–518
BGP

atomic aggregation, 542–543
reachability overlay, 544–546

caching, control plane information, 520–525
control plane state scope, 508–510
feedback loops, 510–513

Index792

information hiding (continued)
filtering reachability information, 518–519
layering, 543–544
modularity and, 598
positive feedback loops, 510–513
problem space, 507–508
slowing down state velocity, 525–526, 548

exponential backoff, 549–551
link state flooding reduction, 552–554

solution space, 513
SR with controller overlay, 546–548
summarizing topology information, 514–515, 530

IS-IS, 530–535
OSPF, 535–542

information overload, control planes and, 375
infrastructure automation tools, 694–695
input-queued switches, packet switching, 188
intent-based networking, 714–715, 767–769
inter-area router LSA, 540–541
interaction surfaces, 30–32

multiple overlay control planes, 476–478
NFV, 718
virtual networks

overlaid control panels, 243–245
shared risk link groups, 242–243

interlayer discovery, 151
DHCP, 156–159
DNS, 154–156
identifier calculations, 154
identifier mapping, 150–151, 153–154
IPv4

ARP, interlayer discovery, 159–161
default gateways, 164–166

IPv6, default gateways, 166–167
manually configured identifiers, 151–152
mapping databases, 152–153
port mapping, 151–152
problems with, 149–150
well known identifiers, 151–152

Internet, reshaping of, 778–780
Internet layer (four-layer DoD model), 77
interrupt context switching, 183–186
IoT (Internet of Things), 743, 757

connectivity, 745, 751, 751–752, 753
IPv6, 754–756
LoRaWAN, 753–754, 755–756

data, 756–757
data processing, 745
DDoS attacks, 744–745
mobile IoT, 755
NAT, 754–755
scalability, 754
security, 745

isolation-based security,
746–748

open networking, 749–750
unikernels, 748–749

IP (Internet Protocol), 116
development of, 117–118
IPv4, 118

address space usage, 118
ARP, interlayer discovery, 159–161
DAD, 160
default gateways, 164–166
ToS fields and Ethernet DSCP, 200–202

IPv6, 118
addressing, 123–127
DAD, 162
default gateways, 166–167
DHCPv6, interlayer discovery, 156–159
fragmentation, 120–121
header format, 121–122
IoT connectivity, 754–756
marshaling, 119–120
multiplexing, 123–128
neighbor discovery, 161–164
protocol numbers, 127–128
router discovery, 161–164
SLAAC, 162
SR, 236–237

OSI model, 83
spoofing addresses, 137
virtual networks, Ethernet services over IP networks,

226–227
IPSec (IP Security)

public clouds, data protection over public clouds,
738

RINA model, 85
IPX (Internet Packet Exchange), 16
IS-IS (Intermediate System to Intermediate System),

431, 439
flooded distributions, 436

LSP header fields, 436–437
operation example, 437–439

history of, 430
link state protocols, 449
links, 449
marshaling, 433–434
multiaccess links/networks, 446–449
neighbor discovery, 434–436
nodes, 449
OSI addressing, 431–433
summarizing topology information, 530–535
TLV, 44–46, 47
topology discovery, 434–436
two-way handshakes, 450–451

iSLIP algorithm, packet switching,
189–190

isolation-based security and IoT, 746
endpoint isolation, 747–748
service-based isolation, 746–747

ISSU (In-Service Software Upgrades), 623
ITU (International Telecommunications

Union), 16

Index 793

J
jitter

application disaggregation, 662
application impacts of network failures, 616
BFD and, 382
public clouds, 736

JSON, RESTCONF, 692–694

K
Kahn and TCP, Bob, 16
Kerckhoff’s principle, 257
key exchanges (cryptography), 261

central source of trust, 262
PKI, 262
private key cryptography, 262–263
public key exchanges, 261–263
transitive trust, 262
web of trust, 262

Krebs and IoT DDoS attacks, Brian, 744
KrebsOnSecurity.com, IoT and DDoS attacks, 744–745,

746, 750

L
label switching (ATM), 17–18, 20
LACP (Link Aggregation Control Protocol), 181
latency

cloud computing, 732–734
slave latency, 752

Lawrence Livermore Laboratory, packet switched
networks, 13

layering, information hiding, 543–544
leaf nodes, 284
LFA. See alternative loop-free paths
link aggregation

ECMP, routed ECMP, 182–183
flow hashing, 179–181
LACP, 181
MLAG, 181–182
out-of-order packets, 178
packet switching, 178–183

link failures, RIP and, 414–415
link state detection, BFD, 380–382
link state flooding reduction, 552–554
link state protocols, 399

IS-IS, 431, 439, 449
flooded distributions, 436–439
history of, 430
marshaling, 433–434
multiaccess links/networks, 446–449
neighbor discovery, 434–436
nodes, 449

OSI addressing, 431–433
summarizing topology information, 530–535
topology discovery, 434–436
two-way handshakes, 450–451

loop-free paths, 22
OSPF, 440, 445–446, 449

flooded distributions, 443–445
history of, 430
marshaling, 440–441
neighbor discovery, 441–442
nodes, 449
summarizing topology information, 535–542
topology discovery, 441–442
two-way handshakes, 450–451

links
IS-IS, 449
OSPF, 449
physical links, 57–58
sizing, QoS, 197–199
SRLG, 621–622

LLQ (Low-Latency Queuing), QoS and congestion
management, 208–212, 214, 217

load-balancers, virtual networks, 702
loop-free paths, 20

alternate loop-free paths, 317–319
Dijkstra’s SPF, 350–352
P/Q Space model, 321–322, 352–353
rLFA, 322–324, 352–353
waterfall (continental divide) model, 320–321

Bellman-Ford loop-free path calculation, 324
as algorithm, 324–325
cycles across sample networks, 330
edges, 326
negative cost edges, 330
topologies, 326

BGP and, 454–456, 458
Dijkstra’s SPF, 341–349

history of, 342
incremental SPF, 349–350
partial SPF, 349–350

disjoint path algorithms, 356–357
Suurballe’s disjoint path algorithms, 358–363
two-connected networks, 357–358

Distance Vector protocols, 22
DUAL, 330

development of, 330
examples of, 332–337

finding, 312–314
Link State protocols, 22
MRT, 363–366
MST, 315–316, 317
node lists, 314–315
Path Vector protocols, 22
path vectors, 353–356
protocol wars, the, 22
SPT, 315, 316–317
two-way handshakes, 366–367

http://KrebsOnSecurity.com

Index794

loop-free trees, 402–403
loops

feedback loops, 64
control planes, 510–513
information hiding, 510–513

hop counts, 122
hop limits, 122
microloops, 395

CAP theorem, 392–394
centralized control planes, 390
flooded distributions, 384–385
hop-by-hop distributions, 388
ordered FIB and, 386–387

OODA loops, 582–583
actions, 585
decisions, 584–585
observation, 583
orientation, 583–584

positive feedback loops, 375
control planes, 510–513
information hiding, 510–513

routing loops, redistribution of reachability/
topologies, 306–307

LoRaWAN and IoT, 753–754, 755–756
lossiness (circuit), public clouds, 736
Lougheed and BGP, Kirk, 451
lower layer transport protocols, 110–111

Ethernet, 91–92
8B10B encoding scheme, 99–100
chipsets, 95–96, 98
collisions, 93–95
CSMA/CD, 93, 98
error management, 99–100
flow control, 101
frames, 100–101
Gigabit Ethernet, 99–100
MAC addresses, 94–95, 96–98
marshaling, 100
multiplexing, 92–93
packets, 100–101
switched Ethernet network operation,

98–99
Wireless 802.11, 102

error management, 109
flow control, 109
marshaling, 109
multiplexing, 102–109

LSA (Link State Agreements), inter-area router LSA,
540–541

M
MAC (Media Access Control) addresses

Ethernet, 94–95, 96–98
MAC-48/EUI-48 address format, 97–98
randomization (encryption), 265–266

machine learning, 769–771
malformed/half-open sessions, blocking (security), 575
man-in-the-middle (MITM) attacks, 268–269, 568–569
management planes (TDM systems), 12
management stations (NETCONF), 686
manipulation testing, 643–645
mapping

databases, interlayer discovery, 152–153
port mapping, interlayer discovery, 151–152

marshaling, 38, 39–40
dictionaries, protocols as, 40–47
Ethernet, 100
IPv6, 119–120
IS-IS, 433–434
OSPF, 440–441
protocols

defining, 40
dictionaries, 42
fixed length fields, 43–44
flag days, 40, 41
flexibility, 40
metadata tradeoffs, 40
optimizing, 40
resource efficiency, 40
shared object dictionaries, 46–47
TLV, 44–46

Wireless 802.11, 109
mashed potato routing, control plane policies, 464–466
memory

computing memory, history of, 21
packet switching

clocking packets from memory, 190–191
clocking packets to memory, 173–174

Merkle Trees, 775–777
mesh topologies, 607–609
metadata, 13, 38, 40
metrics

EIGRP, 416–417
multiple metric problem, 356
redistribution of reachability/topologies, 306–307

MIB tables and automation, 682–683
microloops, 395

CAP theorem, 392–394
centralized control planes, 390
flooded distributions, 384–385
hop-by-hop distributions, 388
ordered FIB and, 386–387

MITM (Man-In-The-Middle) attacks, 268–269,
568–569

MLAG (Multichassis Link Aggregation), 181–182
mobile IoT (Internet of Things), 755
modeling languages

OpenConfig, 764
YANG, 763, 764–765

modeling networks (troubleshooting)
accuracy in, 637–638
how models, 633–634

Index 795

OSI models, 637–638
RINA models, 637–638
shifting between models, 639–641
what models, 635–637

modularity
information hiding, 598
network design, 597–598

complexity, 599
information hiding, 598
optimization, 599
scalability, 599
tradeoffs, 598

resiliency and, 624–626
mouse flows, 180, 468–473
MPLS (Multiprotocol Label Switching), 20

headers, 233
packet switching, 233–235
SR, 232–236
as tunneling protocol, 236

MRT (Maximally Redundant Trees),
363–366

MST (Minimum Spanning Trees), 315–316, 317
MTBF (Mean Time Between Failures), 617–618
MTBM (Mean Time Between Mistakes), 619
MTTI (Mean Time To Innocence), 619
MTTR (Mean Time To Repair), 618, 624–626
MTU (Maximum Transmission Units)

control planes, 291
PMTUD, 229
QUIC, MTU discovery, 140–142

multicasting, 58–60, 60–61
multiplanar cores, 623–624
multiple overlay control planes, interaction surfaces,

476–478
multiplexing, 38, 39, 55–56

addressing, 56–58
anycasting, 61–63
beamforming, 104–105, 106–107
channel sharing, 107–108
Ethernet, 92–93
IPv6, 123

addressing, 123–127
protocol numbers, 127–128

multicasting, 58–60, 60–61
OFDM, 102–103
QUIC, 138–142
spatial multiplexing, 103–104, 106–107
virtual networks and, 222
virtualization versus, 282–283
Wireless 802.11, 102

beamforming, 104–105, 106–107
channel sharing, 107–108
multiple paths within a single room,

103–104
signal combinations, 105–106
signal waveforms, 105–106
spatial multiplexing, 103–104, 106–107

N
NACK (Negative Acknowledgements), QUIC

retransmissions, 138
NAT (Network Address Translation), IoT and,

754–755
NCP (Network Control Protocol), flag days, 41
NDN (Named Data Networking), 772

blockchains, 775–778
operation of, 772–775

negative cost edges, Bellman-Ford loop-free path
calculation, 330

negotiated bit rates, flow control, 69–70
neighbor discovery, 294

control planes, detecting devices from, 287–290
IPv6, 161–164
IS-IS, 434–436
OSPF, 441–442
STP and, 406–407

NETCONF, 685
configuring, 686
data stores, 685
layers of, 686–687
management stations, 686
operations, 687
XML, 687–689
YANG data modeling language and, 687–689

network diagrams, 281–282, 284, 307–308
control planes, 283

advertising reachability/topologies, 295–298
MTU, 291–293
neighbor discovery, 287–290
proactive distribution of reachability, 300–302
redistribution of reachability/topologies,

303–307
three-way handshakes, 291
two-way handshakes, 290–291

edges, 285
nodes, 284–285

defining, 284
leaf nodes, 284
transit nodes, 284

reachable destinations, 286–287, 293
advertising reachability, 295–298
proactive distribution of reachability, 300–302
proactive learning, 294–295
reactive distribution of reachability, 298–300
reactive learning, 293–294
redistribution between control planes, 303–307

topologies, 287, 295–298
network engineering, 5–6

art or engineering, 6–9
business to technology fit, 7–9
future of, 780

network layer (OSI model), 82–83
networks, 612

ATM, 17

Index796

networks (continued)
fixed cell sizes, 18–20
label switching, 17–18, 20
MPLS, 20

automation, 679–680, 681
API, 763
automation engineers, 681
on-box automation, 694
CLI, 681–682, 684, 763, 763
complexity and, 680
controller-based automation, 695–696
data analytics, 697
deployment automation, 696–697
Expect scripting, 682
infrastructure automation tools, 694–695
machine learning, 697
MIB tables, 682–683
NETCONF, 685–689
pervasive network automation, 763, 765
puppet components/manifests, automation, 695
regular expressions, 681
requirements, 683–684
RESTCONF, 689–694
SNMP and, 682–683, 684

circuit switched networks, 12–13
advantages of, 11
flow control, 15–16
packet switched networks versus, 13–15
TDM, 9–12

complexity, 25–26, 599
automation and, 680
defining, 28, 30
DoD model, 32–33
interaction surfaces, 30–32
managing, 26–28, 32–33
necessity for, 26–28
network stretch, 28–30
reasons for, 26
SOS model, 32–33
tradeoffs, 33
wasp waist, 32–33

components, defining, 631–632
composable systems, 657–658
converged networks, 605–607, 655
data deduplication, 657
disaggregated networks, 654–656, 677

application disaggregation, 658–659,
662, 672–676

east/west traffic flows, 659–661
packet switched fabrics, 662–666
routers, 673

east/west traffic flows, 659–661
failures, application impacts of, 616, 617

data flow control, 616
dropped packets, 617
duplicate packets, 617
end-to-end delays, 616
jitter, 616
out-of-order packets, 617

flexibility
forklift and, 593–595
NFV, 703–705
ossification and, 593–594
scalability, 596–597, 599
VNF, 703–705

good design, 599–600
hierarchical design, 600

recursive hierarchical network design, 602–603
three-tier hierarchical network design, 600–601
two-tier hierarchical network design, 601

hub-and-spoke topologies, 609–610
hyperconverged networks, 656, 765–767
mesh topologies, 607–609
modularity, 597–599

complexity, 599
optimization, 599
resiliency and, 624–626
scalability, 599
tradeoffs, 598

nonblocking networks, 668–669
noncontending networks, 668–669
nonplanar topologies, 610–611
opportunity costs, 592–593
optimization, 599
oversized networks, 597
ownership, 594–595
packet switched fabrics, 662–666
packet switched networks, 22–25

advantages/disadvantages of, 15
circuit switched networks versus, 13–15
development of, 13
distributed control planes, 14–15
FIB, 14
flow control, 15–16
hop-by-hop forwarding, 13–14
loop-free paths, 20, 22
metadata, 13
protocol wars, the, 16–17, 22
RIB, 14

paths, congestion choke points, 196–197
planar topologies, 610–611
problems with, 592
redundancy

dual plane cores, 623–624
GR, 622–623
ISSU, 623
multiplanar cores, 623–624
resiliency and, 619–626
SRLG, 621–622

regular topologies, 611–612
replacing equipment, 596
resiliency

availability, 619, 623–624
defining, 617
dual plane cores, 623–624
GR, 622–623
ISSU, 623
modularity and, 624–626

Index 797

MTBF, 617–618
MTBM, 619
MTTI, 619
MTTR, 618, 624–626
multiplanar cores, 623–624
redundancy and, 619–626
ring topologies, 605
SRLG, 621–622

ring topologies, 603
convergence, 605–607
resiliency, 605
scalability, 603–604
traffic engineering, 604

routers, disaggregated networks, 673
scalability, 596–597, 603–604
spine and leaf topologies, 667–668, 669

large-scale networks, 671–672
traffic engineering, 670–671

storage
compression, 657
converged networks, 655
data deduplication, 657
disaggregated networks, 656
encryption, 657
hyperconverged networks, 656

stretch
control plane state versus, 28–29
defining, 28
measuring, 29–30

traffic engineering, ring topologies, 604
troubleshooting, 633

accuracy in network models, 637–638
components, defining, 631–632
half-split method, 641–643, 645
how models, 633–634
manipulation testing, 643–645
OSI models, 637–638
RINA models, 637–638
shifting between models, 639–641
shifting between signals, 642–643
simplifying testing, 645–646
what models, 635–637

undersized networks, 596
virtual networks, 245–246

automation, 712–713
centralized policy management, 713–714
complexity, 241
converged networks, 655
defining, 221
disaggregated networks, 654–656
Ethernet services over IP networks,

226–227
hyperconverged networks, 656
intent-based networking, 714–715, 767–769
interaction surfaces, 242–243, 243–245
multiplexing and, 222
packet forwarding, 223–225
physical network transitions to, 654
problems with, 229–230

processors, 657
scalability, 711–712
SD-WAN, 239–241
SR, 230–232, 232–236, 236–237, 237–238
topologies, 222
VPN, 227–229
VRF, 222, 225

NFV (Network Function Virtualization), 703, 708, 719
interaction surfaces, 718
network design flexibility, 703–705
optimization, 718
policy distribution, 717–718
state, 717–718
tradeoffs, 718–719
virtualized services, 717

nodes, 284–285
defining, 284
IS-IS, 449
leaf nodes, 284
node lists, 314–315
OSPF, 449
transit nodes, 284

nonblocking networks, 668–669
noncontending networks, 668–669
nonplanar topologies, 610–611
northbound interfaces, 483
Novell Netware, 16, 430
NPU (Network Processing Units), packet switching, 185
NSH (Network Service Headers), service chaining,

708–709

O
obscurity and security, 258–259, 571–572
Octopus, packet switched networks, 13
OFDM (Orthogonal Frequency Division Multiplexing),

Wireless 802.11, 102–103
on-box automation, 694
onion routing, 266–268
OODA loops, 582–583

actions, 585
decisions, 584–585
observation, 583
orientation, 583–584

open networking
DDoS attacks, 750
security, 749–751

DDoS attacks, 750
uRPF, 750

OpenConfig data modeling language, 764
OpenFlow, 25, 497–499
OPEX (Operational Expenses), public clouds,

726–727
opportunity costs, network design, 592–593
optimization

applications via flow pinning, 468–473, 478
network design, 599
NFV, 718

Index798

optimization (continued)
software, VNF, 716–717
traffic flows, control plane policies, 473–474

ordered FIB (Forwarding Information Base) and
microloops, 386–387

OSI (Open Source Interconnect) model, 80–82, 637–638
application layer, 83
data link layer, 82
Ethernet and, 83
IP and, 83
network layer, 82–83
OSI addressing and IS-IS, 431–433
physical layer, 82, 83
presentation layer, 83
session layer, 83
TCP and, 83
TCP/IP and, 83–84
transport layer, 83

OSPF (Open Shortest Path First), 22, 440, 445–446
fixed length fields, 43–44
flooded distributions, 443–445
history of, 430
inter-area router LSA, 540–541
link state protocols, 449
links, 449
marshaling, 440–441
neighbor discovery, 441–442
nodes, 449
normal areas, 537–538
not-so-stubby areas, 539–540
stub areas, 538–539, 541–542
summarizing topology information, 535–542
topology discovery, 441–442
totally not-so-stubby areas, 540
totally stubby areas, 539
two-way handshakes, 450–451

ossification and network design flexibility,
593–594

out of band polling, 376–377
out-of-order packets

application impacts of network failures, 617
link aggregation, 178

overcongestion, QoS, 214
overlaid control panels, interaction surfaces and (virtual

networks), 243–245
overlay

BGP reachability overlay, 544–546
SR with controller overlay, 546–548

oversized networks, network design, 597
ownership, network design, 594–595

P
P/Q Space model, alternate loop-free paths, 321–322,

352–353
PaaS (Platform as a Service), 724
packet switched fabrics, 662–666

packet switched networks
advantages/disadvantages of, 15
circuit switched networks versus, 13–15
development of, 13
distributed control planes, 14–15
FIB, 14
flow control, 15–16
hop-by-hop forwarding, 13–14
loop-free paths, 20, 22
metadata, 13
protocol wars, the, 16–17, 22
QoS, 22–23

centralized control planes, 25
QoS mapping, 23–25
QoS marking, 23
QoS planning, 23–25

RIB, 14
packets

advertisement paths and, 401–402
buffers, 173
Ethernet, 100–101
forwarding

STP, 402
virtual networks, 223–225

recycling, 232
switching, 171–173, 175, 192

ASIC, 185–186
clocking packets from memory, 190–191
clocking packets to memory, 173–174
crossbar fabrics, 186–189
ECMP, 178, 178–181, 181, 181–182,

182–183
HOL blocking, 188
input-queued switches, 188
interrupt context switching, 183–186
iSLIP algorithm, 189–190
link aggregation, 178–183
MPLS, 233–235
NPU, 185
packet buffers, 173
processing packets, 174, 183–186
receive rings, 173
ring buffers, 174
routing, 175–177
STP, 402
switching paths, 183–186
VOQ, 188–189

partial SPF (Shortest Path First), 349–350
passwords, fingerprints as, 562–563
path vector protocols, 399

BGP, 458
advertisement rules, 456–457
history of, 451–452
loop-free paths, 22, 454–456, 458
peering, 452–454
route reflectors, 457

loop-free paths, 22, 454–456, 458
path vectors, 353–356

Index 799

PBR (Policy-Based Routing), service chaining, 708
PCEP (Path Control Element Protocol), 495–497
Perlman and STP, Radia, 402
pervasive network automation, 763, 765
physical layer

four-layer DoD model, 77
OSI model, 82, 83

physical links, 57–58
PKI (Public Key Infrastructure), 262
planar topologies, 610–611
PMTUD (Path MTU Detection), 229
PN (Programmable Networks), 482

fibbing, 487–490
I2RS, 490–495
northbound interfaces, 483
OpenFlow, 497–499
PCEP, 495–497
southbound interfaces, 483–484

poison reverses, 388–389, 415
policing, QoS and congestion management, 215
policy management, virtual networks, 713–714
polling-based failure detection, 376–377, 378–379
port mapping, interlayer discovery, 151–152
positive feedback loops, 375, 510–513
Postel and IP development, Jonathan B., 117
power management, history of computing

power, 21
presentation layer (OSI model), 83
privacy (user), transport security, 251–252
private clouds, 725
private key cryptography, 570–571

key exchanges, 262–263
public key cryptography versus, 260–261

processors
encryption, 657
storage, 657
virtual networks, 657

proof demand, QUIC, startup handshakes, 137
protocol stacks, 16
protocols

connectionless protocols, 86
connection-oriented protocols, 86
defining, 40
dictionaries

fixed length fields, 43–44
shared object dictionaries, 46–47
Unicode dictionaries, 42

fixed length fields, 43–44
flag days, 40, 41
flexibility, 40
metadata, 40
multiple metric problem, 356
optimizing, 40
protocol wars, the, 16–17, 21
resource efficiency, 40
TLV, 44–46, 47

public clouds, 724–725, 726
BGP, 736

business agility, 727
CAPEX, 726–727
circuit lossiness, 736
cloud exchange services, 734
costs of, 730
data gravity, 735
encryption, 738
feature creep, 730–731
infrastructure design, 729
infrastructure failures, 729
jitter, 736
multiple Internet connection, 735–737
multitenant clouds, 739
OPEX, 726–727
remote storage, 734–735
SD-WAN, 736–737
security

data protection over public clouds, 737–738
HTTPS, 738
IPSec, 738
managing secure connections, 738–739
monitoring cloud networks, 740
RBAC, 739–740

time-to-market, 727
tradeoffs

business tradeoffs, 731–732
nontechnical tradeoffs, 728
operational tradeoffs, 728–731

workload placement, 733–734
public Internet and QoS, 206–207
public key cryptography, 570–571

key exchanges, 261–263
private key cryptography versus, 260–261

public networks and VPN, 227–229
puppet components/manifests, automation, 695

Q
QoS (Quality of Service)

AF, 202
buffering packets, 215

buffer delays, 216–218
Bufferbloat, 216–217
CoDel, 217–218
RED, 215–216
TCP, 217
UDP, 217

centralized control planes, 25
classifying packets, 199, 203

AF, 202
best practices, 200
DSCP mutation, 204
DSCP translation, 204–205
EF, 202, 203
Ethernet DSCP and IPv4 ToS fields,

200–202
marking traffic, 204–205

Index800

QoS (Quality of Service) (continued)
RFC2597, AF, 202
RFC3246, EF, 202, 203
ToS reflection, 203–204
trust boundaries, 201

congestion management, 207
CBWFQ, 212–214
choke points, network paths, 196–197
elephant flows, 214
LLQ, 208–212, 214, 217
overcongestion, 214
policing, 215
traffic shaping, 214
VoIP, 208–210, 217

EF, 202, 203
packet switched networks, 22–23

QoS mapping, 23–25
QoS marking, 23
QoS planning, 23–25

public Internet and, 206–207
QoS mapping, 23–25
QoS marking, 23
QoS planning, 23–25
queue management

buffering packets, 215
RED, 215–216

RFC2474, 202–203
RFC2597, AF, 202
RFC3246, EF, 202, 203
sizing links, 197–199
traffic classes, 199, 203

AF, 202
best practices, 200
DSCP mutation, 204
DSCP translation, 204–205
EF, 202, 203
Ethernet DSCP and IPv4 ToS fields, 200–202
marking traffic, 204–205
RFC2597, AF, 202
RFC3246, EF, 202, 203
ToS reflection, 203–204
trust boundaries, 201

trust boundaries, 201
unmarked Internet and, 206–207

QUIC (Quick User Datagram Protocol Internet
Connections), 117, 136

fragmentation, 140–142
head of line blocking, 138–139
MTU discovery, 140–142
multiplexing, 138–142
retransmissions, 138
startup handshakes, 136–137

R
RAND Corporation, packet switched networks, 13
rate limiting, 575–576

RBAC (Role-Based Access Control), public clouds,
739–740

reachable destinations, 286–287, 293
advertising reachability, 295–298
proactive distribution of reachability, 300–302
proactive learning, 294–295
reactive distribution of reachability, 298–300
reactive learning, 293–294
redistribution between control planes, 303
STP and, 407–408

reachability
BGP reachability overlay, 544–546
information hiding

aggregating reachability information, 515–518
filtering reachability information,

518–519
receive rings, 173
recursive hierarchical network design, 602–603
recycling packets, 232
RED (Random Early Detection), 215–216
redundancy

CRC, 49–53, 55
resiliency and, 619–621, 626

dual plane cores, 623–624
GR, 622–623
ISSU, 623
multiplanar cores, 623–624
SRLG, 621–622

Reed-Solomon codes, 54
reflection attacks, 572–574
regular expressions, 681
regular topologies, 611–612
Rekhter, Yakov

ATM, label switching, 20
BGP, 451

remote storage, public clouds, 734–735
replacing equipment, network design, 596
resiliency

availability, 619
dual plane cores, 623–624
multiplanar cores, 623–624

defining, 617
modularity and, 624–626
MTBF, 617–618
MTBM, 619
MTTI, 619
MTTR, 618, 624–626
ring topologies, 605
redundancy and, 619–621, 626

dual plane cores, 623–624
GR, 622–623
ISSU, 623
multiplanar cores, 623–624
SRLG, 621–622

resource segmentation, control plane policies,
466–468, 476

restarting, GR, 622–623
RESTCONF, 689

Index 801

API, 689–690
JSON, 692–694
RESTful interfaces, 690–694
XML, 691–692, 693–694
YAML, 692, 693–694

RFC1918, open networking security, 749–750
RFC1925, 761–762
RFC2474, class selectors, 202–203
RFC2597, AF, 202
RFC2827, open networking security, 749–750
RFC3246, EF, 202, 203
RFC3535 Overview of the 2002 IAB Network

Management Workshop, 683–684
RFC3704, open networking security, 750
RIB (Routing Information Base), 14
RINA (Recursive Internet Architecture) model, 84–86,

637–638
ring buffers, 174
ring topologies, 603

convergence, 605–607
resiliency, 605
scalability, 603–604
traffic engineering, 604

RIP (Routing Information Protocol), 410–411,
415–416

Bellman-Ford and, 412–413
flush timers, 415
hold-down timers, 415
link failures, 414–415
operation example, 411–412
topology changes, 414–415
triggered updates, 415

risks (security), defining, 565
rLFA (remote Loop-Free Alternate), 322–324, 352–353
Roskind and QUIC, Jim, 136
route reflectors, BGP, 457
routers/routing

cold potato routing, control plane policies, 464–466
disaggregated networks, 673
ECMP, 182–183
hot potato routing, control plane policies, 464–466
I2RS, 490–495
inter-area router LSA, 540–541
IPv6, router discovery, 161–164
mashed potato routing, control plane policies,

464–466
onion routing, 266–268
packet switching, routing, 175–177
PBR, service chaining, 708

routing loops, redistribution of reachability/topologies,
306–307

routing tables, distance vector protocols and, 424
SR, 230–232

with controller overlay, 546–548
IPv6, 236–237
MPLS, 232–236
signaling SR labels, 237–238

switching versus routing, 177

RTO (Retransmit Time Outs), TCP flow control, 132,
134

RTT (Round Trip Times)
QUIC, 136–137
TCP flow control, 132, 134

RWND (Receive Window), TCP windowed flow control,
133

S
SaaS (Software as a Service), 724
SACK (Selective Acknowledgements), TCP flow control,

132
scalability

IoT, 754
ring topologies, 603–604
virtual networks, 711–712

scope of control plane state, 508–510
SD-WAN (Software-Defined Wide Area Networks),

239–241
hub-and-spoke topologies, 610
public clouds, 736–737

SDN (Software Defined Networks), 15, 482
BGP as, 485–486
defined, 482
fibbing, 487–490
I2RS, 490–495
northbound interfaces, 483
OpenFlow, 497–499
PCEP, 495–497
southbound interfaces, 483–484

security, 561–562, 564, 586
AAA systems, 567
access control, 567–568
assets, defining, 565
attack surfaces, defining, 565
attackers (threat actors), defining, 564
attacks (threats)

amplification attacks, 574
brute-force attacks, 258
burner attacks, 574
DDoS attacks, 572–582
defining, 564
man-in-the-middle attacks, 268–269
reflection attacks, 572–574

biometric issues, 562–564
blocking DDoS attacks upstream, 579–580
botnets and DDoS reflection attacks, 572–574
brute-force attacks, 258
cloud computing, 737

data protection over public clouds, 737–738
HTTPS, 738
IPSec, 738

control planes, MITM attacks, 568–569
data protection, 568, 570–571
DDoS reflection attacks, 572–574
DDoS scrubbers/services, 581–582

Index802

security (continued)
defense in depth, 566–567
dispersing DDoS attacks, 576–577
encryption, 570, 571–572

private key cryptography, 570–571
public clouds, 738
public key cryptography, 570–571

exploits, defining, 564
filtering unroutable addresses, 578–579
half-open/malformed sessions, blocking, 575
host operating system modifications, 575
HTTPS, public clouds, 738
IoT, 745

isolation-based security, 746–748
open networking, 749–750
unikernels, 748–749

IPSec, public clouds, 738
isolation-based security and IoT, 746

endpoint isolation, 747–748
service-based isolation, 746–747

MAC address randomization, 265–266
man-in-the-middle attacks, 268–269
MITM attacks, control planes and, 568–569
obscurity and, 258–259, 571–572
onion routing, 266–268
OODA loops, 582–583

actions, 585
decisions, 584–585
observation, 583
orientation, 583–584

open networking, 749–751
DDoS attacks, 750
uRPF, 750

passwords, fingerprints as, 562–563
problem space, 565
public clouds

encryption, 738
managing secure connections, 738–739

rate limiting, 575–576
risks, defining, 565
solution space, 565
threat actors (attackers), defining, 564
TLS, 269–272
transport security, 249–250, 272–273

asymmetric cryptography, 260
brute-force attacks, 258
cipher blocks as substitution tables, 253–255
cryptographic functions, 255, 258, 259
data exhaust, 251–252, 264–265
hashes, 263–264
Kerckhoff’s principle, 257
key exchanges, 261–263
man-in-the-middle attacks, 268–269
multiple rounds of encryption, 259–260
obscurity and, 258–259
onion routing, 266–268
private key cryptography, 260–261, 262–263

protecting data from examination, 250–251
public key cryptography, 260–263
substitution tables generated by large key

transforms, 255–258
symmetric cryptography, 260
TLS, 269–272
user privacy, 251–252
validating data, 250

uRPF, 578–579
vulnerabilities, defining, 564

serverless cloud services, 724
service chaining, 705–707, 709–711

NSH, 708–709
PBR, 708
SFC, 708

service-based isolation and IoT security,
746–747

session layer (OSI model), 83
seven-layer DoD model, 78–80
SFC (Service Function Chaining), 708
Shannon, Claude, 39
sharding, 390–392
shared object dictionaries, 46–47
shared risk link groups, virtual networks, interaction

surfaces and shared risk link groups, 242–243
shortest paths

Bellman-Ford loop-free path calculation, 324
as algorithm, 324–325
cycles across sample networks, 330
edges, 326
negative cost edges, 330
topologies, 326

Dijkstra’s SPF, 341–349
history of, 342
incremental SPF, 349–350
partial SPF, 349–350

loop-free paths
alternate loop-free paths, 317–324, 350–352
finding, 312–314
node lists, 314–315

MST, 315–316, 317
SPT, 315, 316–317

signal repeaters, event-driven failure detection, 379–380
signal waveforms, Wireless 802.11 multiplexing,

105–106
single packet windows (ping pong), 65–68
sizing, links, QoS, 197–199
SLAAC, IPv6 addressing, 162
slave latency, 752
slowing down state velocity, 525–526, 548

exponential backoff, 549–551
link state flooding reduction, 552–554

SNMP (Simple Network Management Protocol),
automation and, 682–683, 684

software
ISSU, 623
optimization, VNF, 716–717

Index 803

SOS (State, Optimization and Surface)
model, complexity (network),
managing, 32–33

southbound interfaces, 483–484
sparse mode multicasting, 60–61
spatial multiplexing, Wireless 802.11, 103–104,

106–107
spine and leaf topologies, 667–668, 669

large-scale networks, 671–672
traffic engineering, 670–671

split horizons, 388, 389
SPT (Shortest Path Trees), 315, 316–317
SR (Segment Routing)

virtual networks, 230–232
IPv6, 236–237
MPLS, 232–236
signaling SR labels, 237–238

with controller overlay, 546–548
SRLG (Shared Risk Link Groups), 621–622
SST (Slow Start Threshold), 133, 134
state velocity, slowing down, 525–526, 548
stateful DHCP (Dynamic Host Configuration Protocol),

158
stateless DHCPv6 (Dynamic Host Configuration

Protocol version 6), 158
STK (Source Address Tokens), QUIC and startup

handshakes, 137
storage

compression, 657
converged networks, 655
data deduplication, 657
disaggregated networks, 656
encryption, 657
hyperconverged networks, 656
remote storage, public clouds,

734–735
STP (Spanning Tree Protocol), 402

broadcast storms, 409–410
as distance vector protocol, 408–409
neighbor discovery, 406–407
reachable destinations, 407–408
topologies and, 403–406

stretch (network)
control plane state versus, 28–29
defining, 28
measuring, 29–30

subsidiarity, centralized control planes, 499–503
substitution tables, transport security

cipher blocks as substitution tables, 253–255
substitution tables generated by large key

transforms, 255–258
Suurballe’s disjoint path algorithms, 358–363
switching

input-queued switches, 188
interrupt context switching, 183–186
routing versus switching, 177

symmetric cryptography, 260

T
TCP (Transmission Control Protocol), 117,

128–129
buffering packets, 217
error management, 134–135
flag days, 41
flow control

choosing window size, 132–134
CWND, 133–134
missing packets, 131–132
retransmitting, 132
RWND, 133
SACK, 132
sliding windows, 129–130
SST, 133, 134
windowed flow control with serial numbers,

130–131
IP development, 117
OSI model, 83
packet switched networks, flow

control, 16
port mapping, interlayer discovery, 152
port numbers, 135, 152
session setups, 135–136
three-way handshakes, 135–136

TCP/IP (Transmission Control Protocol/Internet
Protocol), OSI model, 83–84

TDM (Time Division Multiplexing)
circuit switched networks, 9–12

control planes, 12, 14–15
data (forwarding) planes, 12
management planes, 12

control planes, 12, 14–15
data (forwarding) planes, 12
management planes, 12

technical debt (troubleshooting), 646–647
tests, troubleshooting methods

manipulation testing, 643–645
simplifying testing, 645–646

threat actors (attackers), defining, 564
threats (attacks)

amplification attacks, 574
brute-force attacks, 258
burner attacks, 574
DDoS attacks, 572–574

blocking upstream, 579–580
DDoS scrubbers/services, 581–582
preventing, blocking half-open/malformed

sessions, 575
preventing, dispersing traffic over multiple

servers, 576–577
preventing, filtering unroutable addresses,

578–579
preventing, host operating system

modifications, 575
preventing, rate limiting, 575–576

Index804

threats (attacks) (continued)
preventing, uRPF, 578–579

defining, 564
man-in-the-middle attacks, 268–269
reflection attacks, 574

three-tier hierarchical network design,
600–601

three-way handshakes
control planes, 291
TCP, 135–136

throughput versus goodput, 110
TLS (Transport Layer Security), 269–270

components of, 270
secure session startup process (handshakes),

270–272
TLV (Type Length Values), 21, 44–46, 47
topologies, 287, 307–308

advertising, 295–298
Bellman-Ford loop-free path

calculation, 326
CAP theorem, 392–394
change distribution, 383, 394–395

CAP theorem, 392–394
centralized control planes, 389–390
EIGRP, 419–421
flooded distributions, 383–387
hop-by-hop distributions, 387–389
RIP and, 414–415

detecting changes, 375
event-driven failure detection, 377–378

carrier loss, 379–380
complexity, 380
polling-based failure detection versus, 378–379
signal repeaters, 379–380

hub-and-spoke topologies, 609–610
information hiding, summarizing topology

information, 514–515, 530
IS-IS, topology discovery, 434–436
link state detection and BFD, 380–382
mesh topologies, 607–609
nonplanar topologies, 610–611
OSPF, topology discovery, 441–442
planar topologies, 610–611
polling-based failure detection, 376–377, 378–379
redistribution of, 303–307
regular topologies, 611–612
ring topologies, 603

convergence, 605–607
resiliency, 605
scalability, 603–604
traffic engineering, 604

sharding, 390–392
spine and leaf topologies, 667–668, 669

large-scale networks, 671–672
traffic engineering, 670–671

STP and, 403–406
virtual networks, 222

ToS reflection, 203–204
traffic classes, QoS, 199, 203

AF, 202
best practices, 200
DSCP mutation, 204
DSCP translation, 204–205
EF, 202, 203
Ethernet DSCP and IPv4 ToS fields, 200–202
marking traffic, 204–205
RFC2597, AF, 202
RFC3246, EF, 202, 203
ToS reflection, 203–204
trust boundaries, 201

traffic engineering
data center fabrics, 470–473
ring topologies, 604
spine and leaf topologies, 670–671

traffic flows, optimizing (control plane policies),
473–474

traffic shaping, QoS and congestion management, 214
transit nodes, 284
transitive trust, 262
transport layer

four-layer DoD model, 77
OSI model, 83

transport security, 249–250, 272–273
brute-force attacks, 258
cryptography

asymmetric cryptography, 260
hashes, 263–264
key exchanges, 261–263
private key cryptography, 260–261, 262–263
public key cryptography, 260–263
symmetric cryptography, 260

data exhaust, 251–252, 264–265
encryption

cipher blocks as substitution tables, 253–255
cryptographic functions, 255, 258, 259
MAC address randomization, 265–266
multiple rounds of encryption,

259–260
onion routing, 266–268
substitution tables generated by large key

transforms, 255–258
examination, protecting data from, 250–251
Kerckhoff’s principle, 257
man-in-the-middle attacks, 268–269
obscurity and, 258–259
TLS, 269–270

components of, 270
secure session startup process (handshakes),

270–272
user privacy, 251–252
validating data, 250

transport systems, 75–76
DoD model, 76–77

four-layer DoD model, 77–78

Index 805

seven-layer DoD model, 78–80
OSI model, 80–82

application layer, 83
data link layer, 82
Ethernet and, 83
IP and, 83
network layer, 82–83
physical layer, 82, 83
presentation layer, 83
session layer, 83
TCP and, 83
TCP/IP and, 83–84
transport layer, 83

RINA model, 84–86
trees

loop-free trees, 402–403
MRT, 363–366
MST, 315–316, 317
SPT, 315, 316–317

triggered updates and RIP, 415
troubleshooting, 629–630, 647–648

cloud computing, infrastructure failures, 729
fixing problems, 646–647
half-split method, 641–643, 645
manipulation testing, 643–645
models, 633

accuracy in, 637–638
how models, 633–634
OSI models, 637–638
RINA models, 637–638
shifting between models, 639–641
what models, 635–637

network components, defining, 631–632
purpose of, 630–631
shifting between signals, 642–643
simplifying testing, 645–646
technical debt and, 646–647

trust boundaries (QoS), 201
TTL (Time To Live). See hop counts
tunneling protocols, MPLS as, 236
two-tier hierarchical network design, 601
two-way handshakes

control planes, 290–291
IS-IS, 450–451
loop-free paths, 366–367
OSPF, 450–451

U
UDP (User Datagram Protocol), buffering packets, 217
undersized networks, network design, 596
Unicode dictionaries, 42
unikernels and IoT security, 748–749
unmarked Internet and QoS, 206–207
updates, triggered updates, RIP and, 415
upgrades

forklift upgrades, network design, 594–595, 596
ISSU, 623

uRPF (Unicast Reverse Path Forwarding)
open networking security, 750
preventing DDoS attacks, 578–579

usage versus features (network engineering), 8–9
user privacy, transport security, 251–252

V
validating data, transport security, 250
VBR (Variable Bit Rates), 69
VIP (Vines Internet Protocol), 16
virtual networks, 245–246, 701, 702–703

ASIC, 715–716
automation, 712–713
complexity, 241
converged networks, 655
data center firewall clusters, 702
defining, 221
disaggregated networks, 654–656
Ethernet services over IP networks, 226–227
flexibility, 703–705
hyperconverged networks, 656
intent-based networking, 767–769
interaction surfaces

overlaid control panels, 243–245
shared risk link groups, 242–243

load-balancers, 702
multiplexing and, 222, 282–283
NFV, 703, 708, 719

interaction surfaces, 718
network design flexibility, 703–705
optimization, 718
policy distribution, 717–718
state, 717–718
tradeoffs, 718–719
virtualized services, 717

packet forwarding, 223–225
physical network transitions to, 654
problems with, 229–230
processors, 657
scalability, 711–712
SD-WAN, 239–241
SR, 230–232

IPv6, 236–237
MPLS, 232–236
signaling SR labels, 237–238

topologies, 222
VNF, 703

ASIC and, 715–716
automation, 712–713
benefits of, 715
centralized policy management, 713–714
hardware offload, 717
intent-based networking, 714–715

Index806

virtual networks (continued)
network design flexibility, 703–705
performance, 716
scalability, 711–712
service chaining, 705–711
software optimization, 716–717
throughput, 716–717
tradeoffs, 717

VPN
corporate networks and, 227–229
public networks and, 227–229

VRF, 222, 225
VNF (Virtualized Network Functions), 703

ASIC and, 715–716
automation, 712–713
benefits of, 715
centralized policy management, 713–714
hardware offload, 717
intent-based networking, 714–715
network design flexibility, 703–705
performance, 716
scalability, 711–712
service chaining, 705–711
software optimization, 716–717
throughput, 716–717
tradeoffs, 717

VoIP (Voice over Internet Protocol), QoS and congestion
management, 208–210, 217

VOQ (Virtual Output Queues), packet switching,
188–189

VPN (Virtual Private Networks)
corporate networks and, 227–229
public networks and, 227–229

VRF (Virtual Routing and Forwarding), 222, 225
vulnerabilities, defining, 564

W
WAN (Wide Area Networks), SD-WAN, 239–241
wasp waist, complexity (network), managing, 32–33

waterfall (continental divide) model, alternate
loop-free paths, alternate loop-free paths,
320–321

web of trust, 262
what models (network troubleshooting),

635–637
white box movement. See disaggregated networks
windowing, 65

fixed window flow control, 67–69
single packet windows (ping pong), 65–68

Wireless 802.11, 102
error management, 109
flow control, 109
hidden nodes, 108–109
marshaling, 109
multiplexing, 102

beamforming, 104–105, 106–107
channel sharing, 107–108
multiple paths within a single room,

103–104
OFDM, 102–103
signal combinations, 105–106
signal waveforms, 105–106
spatial multiplexing, 103–104,

106–107
wireless networks, hidden nodes, 108–109

X
XML (Extensible Markup Language)

NETCONF, 687–689
RESTCONF, 691–692, 693–694

Y–Z
YAML, RESTCONF, 692, 693–694
YANG data modeling language, 763, 764–765

I2RS route modeling, 493–495
NETCONF, 687–689

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Introduction
	Part I: The Data Plane
	Chapter 1: Fundamental Concepts
	Art or Engineering?
	Circuit Switching
	Packet Switching
	Packet Switched Operation
	Flow Control in Packet Switched Networks

	Fixed Versus Variable Length Frames
	Calculating Loop-Free Paths
	Quality of Service
	The Revenge of Centralized Control Planes
	Complexity
	Why So Complex?
	Defining Complexity
	Managing Complexity through the Wasp Waist

	Final Thoughts
	Further Reading
	Review Questions

	Chapter 2: Data Transport Problems and Solutions
	Digital Grammars and Marshaling
	Digital Grammars and Dictionaries
	Fixed Length Fields
	Type Length Value
	Shared Object Dictionaries

	Errors
	Error Detection
	Error Correction

	Multiplexing
	Addressing Devices and Applications
	Multicast
	Anycast

	Flow Control
	Windowing
	Negotiated Bit Rates

	Final Thoughts on Transport
	Further Reading
	Review Questions

	Chapter 3: Modeling Network Transport
	United States Department of Defense (DoD) Model
	Open Systems Interconnect (OSI) Model
	Recursive Internet Architecture (RINA) Model
	Connection Oriented and Connectionless
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 4: Lower Layer Transports
	Ethernet
	Multiplexing
	Error Control
	Data Marshaling
	Flow Control

	Wireless 802.11
	Multiplexing
	Data Marshaling, Error Control, and Flow Control

	Final Thoughts on Lower Layer Transmission Protocols
	Further Reading
	Review Questions

	Chapter 5: Higher Layer Data Transports
	The Internet Protocol
	Transport and Marshaling
	Multiplexing

	Transmission Control Protocol
	Flow Control
	Error Control
	TCP Port Numbers
	TCP Session Setup

	QUIC
	ICMP
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 6: Interlayer Discovery
	Interlayer Discovery Solutions
	Well-Known and/or Manually Configured Identifiers
	Mapping Database and Protocol
	Advertising Identifier Mappings in a Protocol
	Calculating One Identifier from the Other

	Interlayer Discovery Examples
	The Domain Name System
	DHCP
	IPv4 Address Resolution Protocol
	IPv6 Neighbor Discovery

	The Default Gateway Problem
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 7: Packet Switching
	Physical Media to Memory
	Processing the Packet
	Switching
	Routing
	Why Route?
	Equal Cost Multipath
	Packet Processing Engines

	Across the Bus
	Crossbars and Contention

	Memory to Physical Media
	Final Thoughts on Packet Switching
	Further Reading
	Review Questions

	Chapter 8: Quality of Service
	Defining the Problem Space
	Why Not Just Size Links Large Enough?

	Classification
	Preserving Classification
	The Unmarked Internet

	Congestion Management
	Timeliness: Low-Latency Queueing
	Fairness: Class-Based Weighted Fair Queueing
	Overcongestion
	Other QoS Congestion Management Tools

	Queue Management
	Managing a Full Buffer: Weighted Random Early Detection
	Managing Buffer Delay, Bufferbloat, and CoDel

	Final Thoughts on Quality of Service
	Further Reading
	Review Questions

	Chapter 9: Network Virtualization
	Understanding Virtual Networks
	Providing Ethernet Services over an IP Network
	Virtual Private Access to a Corporate Network
	A Summary of Virtualization Problems and Solutions

	Segment Routing
	Segment Routing with Multiprotocol Label Switching
	Segment Routing with IPv6
	Signaling Segment Routing Labels

	Software-Defined Wide Area Networks
	Complexity and Virtualization
	Interaction Surfaces and Shared Risk Link Groups
	Interaction Surfaces and Overlaid Control Planes

	Final Thoughts on Network Virtualization
	Further Reading
	Review Questions

	Chapter 10: Transport Security
	The Problem Space
	Validating Data
	Protecting Data from Being Examined
	Protecting User Privacy

	The Solution Space
	Encryption
	Key Exchange
	Cryptographic Hashes
	Obscuring User Information

	Transport Layer Security
	Final Thoughts on Transport Security
	Further Reading
	Review Questions

	Part II: The Control Plane
	Chapter 11: Topology Discovery
	Nodes, Edges, and Reachable Destinations
	Node
	Edge
	Reachable Destination
	Topology

	Learning about the Topology
	Detecting Other Network Devices
	Detecting Two-Way Connectivity
	Detecting the Maximum Transmission Unit

	Learning about Reachable Destinations
	Learning Reactively
	Learning Proactively

	Advertising Reachability and Topology
	Deciding When to Advertise Reachability and Topology
	Reactive Distribution of Reachability
	Proactive Distribution of Reachability

	Redistribution between Control Planes
	Redistribution and Metrics
	Redistribution and Routing Loops

	Final Thoughts on Topology Discovery
	Further Reading
	Review Questions

	Chapter 12: Unicast Loop-Free Paths (1)
	Which Path Is Loop Free?
	Trees
	Alternate Loop-Free Paths
	Waterfall (or Continental Divide) Model
	P/Q Space
	Remote Loop-Free Alternates

	Bellman-Ford Loop-Free Path Calculation
	Garcia’s Diffusing Update Algorithm
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 13: Unicast Loop-Free Paths (2)
	Dijkstra’s Shortest Path First
	Partial and Incremental SPF
	Calculating LFAs and rLFAs

	Path Vector
	Disjoint Path Algorithms
	Two-Connected Networks
	Suurballe’s Disjoint Path Algorithm
	Maximally Redundant Trees

	Two-Way Connectivity
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 14: Reacting to Topology Changes
	Detecting Topology Changes
	Polling to Detect Failures
	Event-Driven Failure Detection
	Comparing Event-Driven and Polling-Based Detection
	An Example: Bidirectional Forwarding Detection

	Change Distribution
	Flooding
	Hop by Hop
	A Centralized Store

	Consistency, Accessibility, and Partitionability
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 15: Distance Vector Control Planes
	Control Plane Classification
	Spanning Tree Protocol
	Building a Loop-Free Tree
	Learning about Reachable Destinations
	Concluding Thoughts on the Spanning Tree Protocol

	The Routing Information Protocol
	Tying Bellman-Ford to RIP
	Reacting to Topology Changes
	Concluding Thoughts on RIP

	The Enhanced Interior Gateway Routing Protocol
	Reacting to a Topology Change
	Neighbor Discovery and Reliable Transport
	Concluding Thoughts on EIGRP

	Further Reading
	Review Questions

	Chapter 16: Link State and Path Vector Control Planes
	A Short History of OSPF and IS-IS
	The Intermediate System to Intermediate System Protocol
	OSI Addressing
	Marshalling Data in IS-IS
	Neighbor and Topology Discovery
	Reliable Flooding
	Concluding Thoughts on IS-IS

	The Open Shortest Path First Protocol
	Marshalling Data in OSPF
	Neighbor and Topology Discovery
	Reliable Flooding
	Concluding Thoughts on OSPF

	Common Elements of OSPF and IS-IS
	Multiaccess Links
	Conceptualizing Links, Nodes, and Reachability in Link State Protocols
	Validating Two-Way Connectivity in SPF

	Border Gateway Protocol
	BGP Peering
	The BGP Best Path Decision Process
	BGP Advertisement Rules
	Concluding Thoughts on BGP

	Final Thoughts
	Further Reading
	Review Questions

	Chapter 17: Policy in the Control Plane
	Control Plane Policy Use Cases
	Routing and Potatoes
	Resource Segmentation
	Flow Pinning for Application Optimization

	Defining Control Plane Policy
	Control Plane Policy and Complexity
	Routing and Potatoes
	Resource Segmentation
	Flow Pinning for Applications

	Final Thoughts on Control Plane Policy
	Further Reading
	Review Questions

	Chapter 18: Centralized Control Planes
	Considering the Definition of Software Defined
	A Taxonomy of Interfaces
	Considering the Division of Labor

	BGP as an SDN
	Fibbing
	I2RS
	PCEP
	OpenFlow
	CAP Theorem and Subsidiarity
	Final Thoughts on Centralized Control Planes
	Further Reading
	Review Questions

	Chapter 19: Failure Domains and Information Hiding
	The Problem Space
	Defining Control Plane State Scope
	Positive Feedback Loops

	The Solution Space
	Summarizing Topology Information
	Aggregating Reachability Information
	Filtering Reachability Information
	Layering Control Planes
	Caching
	Slowing Down

	Final Thoughts on Hiding Information
	Further Reading
	Review Questions

	Chapter 20: Examples of Information Hiding
	Summarizing Topology Information
	Intermediate System to Intermediate System
	Open Shortest Path First

	Aggregation
	Layering
	The Border Gateway Protocol as a Reachability Overlay
	Segment Routing with a Controller Overlay

	Slowing Down State Velocity
	Exponential Backoff
	Link State Flooding Reduction

	Final Thoughts on Failure Domains
	Further Reading
	Review Questions

	Part III: Network Design
	Chapter 21: Security: A Broader Sweep
	The Scope of the Problem
	The Biometric Identity Conundrum
	Definitions
	The Problem Space

	The Solution Space
	Defense in Depth
	Access Control
	Data Protection
	Service Availability Assurance

	The OODA Loop as a Security Model
	Observe
	Orient
	Decide
	Act

	Final Thoughts on Security
	Further Reading
	Review Questions

	Chapter 22: Network Design Patterns
	The Problem Space
	Solving Business Problems
	Translating Business Requirements into Technical
	What Is a Good Network Design?

	Hierarchical Design
	Common Topologies
	Ring Topologies
	Mesh Topologies
	Hub-and-Spoke Topologies
	Planar, Nonplanar, and Regular

	Final Thoughts on Network Design Patterns
	Further Reading
	Review Questions

	Chapter 23: Redundant and Resilient
	The Problem Space: What Failures Look Like to Applications
	Resilience Defined
	Other “Measures”

	Redundancy as a Tool to Create Resilience
	Shared Risk Link Groups
	In-Service Software Upgrade and Graceful Restart
	Dual and Multiplanar Cores

	Modularity and Resilience
	Final Thoughts on Resilience
	Further Reading
	Review Questions

	Chapter 24: Troubleshooting
	What Is the Purpose?
	What Are the Components?
	Models and Troubleshooting
	Build How Models
	Build What Models
	Build Accurate Models
	Shifting between Models

	Half Split and Move
	Using Manipulability
	Simplify before Testing

	Fixing the Problem
	Final Thoughts on Troubleshooting
	Further Reading
	Review Questions

	Part IV: Current Topics
	Chapter 25: Disaggregation, Hyperconvergence, and the Changing Network
	Changes in Compute Resources and Applications
	Converged, Disaggregated, Hyperconverged, and Composable
	Applications Virtualized and Disaggregated

	The Impact on Network Design
	The Rise of East/West Traffic
	The Rise of Jitter and Delay

	Packet Switched Fabrics
	The Special Properties of a Fabric
	Spine and Leaf
	Traffic Engineering on a Spine and Leaf
	A Larger-Scale Spine and Leaf

	Disaggregation in Networks
	Final Thoughts on Disaggregation
	Further Reading
	Review Questions

	Chapter 26: The Case for Network Automation
	Automation Concepts
	Modern Automation Methods
	NETCONF
	RESTCONF

	Automation with Programmatic Interfaces
	On-box Automation
	Network Automation with Infrastructure Automation Tools
	Network Controllers and Automation
	Network Automation for Deployment
	Final Thoughts on the Future of Network Automation: Automation to Automatic
	Further Reading
	Review Questions

	Chapter 27: Virtualized Network Functions
	Network Design Flexibility
	Service Chaining

	Scaling Out
	Decreased Time to Service through Automation
	Centralized Policy Management
	Intent-Based Networking
	Benefit

	Compute Advantages and Architecture
	Improving VNF Throughput

	Considering Tradeoffs
	State
	Optimization
	Surface
	Other Tradeoffs to Consider

	Final Thoughts
	Further Reading
	Review Questions

	Chapter 28: Cloud Computing Concepts and Challenges
	Public Cloud Business Drivers
	Shifting from Capital to Operational Expenditure
	Time-to-Market and Business Agility

	Nontechnical Public Cloud Tradeoffs
	Operational Tradeoffs
	Business Tradeoffs

	Technical Challenges of Cloud Networking
	Latency
	Populating Remote Storage
	Data Gravity
	Selecting Among Multiple Paths to the Public Cloud

	Security in the Cloud
	Protecting Data over Public Transport
	Managing Secure Connections
	The Multitenant Cloud
	Role-Based Access Controls

	Monitoring Cloud Networks
	Final Thoughts
	Further Reading
	Review Questions

	Chapter 29: Internet of Things
	Introducing IoT
	IoT Security
	Securing Insecurable Devices Through Isolation

	IoT Connectivity
	Bluetooth Low Energy (BLE)
	LoRaWAN
	IPv6 for IoT

	IoT Data
	Final Thoughts on the Internet of Things
	Further Reading
	Review Questions

	Chapter 30: Looking Forward
	Pervasive Open Automation
	Modeling Languages and Models
	A Brief Introduction to YANG
	Looking Forward Toward Pervasive Automation

	Hyperconverged Networks
	Intent-Based Networking
	Machine Learning and Artificial Narrow Intelligence
	Named Data Networking and Blockchains
	Named Data Networking Operation
	Blockchains

	The Reshaping of the Internet
	Final Thoughts on the Future of Network Engineering
	Further Reading
	Review Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

